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Keywords: 

We study the effect of a confined turbulent counter-current gas flow on the waviness of a weakly-inclined falling liquid film. Our study is centered on experiments in a channel of 13 mm height, using water and air, where we have successively increased the counter-current gas flow rate until flooding. Computations with a new low-dimensional model and linear stability calculations are used to elucidate the linear and nonlinear wave dynamics. We find that the gas pressure gradient plays an important role in countering the stabilizing effect of the tangential gas shear stress at the liquid-gas interface. At very low inclination angles, the latter effect dominates and can suppress the long-wave Kapitza instability unconditionally. By contrast, for non-negligible inclination, the gas-effect is linearly destabilizing, amplifies the height of nonlinear Kapitza waves, and exacerbates coalescence-induced formation of large-amplitude tsunami waves. Kapitza waves do not undergo any catastrophic transformation when the counter-current gas flow rate is increased beyond the absolute instability (AI) limit. On the contrary, we find that AI is an effective linear wave selection mechanism in a noise-driven wave evolution scenario, leading to highly regular downward-travelling nonlinear wave trains, which preclude coalescence events. In our experiments, where Kapitza waves develop in a protected region before coming into contact with the gas, flooding is eventually caused far beyond the AI limit by upward-travelling short-wave ripples. Based on our linear stability calculations for arbitrary wave numbers, we have uncovered a new short-wave interfacial instability mode with negative linear wave speed, causing these ripples.
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M. Ishimura, S. Mergui, C. Ruyer-Quil, and G. F. Dietze the liquid film is subject to a turbulent counter-current gas flow within narrow channels (Valluri et al. 2005). Surface waves, forming at the liquid-gas interface due to the inertiadriven Kapitza instability (Kapitza 1948), which consist of large humps preceded by several precursory capillary ripples, are known to greatly intensify inter-phase heat and mass transfer (Yoshimura et al. 1996;Miyara 1999;Dietze 2019). At the same time, they can trigger flooding events (Bankoff & Lee 1986) that are detrimental to adequate process operation. Such events include obstruction of the channel cross-section (Vlachos et al. 2001), wave reversal (Tseluiko & Kalliadasis 2011), fragmentation and droplet entrainment (Zapke & Kröger 2000), or (partial) liquid reversal (Trifonov 2010b(Trifonov , 2019)). In light of these two competing roles played by surface waves, numerous experimental (Vlachos et al. 2001;Drosos et al. 2006;Kofman et al. 2017), numerical (Trifonov 2010a;Vellingiri et al. 2015;Schmidt et al. 2016;Trifonov 2019;Lavalle et al. 2019), and modelling (Tseluiko & Kalliadasis 2011;Dietze & Ruyer-Quil 2013;Lavalle et al. 2020Lavalle et al. , 2021) ) works have been dedicated to unraveling the effect of a counter-current gas flow on the linear and nonlinear dynamics of wavy falling liquid films. Our current manuscript seeks to further contribute to this task.

We study the configuration of a laminar falling liquid film sheared by a turbulent countercurrent gas flow confined in a rectangular channel of height ★ ∼10 mm (the star superscript denotes dimensional quantities throughout), according to the experimental setup sketched in figure 1. The confinement level chosen here is representative of structured packings (Fair & Bravo 1990) and lies in between those used in the experiments of Lavalle et al. (2019), ★ ∼5 mm, where the gas flow was laminar, and those of Kofman et al. (2017), ★ ∼20 mm, where the confinement was weak and the gas flow was turbulent. We have applied three different approaches to study this flow: (i) experiments, where developed surface waves of prescribed frequency were produced within a protected zone before being submitted to the counter-current gas flow, (ii) linear stability analysis based on the full governing equations, and (iii) nonlinear numerical computations with a new integral boundary layer model. Our study is guided by a set of experimental runs, where we have successively increased the counter-current gas flow rate, starting from conditions where the gas-effect is weak, up until breakdown of the experiment due to flooding. Computations with our low-dimensional model and linear stability calculations have allowed us to elucidate the linear and nonlinear wave dynamics associated with this transition.

We focus mainly (but not exclusively) on weakly-inclined falling liquid films, which allows to investigate weakly supercritical flow regimes. According to Brooke Benjamin (1957) and Yih (1963), the onset of the Kapitza instability for a liquid film falling in a passive atmosphere is given by Re L =5/6 cot ( ), where denotes the inclination angle, and Re L = ★ L / L is the liquid Reynolds number based on the liquid flow rate per unit width ★ L and liquid kinematic viscosity L . Thus, the smaller , the more closely the instability threshold can be approached while maintaining an experimentally realizable film thickness ℎ ★ 0 = 3Re L 2 L / /sin ( ) 1/3 , where the subscript 0 denotes the primary flow and the gravitational acceleration. Closer to the instability threshold, the interfacial dynamics are less complicated and surface waves are predominantly two-dimensional (Kofman et al. 2014).

Our current work is inspired by several recent findings reported in the literature, which we discuss next. Lavalle et al. (2019) demonstrated that the onset of the Kapitza instability can be significantly delayed at low inclination angles, by strongly confining the surrounding gas, as conjectured by Tilley et al. (1994). Moreover, they discovered that the gas-induced stabilization is strongest in the counter-current configuration, and increases with increasing magnitude of the gas flow rate. Kushnir et al. (2021) subsequently showed that stabilization also occurs in the case of a confined recirculating gas, i.e. when the net gas flow rate is zero.

In the above three studies, the gas flow was considered laminar and the stabilization occurred

Gas-sheared falling liquid films beyond the absolute instability limit 3 for strong confinement, i.e. ★ 5 mm. As demonstrated by Lavalle et al. (2019), it is caused by the linear response of the interfacial tangential gas shear stress G to a perturbation of the liquid film thickness. Potentially, gas-induced stabilization may thus be achieved for weaker confinement if the gas flow is turbulent, as turbulence increases the magnitude of G . In the current manuscript, we have checked this hypothesis based on linear stability calculations. In particular, we find that the Kapitza instability can be fully suppressed by a turbulent counter-current gas flow for ★ ∼10 mm, when the inclination angle is very small ( ∼1 • ). By full suppression, we mean that the falling liquid film becomes unconditionally stable to long-wave disturbances, i.e. for all Re L . By contrast, at non-negligible inclination ( ∼5 • ), the linear gas-effect is destabilizing and the counter-current gas flow can render the liquid film unconditionally unstable to long-wave disturbances, as previously reported for laminar flow conditions (Trifonov 2017;Kushnir et al. 2021). We find that turbulence can significantly delay the onset of this unconditional instability.

Recent numerical (Lavalle et al. 2021) and experimental (Mergui et al. 2023) investigations of weakly-inclined falling liquid films have shown that a strongly-confined laminar counter-current gas flow can attenuate the amplitude of nonlinear travelling-wave solutions (TWS), even though the linear gas-effect is destabilizing. In our current configuration, where the inclination angle is similar but the confinement is weaker and the gas flow is turbulent, both the TWS amplitude and the linear spatial growth rate increase with increasing countercurrent gas flow rate, at least until the absolute instability (AI) limit is reached.

Several works on gas-sheared falling liquid films in narrow (vertical) channels have identified wave coalescence as a possible route toward flooding. For example, Drosos et al.

(2006) measured the probability density function of the wave height and found that the dominant wave frequency strongly decreases as the flooding limit is approached. Later,

Dietze & Ruyer-Quil ( 2013) computed the noise-driven spatial evolution of Kapitza waves sheared by a superconfined laminar gas flow and showed that coalescence can trigger an intermittent obstruction of the channel. Geometrical obstruction is not possible in our current configuration, where ★ , although smaller than the typical wavelength Λ ★ , is much greater than ℎ ★ 0 . Nonetheless, we find that the counter-current gas flow exacerbates coalescence events, entailing very large waves that form via the successive absorption of smaller waves.

Such waves have been designated as tsunami waves (Meza & Balakotaiah 2008), and we will employ this term throughout. In particular, the onset of coalescence moves upstream significantly when the counter-current gas flow rate is increased, precipitating the usual wave coarsening dynamics observed in liquid films falling in a quiescent gas (Chang et al. 1996b).

The transition between convective instability (spatial growth) and absolute instability (temporal growth), which occurs when the counter-current gas flow rate is increased, has been suggested as another potential cause for the onset of flooding. For example, Vellingiri et al.

(2015) showed that the AI limit predicted by their linear stability analysis lies not too far from the flooding threshold reported in the experiments of Zapke & Kröger (2000), where a vertically-falling liquid film was sheared by a counter-current gas flow. However, the trends of the two limits versus the liquid Reynolds number Re L were opposed, i.e. the flooding onset, expressed in terms of the superficial gas velocity, increased with increasing Re L , whereas the AI limit diminished. In the current work, we have thus explored the spatiotemporal evolution of nonlinear Kapitza waves beyond the AI limit, based on experiments and numerical computations. We find that AI is not necessarily dangerous in our configuration, i.e. no catastrophic events occur until far beyond the AI limit. Moreover, in the case of a noise-driven wave evolution scenario, AI can act as an effective linear selection mechanism, leading to a regular train of downward-travelling nonlinear surface waves, thus precluding dangerous coalescence events.

Lavalle et al. (2020) studied vertically-falling wavy liquid films sheared by a superconfined M. Ishimura, S. Mergui, C. Ruyer-Quil, and G. F. Dietze laminar counter-current gas flow, and discovered an oscillatory secondary instability. This instability entails a regular spatial modulation of TWS generated by coherent inlet forcing.

We have performed computations for the same liquid-side parameters, but with our moderate confinement, i.e. ★ ∼10 mm. Although we do not observe any oscillatory instability, wave amplitude modulations occur nonetheless, albeit due to an entirely different mechanism, which sets in beyond the AI limit. There, a competition between the forcing frequency and the absolute frequency can lead to coalescence-induced tsunami waves that are separated by a long and thin residual film, on which small-amplitude standing ripples form as a result of AI. These ripples continually perturb the tsunami waves passing over them, similar to the effect of wall corrugations (Dietze 2019).

Several numerical works have suggested that a counter-current gas flow may provoke the reversal of nonlinear Kapitza waves, which can be viewed as another manifestation of flooding. Tseluiko & Kalliadasis (2011) observed this for a vertically-falling liquid film sheared by a weakly-confined turbulent gas flow. However, in their computations, the average film thickness h was fixed instead of the liquid flow rate, which is more representative of a sudden gas flow rate increase in an experiment. Trifonov (2017) observed the reversal of travelling Kapitza waves in the case of an inclined falling liquid film sheared by a laminar gas flow. However, the gas Reynolds number in his computations was far greater than the turbulence threshold, i.e. |Re G |>10000. Lavalle et al. (2020) observed wave reversal due to a gas-induced secondary instability of TWS in the case of extreme confinement ( ★ ∼1 mm).

In our current configuration, where the liquid flow rate is imposed, the gas flow is turbulent, and the confinement is moderate, we did not observe any reversal of Kapitza waves, neither in terms of TWS nor in the case of spatially evolving waves.

In our experiments, flooding is triggered (far beyond the AI limit) by upward-travelling short ripples that first coexist with the initial Kapitza waves and then overpower the latter.

As soon as these ripples appear, liquid, in the form of small droplets, starts to accumulate in the gas loop, eventually forcing a shut-down of the experiment. Such ripples were first observed in the experiments of Kofman et al. (2017). In the current manuscript, we elucidate their origin, which has remained an open question. Kofman et al. (2017) pointed out that the ripples observed in their experiments have similar wavelengths and amplitudes than ripples forming in horizontal liquid films sheared by an unconfined co-current turbulent gas flow ( Özgen et al. 2002). Those ripples are caused by a short-wave interfacial instability mode (Miesen & Boersma 1995). They have also been observed when the co-current gas flow is confined, e.g. in the experiments of Hanratty & Engen (1957), where ★ =25.4 mm, and where the ripples were seen to coalesce into fast-travelling slugs. The corresponding instability mode was identified by McCready & Chang (1994). They showed that the dispersion curve of the linear temporal growth rate , where and denote the wave number and complex celerity, originates at = =0, and displays two unstable ( >0) humps, one at small and another at large , the short-wave hump being dominant. However, no short-wave instability mode has ever been identified for falling liquid films sheared by a counter-current (turbulent) gas flow, despite several previous linear stability investigations. And, the ripples observed in our experiments move upstream, i.e. in opposite direction to the liquid. This mode always travels in the direction of the gas flow, but it does not meaningfully perturb the liquid-gas interface. Thus, it cannot generate the upward-travelling ripples observed in our experiment, which, moreover, occur at |Re G | ∼6000. (RANS), using curvilinear coordinates and Prandtl's mixing-length approach. These authors observed a transition of the long-wave Kapitza instability from downward-convective to upward-convective upon increasing the counter-current gas flow rate L0 . However, as the liquid film thickness ℎ 0 and not L0 was fixed in these calculations, upward-travelling waves were associated with L0 <0. By contrast, L0 is fixed and positive in our experiments. et al. (2015) did not identify any short-wave instability mode. Nonetheless, they reported a non-monotonic variation of the cut-off wave number c upon increasing |Re G | for the long-wave instability mode, i.e. a decrease followed by an increase in c . Trifonov (2017) later made a similar observation. We will show that this behavior results from an interaction between the long-wave Kapitza instability mode and a new short-wave interfacial instability mode, which we have detected via temporal linear stability calculations at fixed L0 >0, using the Chebyshev collocation approach.

The works of

Vellingiri

This new short-wave mode emerges around the AI limit of the long-wave Kapitza instability mode, upon increasing the counter-current gas flow rate. Initially, the long-wave and shortwave modes coexist, but, at sufficiently large |Re G |, they merge to form a two-humped dispersion curve originating at = =0, and the short-wave maximum eventually becomes dominant. Linear waves corresponding to this maximum display a negative wave celerity <0, and both their wavelength Λ and agree well with the upward-travelling ripples observed in our experiment. The wave celerity of the new short-wave instability mode is always negative at the most-amplified wave number = max , but it can change sign at lower . This is a fundamental difference with the gas-side Tollmien-Schlichting mode.

Conversely, when <0, the liquid film surface velocity is not necessarily negative. Thus, ripples travel upward, even when the liquid travels downward across the entire film thickness.

This is a difference with the interfacial mode observed in co-current liquid/gas flows (Miesen & Boersma 1995).

Nonlinear computations in the current manuscript have been performed with a new lowdimensional model, which we introduce. Therein, the liquid film is represented via the weighted residual integral boundary layer (WRIBL) approach of Ruyer-Quil & Manneville (1998), leading to two coupled evolution equations for the local instantaneous film thickness ℎ and liquid flow rate L . We develop these equations up to second order in the long-wave parameter, and account for the effect of an adjacent gas via the gas shear stress G and the gas pressure G , acting at the liquid-gas interface. Following Camassa et al. (2017), we obtain these coupling quantities from a first-order long-wave (LW) approximation of the gas-side RANS equations written in curvilinear coordinates (Thorsness et al. 1978), while assuming a frozen liquid-gas interface. Our thus obtained WRIBL-LW model represents several improvements w.r.t. previous works, which we will discuss next.

Demekhin (1981) used the IBL approach of Shkadov (1967) to model the liquid film, and accounted for the effect of a turbulent gas flow, via G and G , through the linear response of the gas-side RANS equations to a waviness of the liquid-gas interface (assumed frozen). This linearized approach is valid in the limit ℎ/ ≪ 1, i.e. assuming a large channel height versus the film thickness. Further, the authors invoked the quasi-laminar assumption (Miles 1957;Brooke Benjamin 1959), where turbulence enters only via the unperturbed flow and linear perturbations of the Reynolds stresses are neglected, which is usually valid in gas-sheared wavy liquid films (Náraigh et al. 2011). However, the liquid-side IBL approach is known to significantly over-predict the instability threshold of an inclined falling liquid film.

Tseluiko & Kalliadasis (2011) remedied this shortcoming by combining the gas-side description of Demekhin (1981) with a WRIBL representation of the liquid film. However, their liquid-side WRIBL model was developed only up to first order in the long-wave parameter, and, thus, in conjunction with the linear gas-side approach, the gas pressure G did not enter the problem. We will show that this changes the linear response of the liquid film qualitatively in our configuration, and that a second-order liquid-side WRIBL development, accounting for G , is needed to accurately capture the effect of the counter-current gas flow.

Such a liquid-side treatment was applied by Samanta ( 2014), but the author made several simplifications in the gas-side description, i.e. G was neglected altogether, and G was assumed constant. The latter assumption entails that the gas-induced stabilization observed in superconfined falling liquid films (Lavalle et al. 2019), which relies on the linear response of G , cannot be captured. et al. (2017) accounted for variations in G and G in their gas-side description.

Camassa

Moreover, their gas-side description relies on a long-wave rather than a low-amplitude expansion of the RANS equations, and, thus, finite confinement levels can be studied.

However, their description of the liquid film relied on the lubrication approach. Thus, the inertia-driven Kapitza instability, which is responsible for generating long waves in our configuration but was irrelevant in theirs, cannot be captured. Our manuscript is structured as follows. In §2, we introduce our experimental setup for studying surface waves in gas-sheared falling liquid films. In §3, we present our lowdimensional WRIBL-LW model (subsections 3.1 and 3.2), and the numerical methods underlying our linear and nonlinear computations therewith (subsection 3.4). Section 4 concerns linear stability calculations based on the full RANS equations in the gas, where the liquid-side description is based either on the WRIBL model (subsection 4.1) or on the full Navier-Stokes equations (subsection 4.2). Section 6 presents our results concerning the gas-effect on linear and nonlinear wave dynamics. We first focus on waves resulting from the long-wave Kapitza instability (subsection 6.1), and then discuss upward-travelling shortwave ripples (subsection 6.2). Conclusions are drawn in §7, followed by appendices A and B, containing validation results. • and enters in contact with a counter-current turbulent air flow within a rectangular channel of height ★ =13 mm and width ★ =27 mm. A loudspeaker is used to force Kapitza waves on the surface of the liquid film, which grow and saturate within a protected region.

Experiments

Figure 1 sketches the setup used for our experiments. A liquid film (index L) of water flows down a glass plate inclined at =5 • , and enters into contact with a counter-current turbulent gas flow (index G) of air confined within a rectangular channel of height ★ =13 mm and width ★ =27 cm. This setup is a slightly modified version of the setup used in the work of Mergui et al. (2023), where ★ =5 mm and the gas flow was laminar.

The liquid flow rate ★ L is controlled through a gear pump and measured with an error of ±3 % using a conductance flow meter (IFM electonic, SM6000). In the current manuscript, we focus on two liquid-side regimes: Re L ∼33 and Re L ∼45. A loudspeaker integrated into the upstream liquid reservoir enables the forcing of Kapitza waves with prescribed frequency ★ 0 on the surface of the liquid film. These waves are allowed to grow and saturate within a protected region spanning from ★ =0 to ★ =36.5 cm, before entering the gas-sheared section of the setup (36.5 cm ★ 100 cm). In our experiments, ★ 0 is chosen such as to maximize the linear growth rate of the Kapitza waves, yielding a train of regular waves within the protected region. Also, the forcing amplitude is adjusted so that the waves reach a saturated amplitude before entering the gas-sheared section.

The gas flow rate ★ G is controlled through a fan, and quantified via a calibration curve (relating the fan power to ★ G ) obtained from gas velocity measurements in the dry channel.

Details of the procedure are given in Mergui et al. (2023). An error on Re G of 3 % was estimated for all our experiments. For a given liquid flow rate, the fan power was varied from zero up until breakdown of the experiment due to flooding, when liquid droplets accumulated in the gas buffer box. At zero fan power, the gas is subject to an aerostatic pressure drop, which is imposed by the quiescent ambient air. In this case, which we will designate as aerostatic configuration, the gas flows downward under the shearing action of the falling liquid film, i.e. ★ G >0. Conversely, in the case of a counter-current gas flow, we have ★ G <0.

★ (cm) ★ (cm) ★ (cm) ← → Λ ★ =13 mm ← wave propagation ← Λ ★ =44 mm → → wave propagation
Thus, we consider ★ G , and the gas Reynolds number Re G , as signed quantities.

In our counter-current experimental runs, Re G was typically varied from Re G =-3000 to Re G =-6800, after an initial measurement under aerostatic conditions. Due to evaporation, the liquid temperature typically decreased by a few Kelvin between the aerostatic and countercurrent configurations. As ★ L remained fixed during each run, a corresponding variation of Re L occurred due to changes in the fluid properties. To account for this, we have monitored the liquid temperature inlet in the inlet tank over the course of each experiment, using a thermocouple. The temperature decrease was observed as soon as the counter-current air flow was imposed, but the temperature varied little upon increasing the gas flow rate after that. Thus, when reporting experimental data, we will give Re as L , which corresponds to the aerostatic configuration, and Re L , which corresponds to the counter-current configuration.

Representative values of the density and kinematic viscosity of water and air for our counter-current experiments ( inlet ≃19 • C) are L =998.3 kg/m 3 , L =1.03 × 10 -6 m 2 /s, and G =1.21 kg/m 3 , G =14.9 × 10 -6 m 2 /s. The surface tension of our water was measured once and for all at =19.9 Figures 2 and3 show typical data obtained with these two methods. Figure 2 represents shadowgraphs for an experiment, where the fan power was increased step by step (from left to right panel), while maintaining ★ L and ★ 0 =3 Hz fixed. Each shadowgraph represents the entire width of the channel and almost the entire length of the gas-sheared section of the setup, i.e. 44 cm ★ 100 cm. At zero fan power (leftmost panel), regularly-spaced Kapitza waves with quasi-two-dimensional wave fronts are observed. Applying and increasing a countercurrent gas flow rate, first causes coalescence events (middle panel), and then the emergence of upward-travelling short ripples that coexist with the long Kapitza waves (rightmost panel).

This dynamics will be the focus of section 6. To obtain these profiles, the CCI probe was displaced incrementally using a rail (figure 1).

Low-dimensional WRIBL-LW model

We consider the flow in figure 4. A two-dimensional laminar falling liquid film of thickness ℎ( , ) flows along an inclined plane under the action of gravity, while being sheared by a counter-current turbulent gas flow. The gas flow is confined by a second wall at ★ = ★ (the star superscript denotes dimensional quantities throughout), which is not represented. We impose a symmetry condition at the center line of the average gas layer, i.e. ★ = ★ . In the case of a symmetrical vertical configuration with liquid films lining both walls (Vlachos et al.

2001

), this condition is satisfied analytically, and we have ★ = ★ /2. In the case of an inclined configuration with a dry upper wall, which is the one considered here, the symmetry condition remains a reasonable approximation, provided the liquid holdup h★ / ★ , where h★ designates the average film thickness, is not too large. In the current work, h★ / ★ <0.1, and thus the symmetry condition is acceptable. In that case,

★ =( ★ + h★ )/2. Moreover, due , L , G , L , G ,˜ G , ˜ G G , G ℎ h turbulent gas flow G G L , L
Figure 4: Falling liquid film (subscript L) on an inclined wall subject to a counter-current turbulent gas flow (subscript G). The flow is confined by an upper wall (not shown) at ★ = ★ (stars denote dimensional quantities) and a symmetry condition is imposed at the center line of the average gas layer ★ = ★ . Gasliquid coupling is expressed via the tangential gas shear stress G and the gas pressure G at the film surface ★ =ℎ ★ . Red dashed lines illustrate orthogonal curvilinear coordinate system ( , ), where = ¯ / .

to the inter-phase coupling conditions we will apply in our gas-side description (frozeninterface assumption) and the nature of our calculations (linear stability analysis and longwave asymptotic expansion), the symmetry condition at ★ = ★ holds analytically, even when the upper wall is dry. This will be further explained in sections 3.2 and 4.1.

Following previous works (Halpern & Grotberg 2003;Tseluiko & Kalliadasis 2011;Samanta 2014;Camassa et al. 2017), we relax the inter-phase coupling conditions and apply a weakly-coupled treatment of the two-phase flow. The liquid film (section 3.1) is modelled with the WRIBL method (Kalliadasis et al. 2012), where the effect of the gas enters via the tangential gas shear stress G and the gas pressure G acting at the film surface ★ =ℎ ★ (figure 4), neglecting the normal gaseous viscous stress. Theses inter-phase coupling quantities are obtained from the gas-side model (section 3.2), which is derived via long-wave (LW) asymptotic expansion, following Camassa et al. (2017).

Liquid-side WRIBL model

The liquid film (subscript L), with density L , dynamic viscosity L , and surface tension , is governed by the dimensionless continuity and Navier-Stokes equations written in Cartesian coordinates and (figure 4):

L + L = 0, (3.1a) ( L + L L + L L ) = - + 1 Re L ( 2 L + L ) + sin( ) Fr 2 , (3.1b) 3 ( L + L + L L ) = - L + 1 Re L ( 4 L + 2 L ) - cos( ) Fr 2 , (3.1c)
where Re L = L U L L/ L and Fr=U L / L denote the liquid Reynolds number and Froude number, and where we have applied the following scaling:

L = ★ L U L , L = ★ L U L , = ★ L , = ★ L , = ★ U L L , L = ★ L L U 2 L . (3.1d)
Here, we have introduced the long-wave parameter =L/Λ ★ , which relates the cross-stream length scale L to the streamwise length scale given by the wavelength Λ ★ . For the purpose of the current derivation, it suffices to say that the scales L and U L are representative of
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Gas-sheared falling liquid films beyond the absolute instability limit 11 the film thickness ℎ ★ and streamwise liquid velocity ★ L . In section 3.3, we will rescale our problem and make the final choice for L and U L .

The system is closed with the boundary conditions at =0:

L = L = 0, (3.1e)
the kinematic condition:

L | =ℎ = L | =ℎ ℎ + ℎ, (3.1f )
and the inter-phase stress coupling conditions at =ℎ:

- L 1 1 + 2 ℎ 2 (-4 ℎ 2 L -4 2 ℎ L + 2 L ) = Π Π Π G , (3.1g) L + 2 1 + 2 ℎ 2 1 Re L ( 4 ℎ 2 L -4 ℎ L -2 L -2 ℎ L ) -3 We ℎ = 1 Re G Π Π 2 Π G , (3.1h) 
where We= / L /L/U 2 L denotes the Weber number. The liquid-gas coupling enters through G and G , which are scaled as follows:

G = L G G U G ★ G , G = L G G U G ★ G , (3.2) 
where L G , U G , and =L G /Λ ★ = Π denote the gas-side cross-stream length scale, velocity scale, and long-wave parameter, which will be defined in section 3.2. As a result, the gas Next, we apply the WRIBL approach to derive two evolution equations involving the local instantaneous liquid flow rate ( , ) and the film thickness ℎ( , ). In principle, we follow the same steps as Samanta ( 2014), only that we account for the gas pressure G , which plays an important role in our current configuration, allow G and G to vary in space and time, and account for turbulence in the gas.

Reynolds number Re G = G U G L G / G ,
First, the governing equations (3.1) are truncated at O ( 2 ), except for inertial terms, which are truncated at O (Re L ). Next, we eliminate from (3.1b) via an integrated form of (3.1c) using (3.1h). Then, we substitute for the streamwise velocity ( is obtained from equation 3.1a) the following decomposition:

L = ˆ L + (1) L , (3.3)
where the base profile ˆ L is governed by:

ˆ L = const., ˆ L =ℎ = Π Π Π G , ˆ L | =0 = 0, ∫ ℎ ( , ) 0 ˆ L d = L ( , ).
(3.4)

Finally, the unknown O ( ) velocity correction (1) L is eliminated from the problem by multiplying the truncated form of (3.1b) with a weight function ( ), integrating the result across the film thickness ℎ( , ), and applying the tangential inter-phase coupling condition (3.1g). The weight function satisfies:

= const., | =0 = 0, =ℎ = 0. (3.5)
As a final result, we obtain the integral momentum equation for the liquid film:

L + 17 7 L ℎ L - 9 7 2 L ℎ 2 ℎ = 5 6 We ℎ ℎ + 5 6 Fr -2 ℎ {sin ( ) -cos( ) ℎ} + Re -1 L - 5 2 L ℎ 2 + 4 L ℎ 2 ℎ 2 - 9 2ℎ L ℎ -6 L ℎ ℎ + 9 2 L + Π Π Π G Re -1 L 5 4 + ℎ 6 ℎ + 1 2 ℎ 2 - 5 112 L ℎ - 19 336 L ℎ - 19 672 Π 2 Π 2 Π 2 ℎ 2 ℎ 2 G - 5 6 Re -1 G Π Π 2 Π ℎ G + Π Π Π G Re -1 L 3 4 ℎ ℎ - 15 224 ℎ L - 25 1344 Π Π Π ℎ 3 G G - ℎ 2 48 G , (3.6a) 
to which is added an integral continuity equation obtained by integrating (3.1a) across the liquid film and applying (3.1f):

ℎ + L = 0. (3.6b)
In the limit G = G =0, (3.6a) reduces to equation ( 41) from Ruyer-Quil & Manneville (2000). In the limit G = G = G =0, it collapses with equation (3.9) from Samanta (2014), except for a typo in the G ℎ 2 term of that reference. Here, we will neglect the terms involving G and G , but we will account for the space and time variation of G ( , ) and G ( , ) in the remaining terms. This amounts to a quasi-developed approach. See appendix C for a justification of this approximation.

Versus the model of Tseluiko & Kalliadasis (2011), which is based on a linear representation of the gas response, our model accounts for the gas pressure G , which plays a role for the confinement considered here. It also accounts for streamwise viscous diffusion in the liquid, which is known to affect the dynamics of precursory capillary ripples (Ruyer-Quil & Manneville 2002).

Gas-side asymptotic long-wave (LW) model

We represent the turbulent flow of the gas (subscript G), with density G and dynamic viscosity G , in two dimensions via the (dimensionless) Reynolds-averaged continuity and steady Navier-Stokes (RANS) equations, written here in the Cartesian gas-side coordinates and (see figure 4):

G + G = 0, (3.7) ( G G + G G ) = - 1 Re G G + Π Π 2 sin( ) Fr 2 + 1 Re G G + 2 G (3.8a) + 1 Re G t G G + 2 t G G , 3 ( G G + G G ) = - 1 Re G G + Π Π 2 cos( ) Fr 2 + 1 Re G 2 G + 4 G (3.8b) + 1 Re G 2 t G G + 4 t G G ,
where t denotes the turbulent viscosity, Re G = G U G L G / G is the gas Reynolds number, and where we have applied the following scaling:

G = ★ G U G , G = ★ G U G , = ★ L G , = ★ L G , G = ★ G L G G U G , (3.9)
introducing the gas-side long-wave parameter =L G /Λ ★ . For the gas-side reference scales, we choose once and for all:

L G = ★ , U G = ★ G0 ★ , (3.10)
where ★ G0 is the nominal gas flow rate per unit width of the primary flow (subscript 0), and, thus, U G corresponds to the superficial gas velocity. We have scaled pressure with a measure for the viscous shear stress, in contrast to (3.1d), where the dynamic pressure was used.

The turbulent viscosity is formulated via the mixing-length approach (Prandtl 1925): We assume a large gas/liquid velocity contrast Π ≫ 1, which warrants two simplifications.

G = Re G 2 G , (3.11 
First, we have neglected time derivatives in (3.8), as:

O ★ ★ G ★ G ★ ★ G = 1 Π ≪ 1, (3.12)
assuming that the time scale is dictated by the waviness of the liquid film, i.e. T =Λ ★ /U L .

Second, we set zero-velocity conditions at the film surface = :

G = G = 0. (3.13a)
Thus, from the point of view of the gas, the film surface is represented as a frozen wavy wall (Tseluiko & Kalliadasis 2011). Our system is closed via a symmetry condition at =0:

G = G = 0. (3.13b)
The ultimate aim of the gas-side model, to be derived next, is to obtain the inter-phase coupling quantities in (3.6a), which are evaluated at = , implying t =0:

G = G , (3.14a) G = ★ G G U G /L G = - G -2 2 -1 -1 2 2 G +2 2 G + 2 G -4 2 G .
(3.14b)

Following Camassa et al. (2017), we introduce the curvilinear coordinates and (see figure 4), which will facilitate the account of turbulence:

= ¯ , = + ( , ), (3.15) 
where ¯ denotes the spatial average of , and where orthogonality implies:

= ¯ 2 1 -1 . (3.16)
Red dashed lines in figure 4 represent curves of constant and , where:

= - = ¯ . (3.17)
Next, we recast the governing equations (3.8) and (3.13) in the curvilinear coordinate system (tilde symbol), using the projection rules:

G = ˜ G + O ( 2 ), G = ˜ G + ¯ ˜ G + O ( ), (3.18) 
= - + O ( ), = ¯ + O ( 2 ), (3.19)
and truncate the result at O ( 1 ). Upon eliminating the pressure variable in (3.8a) via an appropriate integration of (3.8b), we obtain:

˜ G + ˜ G + ¯ ˜ G = 0, (3.20a) ˜ G ˜ G + ¯ ˜ G ˜ G = - 1 Re G G + Π Π 2 1 Fr 2 sin( ) + cos( ) + 1 Re G ¯ 2 2 ˜ G + ˜ G ˜ G , (3.20b) 
where G = G | = ¯ , and ˜ satisfies:

˜ G = ¯ Re G ˜ 2 ˜ G , (3.21) with ˜ = ¯ / .
In this curvilinear formulation, the variation of the mixing length ˜ is expressed in terms of , i.e. normal to the film surface, and thus correlations for parallel flows can be used.

Following Tseluiko & Kalliadasis (2011), we employ the van Driest equation (Van Driest 1956):

˜ = ¯ - 1 -exp | G0 | Re G -¯ , (3.22)
where =26, =0.41 is the von Karman constant, and G0 denotes the primary-flow tangential stress, obtained by evaluating (3.30) in the limit =0, which intervenes in the traditional scaling based on the friction velocity U + :

U + = -1 G ★ G0 1 2 , L + = G G U + .
(3.23)

Finally, the boundary conditions (3.13) become:

˜ G | = ¯ = ˜ G | = ¯ = 0, ˜ G =0 = ˜ G | =0 = 0. (3.24)
The BVP given by (3.20) and (3.24) is solved order by order based on a regular expansion in around =0 (Camassa et al. 2017):

˜ G = ˜ (0) G + ˜ (1) G + O ( 2 ), (3.25a) ˜ G = ˜ (0) G + ˜ (1) G + O ( 2 ), (3.25b) G = (0) G + (1) G + O ( 2 ). (3.25c)
The zeroth-order problem is obtained by inserting (3.25a) into (3.20) and (3.24) and then truncating at O ( 0 ). We anticipate a solution in the form of the product ansatz:

˜ (0) G = 0 ( ) 0 ( ) = ¯ 0 ( ), (3.26) 
which leads to the variable-separated zeroth-order momentum equation:

3 ¯ 3 1 Re G (0) G - Π Π 2 1 Fr 2 sin( ) = 1 Re G 0 + ˜ 2 sgn 0 0 2 = 0 , (3.27a)
subject to the boundary conditions:

0 | = ¯ = 0 =0 = 0, (3.27b)
where we have employed the signum function sgn to substitute 0 =sgn( 0 ) 0 , and where the separation constant 0 is obtained from the gauge condition:

∫ 0 ˜ (0) G ˜ = ∫ ¯ 0 0 = G0 2 = 1 2 . (3.27c)
At the next order, i.e. O ( 1 ), we obtain in a similar way:

2 ¯ 2 1 Re G (1) G - Π Π 2 1
Fr 2 cos( )

= 2 0 + 1 Re G 1 + ˜ 2 sgn 0 0 1 = 1 , (3.28a) 1 | = ¯ = 1 =0 = 0, (3.28b) ∫ 0 ˜ (1) G ˜ = ∫ ¯ 0 1 = 0, (3.28c)
where we have employed the product ansatz:

˜ (1) G = 1 ( ) 1 ( ) = 1 ( ), (3.29)
and where the separation constant 1 is obtained from (3.28c).

The two BVPs (3.27) and (3.28) are solved numerically for 0 , 1 , 0 , and 1 via the continuation software Auto07P (Doedel 2008). The solution is obtained for a given ¯ on a fixed domain spanning 0 ¯ . Based on this, the coupling quantities G and G , which appear in the liquid-side model (3.6a), are readily constructed at O ( 1):

G = - ¯ ˜ G = ¯ + O ( 2 ) = - ¯ ˜ (0) G = ¯ + ˜ (1) G = ¯ + O ( 2 ), (3.30a) = - ¯ 2 2 0 = ¯ + ★ ★ ¯ 1 = ¯ + O ( 2 ), G = (0) G + (1) G + O ( 2 ) (3.30b) = Re G ¯ 3 3 0 + 1 ★ ★ ¯ + Π Π 2 1 Fr 2 sin( ) + cos( ) ★ ★ + O ( 2 ),
where we have used the velocity expansion (3.25a):

˜ G = ¯ 0 + ★ ★ 1 + O ( 2 ). (3.31)
Importantly, at fixed ¯ , G and G (3.30) depend only on = -ℎ/Π , which varies with and . By contrast, Samanta (2014) assumed G =const and G =0.

In contrast to the gas-side description of Demekhin (1981) and Tseluiko & Kalliadasis (2011), (3.30) is obtained from a long-wave and not from a small-wave-amplitude expansion.

Thus, it works better when the liquid holdup is larger, whereas the cited models work better when the liquid holdup is small, i.e. ℎ ★ / ¯ ★ →0.

As a result of our frozen-interface assumption (Π ≫1) expressed via (3.13), one would obtain exactly the same relations for the functions 0 and 1 appearing in (3.30), should one apply no slip and no penetration conditions at ★ = ★ instead of a symmetry condition at ★ = ★ . This is because the BVPs for 0 (3.27) and 1 (3.28) would remain symmetrical in that case. Thus, up to the order of expansion of our WRIBL-LW model, our symmetry condition (3.13b) is valid without loss of generality.

Rescaling

For the remainder of the manuscript, we rescale streamwise lengths by setting = =1, and we choose:

L = L G = ★ , U L = ★ L0 ★ , U G = ★ G0 ★ . (3.32)
This implies Π =1, i.e. all lengths are now scaled with the channel height ★ . We recall that ★ L0 and ★ G0 are the primary-flow liquid and gas flow rates per unit width, and, thus, U L and U G are the superficial velocities. The corresponding Reynolds numbers are:

Re L = ★ L0 L , Re G = ★ G0 G , (3.33) 
where L = L / L and G = G / G .

At some places, we will rescale quantities with the natural scales:

L = 2/3 L -1/3 , U = ( L ) 1/3 , T = L U = 1/3 L -2/3 .
(3.34)

Model computations

We perform three types of numerical computations based on our WRIBL-LW model (3.6),

(3.30): linear stability calculations, nonlinear computations of travelling-wave solutions (TWS), and nonlinear computations of spatially-evolving falling liquid films.

To obtain the linear stability formulation, we perturb the dependent variables L and ℎ around their primary flow values L0 and ℎ 0 :

L = L0 + ˇ L ( , ) = 0 + ˆ exp{ ( -)}, (3.35a) ℎ = ℎ 0 + ȟ( , ) = ℎ 0 + ĥ exp{ ( -)}, (3.35b)
where the check mark denotes infinitesimal perturbations, denotes the angular frequency, and ˆ L = ĥ / follows from (3.6b). Surface waves resulting from the Kapitza instability grow spatially, but a counter-current gas flow can cause the onset of absolute instability (AI). Both phenomena can be captured via a spatial stability formulation (Vellingiri et al. 2015). Thus, we will usually (but not exclusively) assume ∈ C and ∈ R, with:

= + , (3.36)
where =2 /Λ is the physical wavenumber andis the spatial growth rate.

The film surface perturbation (3.35b) translates to the gas-side problem via:

= 0 + ˇ = 0 + ˆ exp{ ( -)}, ˆ = - ĥ Π . (3.37)
Inserting this in (3.30) and then linearizing, yields the linear responses of the inter-phase coupling quantities:

G = G0 + ˇ G = G0 + ˆ G exp{ ( -)}, (3.38a) G = G0 + ˇ G = G0 + ˆ G exp{ ( -)}, (3.38b) 
with: 

G0 = - 0 | 0 , ˆ G = ˆ 0 2 0 | 0 + Π 1 | 0 , (3.39) G0 = Re G 0 + Π Π 2 sin( ) Fr 2 , ˆ G = -Re G ˆ 3 0 0 -Π 1 0 - Π 2 Π 2 cos ( ) Fr 2 . ( 3 
DR = -2 + 17 7 L0 ℎ 0 -2 9 7 2 L0 ℎ 2 0 + 5 6 Fr -2 2 cos( )ℎ 0 -sin( ) -3 4 5 6 We ℎ 0 + 5 2 1 Re L 1 ℎ 2 0 -2 L0 ℎ 0 + 2 3 6 Re L L0 ℎ 0 -2 2 9 2 1 Re L + Π Π Π G0 19 336 ℎ 0 -2 3 1 6 1 Re L ℎ 0 + 2 5 112 L0 + 5 4 1 Re L 1 Π ˆ G ˆ + 2 19 672 Π 2 Π 2 Π 2 ℎ 2 0 2 G0 + 5 6 Π Π 2 Π 1 Re G G0 - ℎ 0 Π ˆ G ˆ = 0, (3.41)
where ˆ will cancel, due to ˆ G ∝ ˆ and ˆ G ∝ ˆ according to (3.39) and (3.40).

To compute nonlinear travelling-wave solutions (TWS), we recast (3.6a) into an ODE in terms of the wave coordinate = -:

ℎ ′′′ = NL(ℎ, ℎ ′ , ℎ ′′ ; h, , MF L ), (3.42a) MF L = L -ℎ = ¯ L -h , (3.42b)
where primes denote differentiation w.r.t. , bars signify averaging over the wavelength Λ in terms of , denotes the nonlinear wave speed, and the subscript MF refers to the moving reference frame. Further, (3.42b) is the integral form of (3.6b), which we have used to eliminate from (3.42a). The system is closed through periodicity boundary conditions:

ℎ ( ) =0 = ℎ ( ) =Λ , = 0, 1, 2, (3.42c)
and it is solved for a fixed value of ¯ L , enforced through the integral condition:

Λ -1 ∫ Λ 0 L = ¯ L . (3.43)
We do this numerically via the continuation software Auto07P, after recasting (3.42a) into a dynamical system. First, we continue the fixed-point solutions (ℎ ′ =ℎ ′′ =ℎ ′′′′ =0) of (3.42a) at L = L0 and ℎ=ℎ 0 in terms of , until reaching the Hopf bifurcation of the Kapitza instability.

Then, starting from this point, periodic solutions are continued in terms of a selected control parameter, e. By imposing = max = max /2/ , TWS most-likely to emerge in an experiment can be tracked.

To compute the spatial evolution of nonlinear Kapitza waves, we solve (3.6a) and (3.6b)

numerically on an open domain with inlet/outlet conditions. Details of the numerical scheme are given in appendix F3 of Kalliadasis et al. (2012). In particular, we apply a secondorder central-differences spatial discretization and a quasi-linearized Crank-Nicolson time integration. At the liquid outlet, we impose the soft boundary conditions of Richard et al.

(2016). At the liquid inlet, we explicitly prescribe ℎ and at the first two grid points ( =1,2), based on the primary flow:

ℎ| =1 = ℎ| =2 = ℎ 0 , (3.45a) L | =1 = L | =2 = L0 [1 + ( )] , (3.45b)
where the function ( ) allows to apply a tailored inlet forcing:

( ) = 1 sin(2 ) + 2 =1 sin(2 Δ + rand ), Δ = 2 c / . (3.46)
The first term in (3.46) constitutes a harmonic perturbation of frequency and the second one mimics white noise through a series of =1000 Fourier modes that are shifted by a random phase shift rand = rand ( ) ∈ [0, 2 ] and that span a frequency range of twice the linear cut-off frequency c (Chang et al. 1996a). When 1 =0, the inlet perturbation consists of only white noise. This setting will be used to simulate the natural, noise-driven, evolution of a wavy film as it would occur in a real system. In other computations, we will apply additional coherent inlet forcing by setting 1 >0.

Linear stability analysis based on full RANS equations

The long-wave asymptotic expansion underlying the gas-side representation (3.30) in our WRIBL-LW model is truncated at order 1 , whereas our liquid-side representation (3.6) is consistent up to order 2 . To validate linear stability predictions based on this model, and to go beyond its limitations, we introduce two linear stability formulations that are based on the full RANS equations in the gas (4.3). The first formulation (section 4.1) relies on the WRIBL model in the liquid (3.6), and we designate this approach as WRIBL-OS, where OS refers to the Orr-Sommerfeld equation. The second formulation (section 4.2) relies on the full Navier-Stokes equations in the liquid (3.1), and we designate that approach as OS-OS.

WRIBL-OS approach

In our WRIBL-OS approach, the linear response of the liquid film is governed by the dispersion relation (3.41), but the perturbation amplitudes ˆ G and ˆ G are now obtained from the full (steady) RANS equations (3.8). For this, we recast (3.8) in terms of the curvilinear coordinates (3.15) and introduce the gas stream function Ψ:

˜ = ¯ Ψ, ˜ = -Ψ, (4.1)
which we perturb, along with G and , around the primary flow (subscript 0):

Ψ = Ψ 0 + Ψ =Ψ 0 + ( ) exp { ( -)} , (4.2a) 
G = G0 + ˇ G = G0 + ˆ G ( ) exp { ( -)} , (4.2b) 
= 0 + ˇ = 0 + ˆ exp { ( -)} , (4.2c) 
where = ∈R, and the time dependence is included formally to account for the the unsteadiness of the liquid film. Upon linearization and subtraction of the primary flow, we obtain the linearized curvilinear RANS equations in -direction:

OS : Re G ′ Ψ ′ 0 - ˆ 0 Ψ ′2 0 -Ψ ′′ 0 + Re G ˜ t Ψ ′′ 0 ˜ ′ t 2 -2 + 3 ˆ 0 Ψ ′ 0 -4 ′′ +6 ˆ 0 Ψ ′′ 0 + ˜ t -2 ′′′ + 6 ˆ 0 Ψ ′′′ 0 -2 Ψ ′′′ 0 Ψ ′′ 0 ′′ + 2 -′ + 3 2 ˆ 0 Ψ ′ 0 + 3 2 ˆ 0 Ψ ′′ 0 - Ψ ′′′ 0 Ψ ′′ 0 + 3 2 ˆ 0 Ψ ′′′ 0 Ψ ′ 0 Ψ ′′ 0 = -ˆ G + ′′′ -3 ˆ 0 Ψ ′′′ 0 -2 ′ - ˆ 0 Ψ ′ 0 - ˆ 0 Ψ ′′ 0 , (4.3a)
and in direction:

OS : Re G 2 Ψ ′ 0 - ˆ 0 Ψ ′2 0 + Re G ˜ t Ψ ′′ 0 2 ˜ ′ t ˆ 0 Ψ ′′ 0 + ˜ t -2 ′′ + 2 ˆ 0 Ψ ′′ 0 +2 ˆ 0 Ψ ′′′ 0 + 2 -+ 3 2 ˆ 0 Ψ ′ 0 = -ˆ ′ G -3 -+ ˆ 0 Ψ ′ 0 - ′′ -2 ˆ 0 Ψ ′′ 0 - ˆ 0 Ψ ′′′ 0 , (4.3b)
where primes denote differentiation w.r.t. . The pressure perturbation amplitude ˆ G can be removed from (4.3a) and (4.3b) via:

OS : OS -OS , (4.3c)
where OS is the final gas-side Orr-Sommerfeld equation, involving only and its derivatives.

The problem is closed with the boundary conditions (3.24):

′′ | =0 = 0, | =0 = 0, ′ | = 0 = 0, | = 0 = 0. (4.3d)
We solve (4.3) numerically for with the continuation software Auto07P, starting from the analytically tractable laminar long-wave limit ( ˜ t = =0). The amplitudes of the linear perturbations of the inter-phase coupling quantities:

ˇ G = ˆ G exp { ( -)} , ˇ G = ˆ G exp { ( -)} , (4.4)
can be readily obtained by recasting (3.14) in curvilinear coordinates, inserting (4.2), and linearizing:

ˆ G = -′′ | = 0 + 2 ˆ 0 Ψ ′′ 0 = 0 , (4.5a) ˆ G = ′′′ | = 0 -3 ˆ 0 Ψ ′′′ 0 = 0 + 2 ˆ Ψ ′′ 0 = 0 . (4.5b)
We point out that ∝ ˆ and, thus, ˆ once again cancels from (3.41), as it should. Also, the This destabilization of the liquid film is caused by the inter-phase pressure coupling, as can be deduced by confronting panel 5a with panel 5b, where we have represented corresponding growth rate curves in the limit Π =0. In that case, the gas-effect enters only via G , and we observe a stabilization of the liquid film at large |Re G | (compare crosses and pentagons).

Models that do not account for the gas pressure G , e.g. the weak-confinement first-order WRIBL model of Tseluiko & Kalliadasis (2011), may thus give qualitatively incorrect linear stability predictions for the current configuration. The same observation also holds at weaker confinement, as shown by confronting panels 5c and 5d, where we have chosen ★ =40 mm.

As a result of our frozen-interface assumption (Π ≫1) expressed through the last two equations in (4.3d), one would obtain exactly the same linear stability problem (4.3) should one apply no slip and no penetration conditions at ★ = ★ instead of a symmetry condition at ★ = ★ . This is because the primary gas flow would remain symmetrical about the center line of the gas layer. Thus, for all linear stability calculations based on the gas-side OS BVP (4.3), our symmetry condition (4.3d) is valid analytically.

OS-OS approach

Linear stability calculations based on our WRIBL-LW and WRIBL-OS approaches may be limited to long-wave instability modes. To capture short-wave instability modes (section 6.2), we introduce a stability formulation based on the full Navier-Stokes equations (3.1) in the liquid and the full RANS equations (4.3) in the gas. The gas-side linear response is governed by the same equations as in the WRIBL-OS approach, i.e. (4.3) and (4.5), and we focus here on deriving those governing the liquid-side linear response. For this, we perturb the film thickness as:

ℎ = ℎ 0 + ȟ = ℎ 0 + ĥ exp { ( -)} , (4.6)
assuming a temporal stability formulation this time, i.e. ∈ R and = + ∈ C, where denotes the wave speed and the temporal growth rate.

We start with the full governing equations (3.1). Considering these in the limit of fully developed flow with ℎ=ℎ 0 , yields the liquid primary flow: Next, we introduce the liquid stream function Φ:

L0 = 1 2 Re L Π G0 - sin ( ) Fr 2 2 -2 ℎ 0 + Π Π Π G0 , (4.7a 
L = Φ, L = -Φ, (4.8)
which we perturb around the primary flow:

Φ = Φ 0 + Φ = Φ 0 + ( ) exp { ( -)} . (4.9)
Substituting (4.8) and (4.9) into (3.1), linearizing w.r.t. Φ, subtracting the primary flow, and applying standard manipulations, we obtain the liquid-side Orr-Sommerfeld equation:

-

2 2 ′′ + 4 = Re L ( -L0 ) 2 -′′ -′′ L0 , (4.10a) 
the boundary conditions at =0:

′′ = = 0, (4.10b)
and the inter-phase coupling conditions at =ℎ 0 :

′′ L0 + ˜ ′′ + 2 = Π Π ˜ ˆ G , (4.10c) - 1 Re L 2 2 ′ L0 + ˜ 3 2 ′ -′′′ -˜ {-˜ ′ - L0 } + ′ L0 = Π Π 2 Re G ˜ ˆ G + 3 We , (4.10d)
where primes denote differentiation w.r.t. , and where we have introduced ˜ = -L0 | =ℎ 0 .

The non-linearity involving ˜ in (4.10d) can be eliminated via (4.10c). Further, ˆ G and ˆ G are rescaled versions of the amplitudes in (4.5):

ˆ G = - ĥ ˆ G ˆ , ˆ G = ĥ ˆ G ˆ , (4.11)
where ˆ is an arbitrary deflection amplitude used in the solution of the gas-side problem (4.3), and ĥ is directly linked to via the kinematic condition (3.1f):

ĥ = | =ℎ 0 ˜ . (4.12)
The rescaling in (4.11) allows to solve the gas-and liquid-side problems sequentially.

Gas-sheared falling liquid films beyond the absolute instability limit
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We solve the two-phase BVP comprising (4.3) and (4.10) by expanding the stream function amplitudes and in terms of Chebyshev polynomials (Boomkamp et al. 1997;Barmak et al. 2016b):

( ) = L0 + =1 l ( ), ( ) = G0 + =1 g ( ), (4.13) 
where are th-degree Chebyshev polynomials of the first kind, defined on the interval ∈ [-1, 1], with: Using this approach, the full set of eigenmodes is computed at once. Thus, short-wave instability modes, i.e. modes with ≠0 at =0, can be readily obtained. Once a mode has been identified at a given wavenumber , it can be tracked by advancing , using the function eigs, which searches for eigenvalues in the vicinity of a previous solution.

=2 ℎ 0 -1 for 0 ℎ 0 , ( 4 
In appendix A, we validate our OS-OS approach, (4.20) and (4.21), versus Vellingiri et al.

(2015) and Schmidt et al. (2016). Figure 6 confronts temporal linear stability predictions from this approach (solid lines) with predictions from our WRIBL-OS approach (symbols), for similar parameters as panel 5a. Agreement is good up to |Re G |∼8000. Thus, our liquid-side WRIBL description suffices to predict the gas-effect on the long-wave Kapitza instability. 

Model validation

To evaluate the linear and nonlinear predictions of our WRIBL-LW model, we confront these with stability predictions from Vellingiri et al. (2015) and Samanta (2014), our own stability calculations using the WRIBL-OS approach, and experiments from Kofman (2014).

By design, our WRIBL-LW model exactly predicts the neutral linear stability bound of the long-wave Kapitza instability. We consider a temporal linear stability formulation and expand the complex wave speed = / in terms of ∈R around the limit =0:

= 0 + 1 + O ( 2 ).
(5.1)

Inserting this into (3.41), and truncating order by order, we obtain 0 and 1 :

0 = 2 L0 | ℎ 0 + Π Π G0 -ℎ 0 + ℎ 2 0 0 + Re L Π Π 2 ℎ 3 0 0 - G0 Re G + Π -4 sin( ) Fr 2 , (5.2a) 1 = R, (5.2b) 
where R∈R is written out in appendix B, and the primary flow yields:

L0 | ℎ 0 = 1 2 Re L Fr 2 sin ( ) ℎ 2 0 + Π Π G0 ℎ 0 - 1 2 Π Π 2 Re L Re G G0 ℎ 2 0 .
(5.3) Thus, the asymptotic wave speed is given by 0 , the (temporal) growth rate by 1 , and the neutral stability bound by R=0.

In the zero-confinement limit, ℎ 0 / 0 → 0, 0 (5.2a) and 1 (5.2b) should collapse with the expressions in equations ( B4b) and (B7b) of Vellingiri et al. (2015). Applying this limit to

(5.1) and rescaling appropriately, we obtain: 

= 0 + 1 + O ( 2 ) = 2 + G0 + 4 15 Re L 2 + G0 - 2 3 cot ( ) 1 -Π + 1 3 Π Re L Π 2 1 0 + 1 2 Π 1 0 1 0 + O ( 2 ), ( 
U=U G = 1 2 -1 L sin ( ) ℎ ★2 0 .
Our result matches that in the reference, except for three additional terms: the gas-density correction in the cot ( ) term, and the last two terms within the accolades, which stem from the linear perturbations of G and G . In the laminar limit:

1 = 6 35 2 0 2 G0 , 1 0 = 4 105 Π Re L Π 3 3 0 2 G0 , (5.5) 
and, thus, these terms do not necessarily vanish for 1/ 0 → 0. Thus, the gas pressure G can affect stability even under weak confinement, in line with observations in panels 5c and 5d. water-glycerol film. We fix the channel height at ★ =15 mm and apply a co-current turbulent gas flow with Re G =2000. Panel 7a represents dispersion curves of the linear wave speed = / around the long-wave limit. We see that the two data sets converge as →0. Further, our WRIBL model accurately captures the long-wave instability threshold, as evidenced by the neutral stability bounds plotted in panel 7b. Comparing the circles (full model) with the diamonds (passive-gas limit Π =Π =0), we see that the gas-effect is destabilizing, and this is maintained in the limit Π =0 (squares). By contrast, assuming G =const and Π =0 (crosses), according to the model of Samanta ( 2014), results in a qualitatively incorrect prediction of gas-induced stabilization.

We now turn to the experimental conditions of Kofman (2014), who considered a falling liquid film sheared by a turbulent counter-current gas flow. Figure 8 confronts linear spatial growth rate dispersion curves from our WRIBL-LW model (panels 8a, 8c) with calculations based on our WRIBL-OS approach (panels 8b, 8d). Comparing panels 8a and 8b, we see that our WRIBL-LW model predicts the gas-effect on the maximum growth rate {-} max and on the associated angular frequency { } max reasonably well. And, the AI limit is predicted with a precision of 10 %, i.e. Re AI G =-9157 from WRIBL-LW versus Re AI G =-8220 from WRIBL-OS.

Panels 8c and 8d represent corresponding stability calculations in the limit Π =0. Versus panels 8a and 8c, we observe a qualitative change in the gas-effect from destabilizing to stabilizing (similar to figure 5), and our WRIBL-LW model accurately captures this feature. In contrast to Tseluiko & Kalliadasis (2011), our WRIBL-LW model can thus be applied to confinement levels, where the gas pressure plays a role.

On the downside, our WRIBL-LW model cannot reproduce the strong gas-induced reduction of the cut-off frequency predicted by the WRIBL-OS calculation in panel 8b. This is due to truncating our asymptotic gas-side description (section 4.2) at O 1 . However, it is almost inconsequential for the prediction of nonlinear Kapitza waves. 

Results

Figure 10 shows top-view snapshots of one of our experiments, where we have successively increased the counter-current gas flow rate from the second panel onward. Guided by this experiment, using the different linear stability calculations as well as nonlinear computations with our WRIBL-LW model, we wish to understand how the waviness of the falling liquid film is altered under the effect of the gas flow. In particular, we are interested in the transition from a regular train of long waves (first panel), via an increasingly disordered wave pattern (e.g. tenth panel), until the occurrence of upward-travelling short ripples, which lead to a breakdown of our experiment (last panel).

Gas-effect on Kapitza waves

This section is concerned with the linear (subsection 6.1.1) and nonlinear (subsections 6.1.2 and 6.1.3) gas-effect on the long-wave Kapitza instability. Waves resulting from this instability are dominant at weaker counter-current gas flow rates in figure 10,i.e. |Re G | 6200 (first ten panels), and the linear instability becomes absolute in this range, as will be shown in figure 12.

Linear gas-effect

We start by discussing the gas-effect on the threshold of the Kapitza instability. Panel 11a represents the neutral stability bound, 1 =0 according to (5.2b), in terms of Re L and Re G , for two inclination angles, i.e. =5 • (black curves with circles), which corresponds to our experiment in figure 10, and =1 • (red curves with diamonds). For each , we have plotted two curves, one obtained from our WRIBL-LW model for turbulent gas flow conditions (filled symbols), and another obtained from the fully-coupled governing equations (Tilley et al. For =5 • (black curves with circles), the linear effect of the counter-current gas flow is destabilizing. Further, when the counter-current gas flow rate is sufficiently large, the falling liquid film becomes unconditionally unstable (limit point marked by filled circle), i.e. for all Re L , in agreement with previous works (Trifonov 2017;Kushnir et al. 2021). We find that
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Gas-sheared falling liquid films beyond the absolute instability limit turbulence in the gas greatly delays this limit versus a laminar prediction (compare filled and open circle).

By contrast, for =1 • (red curves with diamonds), we find a change in nature of the gas-effect, as a result of gas-side turbulence. While the gas-effect remains destabilizing in the laminar limit (red curve with open diamond), it switches to stabilizing when turbulence is accounted for (red curve with filled diamond). This is further illustrated in panel 11b, which represents dispersion curves of the linear spatial growth rate for increasing |Re G | at Re L =1.5(5/6) cot ( ). Thus, turbulence allows to achieve a gas-induced suppression of the Kapitza instability for the current confinement, ★ ∼10 mm, which is much weaker than the confinement studied in Lavalle et al. (2019), ★ ∼1 mm, where the gas flow was laminar.

And, the counter-current gas flow can render the falling liquid film unconditionally stable to long-wave disturbances at the limit point marked by a filled diamond in panel 11a. However, as we will discover in section 6.2, the film can become unstable to a short-wave instability mode at small , and the threshold for this mode (dot-dashed curve in panel 11a) lies below the neutral stability bound of the Kapitza instability for the parameters considered here. Thus, the falling liquid film cannot be fully stabilized in this case.

Gas-induced stabilization of the Kapitza mode is limited to small inclination angles, and plays no role in our current experiments, where the effect of the counter-current gas flow on the falling liquid film is destabilizing. In this case, it is interesting to determine the AI limit and to confront it with the Re G range of our experiments. the flooding onset. On the contrary, well-defined downward-travelling Kapitza waves persist far beyond the AI limit (up to 10th panel in figure 10), and we will discuss the nonlinear dynamics of these waves in the next subsections.

Nonlinear gas-effect: travelling-wave solutions (TWS)

We wish to know whether the nonlinear response of the wavy falling liquid film is in line with the linear gas-effect discussed in the previous section. Figure 13 compares the wave height (panels 13a, 13c) and wave speed (panels 13b, 13d) of nonlinear TWS obtained from our WRIBL-LW model at fixed frequency (solid curves), with experiments (symbols) from our current work (panels 13a, 13b), where ★ =13 mm, and from Kofman et al. (2017) (panels 13c, 13d), where ★ =19 mm. The experimental wave height data in panel 13a were selected from film thickness time trace measurements performed over the entire channel length, which will be discussed in section 6.1.3 (figure 14 Overall, our WRIBL-LW predictions in panels 13a, 13b, 13c, and 13d are in reasonable agreement with the experimental data. Both the gas-effect on the wave height and the wave speed are captured quantitatively, when accounting for the number of CR.

Based on these predictions, we may make the following observations. Downward-traveling TWS exist far beyond the AI limit, marked by open (WRIBL-LW calculation) and filled (WRIBL-OS calculation) red arrows in panels 13a and 13c. Below the AI limit, the wave height ℎ max increases with increasing |Re G |, while the wave speed mainly decreases. And, we have checked that the relative wave amplitue ℎ max / h (not shown here) also increases. Thus, the non-linear gas-effect is destabilizing, in line with the linear effect discussed in section 6.1.1.

For the 0-CR, 1-CR, and 2-CR branches, the ℎ max versus |Re G | trend in panels 13a and 13c changes beyond the AI limit, i.e. ℎ max now decreases with |Re G | (except for small nonmonotonous regions). For the 3-CR branches (solid curves with filled circles), the trend beyond the AI limit is more complicated, i.e. ℎ max first decreases with |Re G |, and then increases, beyond |Re G |=8000 in panel 13a and beyond |Re G |=16000 in panel 13c. This increase is associated with the formation of an increasing number of additional capillary ripples (dashed curve segments) and a strong increase of the wave speed is observed in panels 13b and 13d, whereas mostly decreases with |Re G | for the other solution branches (solid curves with filled diamonds, squares, and triangles).

Focusing now on the experimental data points (open symbols in panels 13a and 13b), we observe that the number of CR decreases when increasing |Re G | (from open circles to open diamonds). According to the computations with our WRIBL-LW model (solid curves), this corresponds to a switching of TWS branches in the direction of lowest wave speed. This is surprising, because one would expect the fastest TWS to persist in an experiment at fixed Re G . Additional effects must thus play a role in the wave selection.

In our experiment, saturated waves of fixed frequency ★ 0 are formed before entering into contact with the counter-current gas flow. In panels 13a and 13b we have compared the gas-effect on such waves, i.e. TWS at ★ = ★ 0 =3 Hz (solid curves), with TWS at the linearly most-amplified frequency, i.e. ★ = ★ max (dot-dashed blue curves). Except for the 3-CR branch (dot-dashed curve with asterisk), both types of TWS behave quite similarly until the AI limit (where the ★ max branches break down). This is because ★ max does not vary much with Re G , and, thus, the forcing frequency ★ 0 chosen in the experiment remains close to ★ max . By contrast, in the case of the 3-CR branch, the most-amplified TWS are lost due to a nonlinear limit point (filled blue circle), before the gas flow reaches the fully turbulent regime (|Re G | <1800).

Nonlinear gas-effect: spatio-temporal wave dynamics

In a spatially-evolving falling liquid film, the counter-current gas flow not only acts on nonlinear Kapitza waves individually, but can trigger interactions between consecutive waves.

Thus, we study the gas-effect on the spatio-temporal dynamics of such waves.

Panel 14a summarizes spatial profiles of film thickness data obtained from our experiments at Re as L =46, Re L =44.2 ± 0.7, and ★ 0 =3 Hz, under increasing |Re G |. Symbols represent the ensemble average of the wave height ℎ ★ max (over at least 100 waves) at a given streamwise position ★ , and error bars represent the corresponding standard deviation. Filled symbols identify the TWS data reported in panels 13a and 13b.

In the aerostatic configuration (open circles in panel 14a), the error bars are very short, implying that waves are highly regular in time. However, ℎ ★ max varies in space as the result of the well-known secondary instability discovered by Liu & Gollub (1993).

In the counter-current configuration (from diamonds to triangles in panel 14a), we observe that ℎ ★ max in the lower half of the channel ( ★ 50 cm) significantly increases when |Re G | is increased. On the one hand, this is due to the gas-induced amplification of TWS discussed in section 6.1.2. On the other hand, the standard deviation of the ℎ ★ max data significantly increases as |Re G | is increased. This is the signature of wave coalescence events that can suddenly increase the wave height. Figure 15 represents a sequence of snapshots illustrating such an event for Re G =-5200 (pentagons in panel 14a). The red solid and dashed yellow lines highlight the fronts of two consecutive waves that eventually coalesce.

In panel 14a, we have marked the streamwise position beyond which such coalescence events become prevalent via check marks on the corresponding error bars. This position, which we will designate as ★ c , is determined from the spatial evolution of the frequency spectrum of ℎ ★ , as illustrated in panel 14b for Re G =-5750 (triangles in panel 14a). We see that the spectrum evolves from that of a regular wave train, with clear peaks at the forcing frequency ★ 0 and its harmonics (left panel), to a form where the dominant frequency ★ max is lower than the forcing frequency (right panel). The streamwise locations of the transition, i.e. where ★ max becomes smaller than ★ 0 (middle panel), is defined as ★ c .

Judging by the standard deviation of the ℎ ★ max profiles in panel 14a, wave coalescence becomes more prominent as |Re G | is increased. We have seen in panel 13b that the countercurrent gas flow reduces the wave speed of TWS. At fixed wave frequency ★ , this leads to a reduction of the wave separation distance, thus favoring wave interaction and coalescence.
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Figure 16 provides a direct comparison of wave trains for two of the experiments from panel 14a. Panel 16a confronts film thickness time traces measured at ★ =82.5 cm for the aerostatic configuration (solid black curve) and for the counter-current configuration at Re G =-5750 (dashed red curve). Whereas the former represents a regular train of waves responding well to the forcing frequency, the latter displays clear signs of coalescence-induced wave coarsening, leading to large-amplitude tsunami waves with a wave height much greater than the TWS in panel 13a. Panels 16b and 16c represent corresponding frequency spectra for the two data sets. Whereas the forcing frequency ★ 0 =3 Hz is dominant in the spectrum for the aerostatic configuration (panel 16b), a lower frequency emerges for the counter-current configuration, where periodicity is entirely lost (panel 16c).

In figure 17, we have plotted the starting location ★ c of the coalescence-dominated region versus Re G , based on all of our experiments for two values of Re L . The error bars on ★ c correspond to the increment with which the -position was varied in the experimental runs reported in panel 14a. According to figure 17, coalescence is greatly precipitated by the (turbulent) counter-current gas flow and this effect is stronger, the lower the liquid flow rate.

The nonlinear wave phenomena discussed in figures 14 to 17 do not seem to be disrupted by nonlinear state, these waves come into contact with the gas flow, and, consequently, the AI is bypassed.
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Next, we employ open-domain computations with our WRIBL-LW model to study the linear and nonlinear spatio-temporal evolution of Kapitza waves that feel the gas-effect from the start. In these computations, the turbulent counter-current gas flow is applied over the entire domain length. Of course, our WRIBL-LW model can only capture long-wave instabilities, such as the Kapitza instability, which we focus on in the current section.

We start by studying the gas-effect on the dynamics of naturally-evolving Kapitza waves, which are more relevant for industrial applications. Here, the liquid flow rate at the liquid inlet is subject to a noisy perturbation accoding to (3.46), with 1 =0, 2 =5 × 10 -5 . In panels 18a (aerostatic configuration) and 18b (Re G =-4190), the AI limit Re AI G =-5114 (obtained from WRIBL-LW model) has not been reached, and we observe the same phenomena as in our experiments from figure 14. In particular, the counter-current gas flow exacerbates coalescence events, leading to large-amplitude tsunami waves, which move very rapidly and absorb numerous smaller waves in their path. This gas-assisted coarsening dynamics is illustrated in panel 19a, representing a spatio-temporal diagram for the computation in panel 18b (see also supplementary movie MovieFig18b).

A very different dynamics unfolds when |Re G | is increased beyond the AI limit, as shown in panels 18c and 19b, which correspond to Re G =-5750 (see also supplementary movie MovieFig18c). Here, coalescence events are absent, and a highly regular train of saturatedamplitude solitary waves develops. The height ℎ max of these waves is significantly smaller than that of the tsunami waves in panel 18b, thus limiting the risk of flooding. At the same time, ℎ max is large enough that a significant wave-induced intensification of heat and mass transport can be expected (Dietze 2019). Thus, AI is not necessarily dangerous in our configuration. On the contrary, the unbounded linear spatial growth rate associated with AI represents an effective linear wave selection mechanism that produces highly-regular nonlinear surfaces waves of the absolute frequency ★ AI =3.35 Hz from ambient noise ( ★ AI is obtained from a WRIBL-LW calculation based on panel 12a). Thereby, nonlinear effects, which set in very close to the liquid inlet, allow the Kapitza waves to travel downstream, notwithstanding the temporal nature of the linear growth. As far as we know, such a dynamics By contrast, it is very hard to produce a regular wave train below the AI limit via coherent inlet forcing. This is demonstrated in figure 20, which represents similar computations to figure 18, only that we have additionally applied a harmonic inlet perturbation at frequency ★ 0 =3 Hz, using 1 =0.01 and 2 =5 × 10 -5 in (3.46). Although the applied coherent forcing produces a regular wave train in the aerostatic configuration (panel 20a), coalescence events cannot be avoided for Re G =-4190 (panel 20b). We have not shown the corresponding computation beyond the AI limit (see panel 21b for this), because it produces almost exactly the same wave train as in panel 18c. from our computation with additional coherent inlet forcing for the parameters in panel 18c, i.e. beyond the AI limit, evidencing that the wave train is not meaningfully altered by this additional forcing.

Standing ripples in a vertically-falling liquid film

Our nonlinear spatio-temporal WRIBL-LW computations in section 6.1.3 did not reveal any evidence of the gas-induced oscillatory secondary instability (OI) discovered by Lavalle et al.

(2020) for the configuration of a vertically falling liquid film sheared by a superconfined counter-current laminar gas flow. In a spatially evolving regular train of surface waves formed by coherent inlet forcing at frequency 0 , this instability leads to a periodic spatial modulation of the wave height, which entails an intensification of mixing.

To check whether this dynamics can be recovered in our current weak-confinement setting with a turbulent counter-current gas flow, we perform open-domain WRIBL-LW computations for the same liquid-side parameters as in figure 3a of Lavalle et al. (2020), i.e.

Ka=509.5, =90 In the second computation (panel 22b), where the AI limit has been surpassed (Re G =-7500), a more interesting dynamics unfolds. Here, a quite regular wave train of frequency = AI emerges near the liquid inlet, as a result of linear wave selection at the AI frequency.

However, the coherent inlet forcing at frequency 0 competes with this wave selection, leading to a slight perturbation of the wave train, which grows spatially and eventually disrupts the wave train. As a result, large-amplitude tsunami waves form due to coalescence events. These waves travel extremely fast and absorb all smaller waves travelling in front. This gas-induced coarsening dynamics, which is well illustrated by the spatio-temporal diagram in panel 23a, leads to long portions of thin residual film in between two consecutive tsunami waves. There, the liquid flow rate L ( , ) is very small (see L profile in panel 23c), and thus |Re G | is even further beyond the AI limit than for the primary flow L0 . This leads to the formation of small-amplitude ripples on the residual film. We call these standing ripples because they are almost fixed in space, as evidenced by several features in figures 22 and 23.

Firstly, the dot-dashed red profile segment in panel 22b, which corresponds to a slightly later time than the main profile, shows no significant translation of the ripples. Secondly, the wave fronts of the standing ripples in the spatio-temporal plot in panel 23a are almost horizontal. Thirdly, the film height time trace in panel 23b does not show any signature of the ripples in between two main wave humps.

The standing ripples are felt like a surface roughness by the tsunami waves propagating over the residual film. This leads to a spatial modulation of the film height ℎ max , similar to falling liquid films flowing on a corrugated substrate (Dietze 2019), where they have been shown to intensify mixing and inter-phase mass transfer. This modulation is evidenced by the dashed green curve in panel 22b, which represents the Lagrangian path of the crest of one of the tsunami waves as it propagates through the domain. The absolute nature of the standing ripples and their interaction with the large tsunami waves is further illustrated in the supplementary movie MovieFig23.

In conclusion, although we have not found any sign of the OI reported by Lavalle et al.

(2020) for our confinement level, we nonetheless observe a similar gas-induced spatial modulation of the Kapitza waves, albeit due to an entirely different mechanism.

Upward-travelling ripples: a new short-wave instability

We now turn to the upward-travelling ripples observed for |Re G | 6200 in our experiment of figure 10 (see last eight panels there). These ripples eventually lead to a breakdown of our experiment due to the accumulation of liquid droplets in the gas loop, and, thus, can be considered as the onset of flooding. In the current section, we seek to identify the origin of these ripples via linear stability calculations using our OS-OS approach, which allows to capture long-and short-wave instability modes. mode, which we have discussed in section 6.1. The growth rate of this mode increases with increasing |Re G | (from pluses to pentagons), while its cut-off wave number decreases.

The blue dashed curves in panel 24c belong to a new short-wave instability mode, which emerges upon increasing |Re G | beyond |Re G |=4837 (between crosses and pentagons). We call this new instability mode a short-wave mode, because the growth rate is positive only within a finite span of the wavelength Λ=2 / , and because the maximum growth rate is observed at a large wave number, i.e. max ∼10 versus max ∼2 for the long-wave Kapitza instability mode. The short-wave mode appears for |Re G | ≫1800, and this suggests that turbulence in the gas is required to generate this instability mode. This may explain why previous stability investigations (Schmidt et al. 2016;Trifonov 2017), where the gas flow was assumed laminar, did not find the short-wave mode.

At Re G =-5200 (pentagons in figure 24), the growth rate of the short-wave mode (panel 24c) has surpassed that of the Kapitza mode (panel 24a). However, our experiments in figure 10 do not show any clear signature of the short-wave mode, except maybe slight modulations on the crests of the first two wave fronts (see e.g. 8th panel in figure 10). This can be attributed to the protected zone in our current experimental setup, where Kapitza waves are allowed to develop in a virtually quiescent atmosphere, before entering the gas-sheared zone.

In other words, the gas-induced short-wave instability mode has to compete with saturated fully-nonlinear Kapitza waves. We demonstrate this via an additional set of experiments that was focused on detecting the first signs of ripples for the parameters in figure 10. Figure 25 shows spatio-temporal diagrams of the film surface slope obtained from these experiments, (next to last panel in figure 10), and this compares reasonably well with the most-amplified wave number max of the corresponding unstable merged mode (curve with filled circles in figure 24a). Better agreement is expected without the protected region used in our current experimental setup. In our setup, short-wave ripples originate on the residual film in between two preexisting large-amplitude nonlinear Kapitza waves, which is not quite comparable to the primary flow underlying figure 24.

The most important feature of the new short-wave instability mode observed in panels 24c and 24d is that it displays negative wave speeds ( <0 in panel 24d) in the range of unstable wave numbers. And, this property is endowed to the unstable merged mode in panel 24b. In becomes negative far beyond the onset of the short-wave instability (between the square and circle in panel 26b). Thus, the gas-induced linear short waves can travel upward even though the liquid moves downward across the entire film thickness ℎ 0 .

To further characterize the nature of the short-wave instability mode, figure 27 represents (normalized) profiles of the liquid-side (panel 27a) and gas-side (panel 27b) eigenfunctions, and (4.13), for the most-amplified long-wave (red dot-dashed curves) and short-wave (blue dashed curves) instability modes at Re G =-5200 (pentagons in panels 24a and 24c).

We see that is maximal at the liquid gas interface, =ℎ 0 , for both the long-wave and short-waves modes. We may thus conclude that the short-wave mode is an interfacial mode, strengthening our assertion that it lies at the origin of the upward-travelling ripples observed in our experiments.

Interestingly, the onset of the short-wave instability mode in panel 24c, i.e. Re G =-5100 (between crosses and pentagons), is very close to the AI limit of the Kapitza instability observed in figure 12, i.e. Re AI G =-5115. This may explain why flooding predictions based on the AI limit (Vellingiri et al. 2015) are reasonably good, even though AI does not seem to produce any dangerous events in our experiments and nonlinear WRIBL-LW computations.

Conclusion

We have studied the effect of a confined turbulent counter-current gas flow on the linear and nonlinear dynamics of a wavy falling liquid film, focusing on regimes beyond the absolute instability (AI) limit of the Kapitza instability. We have done this via experiments and numerical computations based on a new low-dimensional model, which we have introduced and validated here. This model accurately captures the gas-induced transition to AI as well as the nonlinear gas-effect on travelling Kapitza waves. In addition, we have performed linear stability calculations based on the full Orr-Sommerfeld equations in the gas and the liquid.

From our investigation, we may draw the following conclusions. (1) AI is not necessarily dangerous, i.e. no flooding events linked to Kapitza waves were observed even far beyond the AI limit. On the contrary, AI can act as an effective linear wave selection mechanism in a naturally evolving falling liquid film, leading to highly regular downward-travelling nonlinear waves, precluding dangerous coalescence events.

(2) Flooding is eventually triggered by upward-traveling ripples, which were discovered in the experiments of Kofman et al. (2017) and reproduced here. We find that these ripples result from a short-wave interfacial instability associated with a negative linear wave speed.

As far as we know, this short-wave instability has not yet been reported in the literature. On the contrary, the instability was not found in several previous stability investigations of falling liquid films (Schmidt et al. 2016;Trifonov 2017). In these investigations, the counter-current gas flow was assumed laminar, even though the gas Reynolds number Re G was increased far beyond the turbulence threshold. We may thus surmise that Reynolds stresses associated and OS-OS linear stability calculations show good agreement (figures 6), including for the short wave mode (figure 30).

Finally, a detailed study of the new short-wave instability is necessary, and we intend to pursue our work in this direction. For example, it should be verified whether the instability also occurs for the conditions studied by Trifonov (2017) and Schmidt et al. (2016). And, the mechanism of the instability should be elucidated. For example, how does it compare to the Kelvin-Helmholtz instability and the generation of wind-driven waves?

The neutral stability bound is given by R=0, and the solution for R obtained from our According to this, both WRIBL approaches accurately capture the gas-effect on the longwave Kapitza instability mode (red curves in panel 30a), and accounting for the derivatives of G and G does not bear much benefit. By contrast, not surprisingly, the growth rate of the new short-wave mode is less well predicted by both WRIBL approaches (blue curves in panel 30a). Here, accounting for the derivatives of G and G (dashed blue curve) improves predictions at intermediate , but the standard WRIBL-OS approach performs better at large . Finally, both WRIBL approaches produced quite good predictions of the merged instability mode (panel 30b), whereby the standard WRIBL-OS approach behaves better. In summary, accounting for the derivatives of G and G does not meaningfully improve predictions at low wave numbers . And, at large , it may even deteriorate them. This is because the WRIBL-OS description becomes unbalanced at large , as a result of truncating the governing equations at different orders in the liquid (truncate at O ( 2 ) and neglect O ( 2 Re L ) inertial corrections) and gas (full governing equations). Retaining supplementary terms in the governing equations has been shown to deteriorate long-wave model predictions in other configurations (Oron & Gottlieb 2004;Thompson et al. 2019). It is interesting to note that both the new short-wave (panel 30a) and merged (panel 30b) instability modes can be captured by the WRIBL approach.

Schmidt

  et al. (2016) applied the Chebyshev collocation approach (Orszag 1971; Barmak et al. 2016a) to study this problem in the vertical configuration at |Re G |>35000, where Re G = ★ G / G designates the gas Reynolds number based on the gas flow rate per unit width ★ G and the gas kinematic viscosity G . Although the gas flow under these conditions would be turbulent in an experiment, the laminar Navier-Stokes equations were used. The authors identified four instability modes: (1) the long-wave Kapitza mode (Brooke Benjamin 1957; Yih 1963), which is an interfacial mode; (2) the liquid-side short-wave Tollmien-Focus on Fluids articles must not exceed this page length Gas-sheared falling liquid films beyond the absolute instability limit 5 Schlichting mode (Floryan et al. 1987; Samanta 2020), which travels in the direction of the liquid and occurs at very large Re L ; (3) the gas-side short-wave Tollmien-Schlichting mode; and (4) a so-called long-wave internal mode, which appears at |Re G | ∼10 × 10 4 and can merge with the Kapitza mode. Trifonov (2017) applied the same approach to the case of an inclined falling liquid film, and showed that the gas-side Tollmien-Schlichting mode corresponds to the classical result for channel flow, i.e. |Re |= 4 3 5772=7696 (Orszag 1971).

  Schmidt et al. (2016) and Trifonov (2017) did not account for turbulence in the primary flow, even though the gas Reynolds number |Re G | was far greater than the experimental turbulence threshold |Re G | ∼1800 (Pope 2000). Following the seminal work of Náraigh et al. (2011), this shortcoming was remedied by Vellingiri et al. (2015), who represented the turbulent gas flow via the Reynolds averaged Navier-Stokes equations

Figure 1 :

 1 Figure1: Sketch of our experimental setup. A falling liquid film of water flows down a glass plate inclined at an angle =5 • and enters in contact with a counter-current turbulent air flow within a rectangular channel of height ★ =13 mm and width ★ =27 mm. A loudspeaker is used to force Kapitza waves on the surface of the liquid film, which grow and saturate within a protected region.

Figure 2 :

 2 Figure 2: Transition of the wavy falling liquid film under a counter-current gas flow: water/air, Re as L =44.7, Re L =43.1, ★ 0 =3 Hz. Shadowgraphs of the liquid-gas interface for increasingly strong fan power. Left: zero fan power (aerostatic configuration), regularly-spaced Kapitza waves; middle: Re G =-5830, coalescence of Kapitza waves; right: Re G =-6760, coexistence of Kapitza waves with upward-travelling short ripples.

Figure 3 :

 3 Figure 3: Typical CCI film thickness measurements in the aerostatic configuration: water/air, Re as L =33.7, ★ 0 =2.8 Hz. (a) Film thickness time traces measured at different positions. From left to right: ★ =13.5 cm, 27.5 cm, 49.5 cm, and 62.5 cm; (b) spatial profiles of averaged quantities (at least 100 waves). Open/filled circles: ensemble-averaged wave height ℎ ★ max and minimum film thickness ℎ ★ min , crosses: time-averaged film thickness h★ . Error bars indicate standard deviation and red arrows mark positions for panel a.

Figure 3

 3 Figure 3 represents measurement data obtained with the CCI technique for the aerostatic configuration at Re as L =33.7 and ★ 0 =2.8 Hz. In panel 3a, we have plotted time traces of the film thickness ℎ ★ at streamwise positions representative for the regimes of linear growth, nonlinear growth, and saturation of Kapitza waves. These time traces evidence the formation of characteristic precursory capillary ripples. Panel 3b represents spatial profiles of the ensemble-averaged (over at least 100 waves) maximum film thickness ℎ ★ max , minimum film thickness ℎ ★ min , and time-averaged (over at least 100 wave periods) film thickness h★ . Error bars illustrate the standard deviation. To obtain these profiles, the CCI probe was displaced

  the velocity scale ratio Π =U G /U L , the length scale ratio Π =L G /L, and the viscosity and density ratios Π = G / L and Π = G / L enter (3.1g) and (3.1h).

  ) where = ★ /L G denotes the dimensionless mixing length. At this point, a remark about choosing a turbulent viscosity model, such as (3.11), is in order. Luchini & Charru (2019) have shown that such models cannot fully reproduce the momentum redistribution induced by wall perturbations to a parallel turbulent flow. Nonetheless, comparisons with different experiments (Zilker et al. 1977; Frederick & Hanratty 1988) have shown that turbulentviscosity models based on the van Driest equation, which will be introduced in (3.22), capture satisfactorily the linear (Russo & Luchini 2016) and nonlinear (Tseluiko & Kalliadasis 2011; Camassa et al. 2017) responses of the wall shear stress. Thus, such models allow to adequately account for the inter-phase coupling in our current configuration.

  .40) Introducing (3.35) and (3.38) into (3.6), and linearizing once again, yields the dispersion relation for the spatial stability problem:

  g. the liquid Reynolds number Re L . The BVPs associated with the turbulent gas flow, (3.27) and (3.28), are solved simultaneously. In addition, we solve the linear dispersion relation (3.41) for the spatially most-amplified angular frequency max : DR( max , ) = 0, | = max = 0. (3.44)

  spatial variations prescribed in (3.37) and (4.2) are equivalent in the linear limit ˆ → 0, where the curvilinear coordinates collapse with the Cartesian ones. Thus, ˇ G = ˇ G . Panels 5a and 5b represent spatial linear stability predictions obtained with our WRIBL-OS approach, based on (3.41) and (4.3c), for parameters according to the experiments of Kofman et al. (2017) in an ★ =19 mm channel. According to panel 5a, the maximum of the growth rate dispersion curve increases with increasing counter-current gas flow rate, up until forming a pinch point at Re G =-8490, where the AI limit is reached (curve with crosses).

Figure 5 :

 5 Figure 5: Spatial linear stability calculations with WRIBL-OS approach. Parameters based on experiments of Kofman et al. (2017): Ka=3174 (water and air I in table 1), =5 • , Re L =45. Circles: passive-gas limit, Π =Π =0 in (3.41). |Re G | increases in the order: [diamonds, squares, crosses, pentagons]. (a,c) Full model; (b,d) Π =0 in (3.41). (a,b) ★ =19 mm; (c,d) ★ =40 mm. (a) Re G =[-6234, -8145, -8490 (AI)]. Dashed: Re G =-8500; (b) Re G =[-6234, -8145, -8490, -15000]; (c) Re G =[-8145, -15000, -20430 (AI limit)]. Dashed: Re G =-20440; (d) Re G =[-8145, -15000, -20430, -35000]. We have rescaled with T =2.207 × 10 -3 s (3.34).

  and ( ) indicates the order of differentiation w.r.t. , (4.10) is cast into a generalized eigenvalue problem in matrix form: matrices , , and , and the inhomogenity b. With the help of MATLAB (MATLAB 2015), we first solve (4.21) for by numerical inversion via the / operator and then (4.20) for the eigenvalues ˜ and eigenvectors via the eig function.

Figure 6 :

 6 Figure 6: Temporal stability predictions from OS-OS (solid curves) and WRIBL-OS (open symbols) approaches. Similar parameters as in panel 5a: Ka=3174, ★ =19 mm, =5 • , Re L =32.7. Circles: passive-gas limit (Π =Π =0 in equation 3.41), pentagons: Re G =-4123, squares: Re G =-6173, diamonds: Re G =-8220. (a) Growth rate; (b) wave speed.

Figure 7 :

 7 Figure 7: Spatial linear stability predictions obtained from WRIBL-LW (symbols) and WRIBL-OS (lines) calculations. Inclined falling liquid film sheared by a co-current gas based on parameters in Samanta (2014): Ka=963 (glycerol-water and air II in table 1), =4 • , ★ =15 mm, Re G =2000. S/U indicate stable/unstable regions. Circles: full formulation; squares: Π =0 in (3.41); diamonds: G = G0 , Π =0; crosses: Π =Π =0. (a) Wave speed = / around the long-wave limit →0; (b) neutral stability bound, =0.

Figure 7

 7 Figure 7 compares spatial linear stability predictions of our WRIBL-LW model (symbols) with calculations using the WRIBL-OS approach (solid lines), for parameters based on figure 3 in Samanta (2014), which are inspired by the experiments of Liu & Gollub (1994) in a

Figure 8 :

 8 Figure 8: Spatial linear stability predictions from WRIBL-LW (panels a,c) and WRIBL-OS (panels b,d) approaches. Parameters according to experiments of Kofman (2014): Ka=3174 (water and air I in table 1), ★ =19 mm, =5 • , Re L =32.7. Open circles: passive-gas limit, Π =Π =0 in (3.41). |Re G | increases in the order: [diamonds,squares,crosses/asterisks,pentagons,pluses]. (a,b) Full model; (c,d) Π =0 in (3.41). (a) Re G =[-4123,-6713,-9157]; (b) Re G =[-4123,-6713,-8220]; (c) Re G =[-6713,-9100,-11000,-15000]; (d) Re G =[-6713,-9100,-11000,-15000]. Red dot-dashed curves track growth rate maximum {-} max . We have rescaled with T =2.207 × 10 -3 s (3.34).

Figure 9 :

 9 Figure 9: Nonlinear computations (solid and dashed lines) with our WRIBL-LW model (3.6) versus experiments (symbols) of Kofman (2014): Ka=3174 (water and air I in table 1), ★ =19 mm, =5 • , Re L =32.7, ★ 0 =2.8 Hz ( ★ 0 T =0.039). Film thickness time traces at fixed streamwise position. Solid green lines: TWS from numerical continuation; dashed black lines: open-domain computations with coherent inlet forcing ( 1 =0.01, 2 =0). (a) Quiescent gas (Π =Π =0 in computations); (b) Re G =-4123; (c) Re G =-6713.

Figure 10 :

 10 Figure 10: Top view snapshots from one of our experiments. Falling water film sheared by a counter-current air flow and subject to coherent inlet forcing: ★ =13 mm, =5 • , Re as L =44.7, Re L =43.1, ★ 0 =3.0 Hz. First panel: aerostatic configuration; panel 2 and onward: counter-current turbulent gas flow with increasing |Re G |. Absolute instability limit from linear stability calculation in figure 12: Re AI G = -5182.

Figure 11 :

 11 Figure 11: Gas-effect on threshold of long-wave Kapitza instability. Linear stability predictions for a falling liquid film sheared by a counter-current gas flow: Ka=3174 (water and air I in table 1), ★ =13 mm. (a) Neutral stability bounds. Black curves with circles: =5 • , red curves with diamonds: =1 • . Curves with filled symbols: WRIBL-LW/WRIBL-OS prediction for turbulent gas flow, curves with open symbols: fully-coupled prediction for laminar gas flow (Tilley et al. 1994), dot-dashed black curve: shortwave instability mode (section 6.2) at =1 • , shaded zone: turbulence transition, Re G ∈ [-1800, -1300]. S/U denote stable/unstable regions; (b) spatial growth rate dispersion curves from WRIBL-OS: =1 • , Re L =1.5 (5/6) cot ( ). Pentagons: Π =Π =0 in (3.41), squares to pluses: Re G =-1000, -2000, -3000, -3600.

Figure 12 :

 12 Figure 12: Transition to AI predicted by spatial linear stability analysis with our WRIBL-OS approach. Parameters according to experiment in figure 10: Ka=3174 (water and air I in table 1), ★ =13 mm, =5 • , Re L =43.1. Circles: Π =Π =0 in (3.41). Diamonds: Re G =-4000, crosses: Re G =-5181. (a) Growth rateversus . Inset showsversus . Dot-dashed: Re G =-5180, dot-dot-dashed: Re G =Re AI G =-5182; (b) wave speed = / . Vertical dashed: forcing frequency ★ 0 =3 Hz from figure 10. We have rescaled with T =2.207 × 10 -3 s (3.34).

  there). The wave speed data in panel 13b were obtained via video image processing from our experiment in figure 10, where Re L is slightly different than in panel 13a. Different solid curves in figure 13 correspond to different branches of TWS, which are associated with different numbers of precursory capillary ripples (CR) and distinguished by different filled symbols. For the experimental data points, the number of CR is distinguished via corresponding open symbols. Error bars in panel 13a represent the standard deviation of experimental film thickness time traces, which increases with increasing |Re G | as a result of wave coalescence events (section 6.1.3). Beyond a certain |Re G |, coalescence entirely destroys the coherence of the wave train and comparison with TWS is futile.

Figure 13 :

 13 Figure 13: Gas-effect on nonlinear TWS obtained with our WRIBL-LW model (curves) versus experiments (empty symbols). Inclined falling liquid film sheared by counter-current turbulent gas flow: Ka=3174 (water and air I in table 1), =5 • . Filled/open symbols distinguish number of capillary ripples (CR). Diamonds: 0-CR, squares: 1-CR, triangles: 2-CR, circles: 3-CR, dashed: >3-CR. Solid curves: ★ = ★ 0 , dot-dashed curves: ★ = ★ max . Crosses: AI limit, asterisk: nonlinear LP. Open/filled red arrows mark AI limit obtained from WRIBL-LW/WRIBL-OS. (a,c) Wave height; (b,d) wave speed scaled with ˆ ★ Nu =(3/2) ★ L0 /ℎ ★ Nu , where ℎ ★ Nu =(3 ★ L0 L / /sin ( )) 1/3 . (a,b) Versus our experiments: ★ =13 mm, ★ 0 =3.0 Hz. (a) Re L =44.2 ± 0.3. Filled arrow: Re AI G =-5194, empty arrow: Re AI G =-5366. (b) Re L =43.1; (c,d) versus experiments of Kofman et al. (2017): ★ =19 mm, Re L =45, ★ 0 =3.05 Hz. Filled arrow: Re AI G =-8490, empty arrow: Re AI G =-9633.

Figure 14 :

 14 Figure 14: Gas-effect on streamwise evolution of the wavy liquid film. Compilation of our experiments: water/air, ★ =13 mm, =5 • , Re as L =46, Re L =44.2±0.3, ★ 0 =3 Hz, Re AI G =-5194. (a) Ensemble-averaged wave height ℎ ★ max . Error bars represent standard deviation, and check marks mark start of coalescence-dominated region. Filled symbols mark data points used in panel 13a. Circles: aerostatic configuration; diamonds: Re G =-3040; squares: Re G =-4190; pentagons: Re G =-5200; triangles: Re G =-5750; (b) frequency spectra of the film height ℎ ★ : Re G =-5750. | ĥ★ | denotes amplitude of Fourier mode with ★ . Crosses mark primary and secondary peaks. Left: ★ =41.5 cm, middle: ★ =51.5 cm, right: ★ =58.5 cm.

Figure 15 :

 15 Figure 15: Wave coalescence event. Top view snapshots from our experiment in figure 10 (parameters similar to pentagons in panel 14a): Re L =43.1, Re G =-5200. Time increases from top left to bottom right with an increment of 0.48 s. Solid red and dashed yellow lines highlight two consecutive wave fronts.

Figure 16 :Figure 17 :

 1617 Figure 16: Wave trains for two data sets from panel 14a. (a) Film thickness time traces at ★ =82.5 cm. Solid: aerostatic configuration (circles in panel 14a), Re as L =46.0; dashed: counter-current configuration (triangles in panel 14a), Re L =44.2, Re G =-5750; (b,c) corresponding frequency spectra. | ĥ★ | is the amplitude of the Fourier mode with ★ . (b) Aerostatic configuration. Open circles mark peaks at ★ 0 and its harmonics; (c) counter-current configuration. Open circle marks global peak at most amplified frequency ★ max / ★ 0 =0.49.

Figure 18

 18 Figure 18 represents snapshots of our open-domain WRIBL-LW computations for parameters according to three of the experiments in panel 14a (circles, squares, and triangles there).

Figure 18 :

 18 Figure 18: Gas-effect on spatial evolution of naturally-evolving Kapitza waves. Open-domain computations using our WRIBL-LW model on a domain of length ★ =1.50 m. The gas flow is applied over the entire domain length. Noisy inlet perturbation according to (3.46): 1 =0, 2 =5 × 10 -5 . Parameters according to experiments in panel 14a (circles, squares, and triangles there): Ka=3174 (water and air I in table 1), ★ =13 mm, =5 • , Re L =43.1. (a) Π =Π =0 in (3.6a); (b) Re G =-4190; (c) Re G =-5750. The AI limits, obtained from WRIBL-LW and WRIBL-OS, are Re AI G =-5347 and Re AI G =-5182.

Figure 20 :

 20 Figure 19: Spatio-temporal diagrams of the normalized film height ℎ/ℎ max for the computations in panels 18b and 18c. (a) Re G =-4190; (b) Re G =-5750. The AI frequency is ★ AI =3.35 Hz, as obtained from linear stability analysis based on our WRIBL-LW model.

Figure 21

 21 Figure 21 summarizes the wave characteristics of our different WRIBL-LW open-domain computations from figures 18 and 20 by plotting the maximum wave height ℎ max versus the streamwise position . Error bars represent the range of temporal variation of ℎ max at a given position. We see that AI-induced wave selection allows to (1) reduce the maximum wave height in the lower portion of the domain by about 40 %, and (2) to suppress its variance over the entire domain length. For completeness, the pentagons in panel 21b report results

Figure 21 :

 21 Figure 21: Summary of wave data from our computations in figures 18 and 20. Maximum wave height ℎ max versus the streamwise location. Circles: Π =Π =0; crosses: Re G =-4190; diamonds: Re G =-5750. Naturallyevolving versus forced waves. (a) Noisy inlet perturbation: 1 =0, 2 =5 × 10 -5 in (3.46); (b) additional coherent inlet forcing: ★ 0 =3.0 Hz, 1 =0.01, 2 =5 × 10 -5 in (3.46).

Figure 22 :

 22 Figure 22: Vertically-falling liquid film sheared by a turbulent counter-current gas flow. Liquid-side conditions according to panel 3a in Lavalle et al. (2020): Ka=509.46 (DMSO-water and air II in table 1), Re L =15, ★ 0 =16 Hz, Re AI G =-6500. WRIBL computation on an open domain of length ★ =0.843 m. Snapshots of the film height profile ℎ( ) at 0 =61.4. (a) At AI limit: Re G =Re AI G =-6500; (b) beyond AI limit: Re G =-7500. Dot-dashed red: 0 =61.6, green dashed: Lagrangian path of a wave crest.

Figure 22

 22 Figure 22 reports results of computations for two values of |Re G |. The first computation (panel 22a) corresponds exactly to the AI limit Re G =Re AI G =-6500 and represents the same features as other computations at lower |Re G | (not shown here): an unaltered regular wave train of frequency = 0 persists over the entire domain length.

Figure 23 :

 23 Figure 23: Standing ripples beyond the AI limit Re AI G =-6500. Computation from panel 22b: Re G =-7500. (a) Spatio-temporal diagram of the normalized film height ℎ/ℎ max ; (b) film height time trace ℎ( ) at / =0.6; (c) spatial profile of the liquid flow rate L ( ) at 0 =61.4.

Figure 24 :

 24 Figure 24: New short-wave instability mode. Falling liquid film sheared by a turbulent counter-current gas flow: Ka=3174 (water and air I in table 1), ★ =13 mm, =5 • , Re L =43.1, Re AI G =-5182. Temporal linear stability predictions using the OS-OS approach. Dashed blue: new short-wave mode, dot-dashed red: longwave Kapitza mode, solid black with filled symbols: unstable merged mode, solid green with open symbols: stable merged mode. Pluses: Π =Π =0 in (3.41); crosses: Re G =-4700; pentagons: Re G =-5200; diamonds: Re G =-5750; squares: Re G =-6400; circles: Re G =-6760. (a,c) Growth rate; (b,d) wave speed. Shaded magenta bands and filled magenta circle with error bars represent our experiment from figure 10: Re L =43.1, Re G =-6760, Λ ★ ripples =(13 ± 3) mm, ★ ripples =(-6.2 ± 1.5) cm s -1 .

Figure 24

 24 Figure 24 represents temporal OS-OS linear stability predictions for parameters from the experiment. The different symbols correspond to five different values of Re G , according to the 4 th (Re G =-4700), 5 th (Re G =-5200), 7 th (Re G =-5750), 12 th (Re G =-6400), and 17 th (Re G =-6760) panel in figure 10. The last panel in figure 10 (Re G =-6830) corresponds to the breakdown of our experiment, and is not considered here. Panels 24a and 24c represent growth rate dispersion curves for different instability modes and panels 24b and 24d the corresponding dispersion curves for the linear wave speed. We have separated the different plots into two panel pairs in order to better distinguish the different modes. Red dot-dashed curves in panel 24a belong to the long-wave Kapitza

Figure 25 :

 25 Figure 25: First signature of upward-travelling ripples in our experiments. Spatio-temporal diagrams of the film surface slope ∇ℎ for parameters in figure 10, obtained with the synthetic Schlieren technique (Kofman et al. 2014): ★ =13 mm, =5 • , Re L =43.1, ★ 0 =3 Hz, ★ 0 =48 cm, ★ =13 cm. (a) Re G =-5200: ripples start to appear in between Kapitza wave humps; (b) Re G =-6080: ripples deform crests of Kapitza waves.

  using the synthetic Schlieren technique(Moisy et al. 2009; Kofman et al. 2014). In panel 25a, Re G =-5200, wave fronts of upward-travelling ripples are clearly visible in between downward-travelling Kapitza waves. However, these ripples cannot yet compete with the large-amplitude Kapitza wave humps, and thus remain hidden in the dark inter-wave regions of figure10.Upon increasing Re G further (diamonds in figure24), the short-wave mode and the Kapitza mode merge into a new unstable merged mode (open diamonds in panel 24a), which initially displays a two-humped growth rate dispersion curve, and a new stable merged mode (filled diamonds in panel 24c). Panel 26a shows the merging of the growth rate curves in detail.According to this, the long-wave portion of the long wave mode (red dot-dashed curves) merges with the short-wave portion of the short-wave mode (blue dashed curves), creating the unstable merged mode (solid black curve with filled diamonds). Vice versa, the shortwave portion of the long-wave mode merges with the long-wave portion of the short-wave mode, creating the stable merged mode (solid green curve with open diamonds).A direct consequence of the mode merging is a change in trend of the cut-off wave number c versus Re G when considering the growth rate curves originating at =0, =0 in panel 24a. Before the merging (pluses to pentagons), these curves are associated with the long-wave Kapitza instability, and c decreases with increasing |Re G |. After the merging (diamonds to circles), c jumps to a much greater value and its trend is reversed. This could explain the sudden change in trend of the neutral stability bounds in figure 11 of Vellingiri et al. (2015), which we have reproduced with our WRIBL-OS approach in panel 29a of appendix A. As |Re G | is increased beyond |Re G |=5750 in panel 24a (from diamonds to circles), the short-wave growth rate maximum of the unstable merged mode becomes dominant and attains very large values. It is here that upward-travelling ripples become strong enough to deform the crests of the Kapitza waves (see panel 25b), and thus become clearly visible in our experiments (last eight panels of figure 10). The shaded magenta band in panel 24a represents the experimental range of the wave number for these ripples at Re G =-6760

  particular, the linear wave speed for Re G =-6760 (solid curve with open circles in panel 24b) is negative across the entire wave number span of the upward-travelling ripples observed in the corresponding experiment (vertical shaded magenta band in panel 24b). Moreover, the ripple wave speed estimated from our experiments (filled magenta circle with error bars in panel 24b) agrees quite well with the linear wave speed. Thus, we are confident that the short-wave instability uncovered in figure 24 is at the origin of the upward-travelling ripples observed in our experiment of figure 10. Upward travelling linear waves linked to the short-wave mode, or the unstable merged mode, do not necessarily require a negative liquid velocity. This is shown in panel 26b, where we have plotted the primary-flow liquid velocity at the liquid-gas interface L0 | =ℎ 0 in terms of Re G for the liquid-side parameters from figure 24. Here, we confront our current confinement (solid curve with symbols, ★ =13 mm) with those of Kofman et al. (2017) (dot-dashed, ★ =19 mm) and Mergui et al. (2023) (dashed, ★ =5 mm). Focusing on the solid curve, where symbols mark |Re G | values from panels 24b and 24d, we see that L0 | =ℎ 0

Figure 26 :

 26 Figure 26: Details of OS-OS linear stability predictions from figure 24: Ka=3174, Re L =43.1, ★ =13 mm, =5 • . (a) Merging between the short-wave and long-wave instability modes from panels 24a and 24c. Diamonds: Re G =-5750, thick lines without symbols: -5680, pentagons: -5200; (b) primary-flow liquid velocity at the film surface. Solid: ★ =13 mm, Re AI G =-5182; dot-dashed: ★ =19 mm, Re AI G =-8461; dashed: ★ =5 mm, Re AI G =-1501. Asterisks indicate AI limit from WRIBL-OS spatial linear stability calculations.

Figure 28 :

 28 Figure28: Validation of our WRIBL-OS approach (section 4.1). Spatial linear stability predictions for parameters in figure15ofVellingiri et al. (2015): Ka=2000 (methanol and helium in table 1), =90 • , Re 0 =3Re L /sin ( )=10, ★ =30 mm, Π =0, (3.6a) truncated at O ( ). Quantities are scaled with L=ℎ ★ 0 and U=ℎ ★2 0 sin ( )/2/ L . The counter-current gas shear stress is quantified via Θ= ★ G0 L/ L /U.

WRIBL

  1 are obtained by solving (3.27) and (3.28). Solutions for 1 and 1 0 in the laminar limit are given in (5.5).Appendix C. Accounting for derivatives ofG and G in (3.6a) We check to what extent the temporal and spatial derivatives of G and G , which appear in (3.6a) and which we have neglected in our WRIBL-LW and WRIBL-OS computations, play a role in the linear stability of a gas-sheared falling liquid film. Figure 30 represents linear stability predictions obtained with three approaches for conditions according to figure 24. Solid curves correspond to OS-OS calculations based on (4.20) and (4.21), dot-dashed curves to WRIBL-OS calculations based on (3.41), and dashed curves to WRIBL-OS calculations with account of the space and time derivatives of G and G in (3.6a).

Figure 30 :

 30 Figure 30: Accounting for temporal and spatial derivatives of G and G in (3.6a). Temporal linear stability predictions based on three approaches for conditions according to figure 24: Ka=3174 (water and air I in table 1), ★ =13 mm, =5 • , Re L =43.1. Dot-dashed: WRIBL-OS (3.41), solid: OS-OS (4.20) and (4.21), dashed: WRIBL-OS including derivatives of G and G in (3.6a). (a) Re G =-4700. Red: long-wave Kapitza mode, blue: short-wave mode; (b) Re G =-6760: merged mode.

Table 1 :

 1 Fluid combinations used in our computations. The Kapitza number is defined as Ka= / L / 1/3 / , where , L , and L denote the surface tension, density and kinematic viscosity of the liquid, and designates the gravitational acceleration.

	cos ( ) Fr 2 .	(4.7b)

) L0 = -L

  • , Re L =15, and ★ 0 =16 Hz. Further, we set 1 =0.01 and 2 =0 in (3.46), and we apply the counter-current gas flow over the entire domain length ★ =0.84 m. In terms of confinement, we set ★ =10 mm, in contrast to ★ =1 mm used byLavalle et al. (2020). The forcing frequency ★ 0 =16 Hz corresponds to the linearly most-amplified value in the limit (Π =Π =0), which is quite different from the AI frequency ★ AI =26.8 Hz, as obtained from our WRIBL-LW model. We search for signs of the OI by increasing |Re G |.

here), i.e. far beyond the value of |Re G | in panel 19b .
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with gas-side turbulence are essential for generating the short-wave instability, at least in the parameter range where ripples are observed experimentally.

(3) The onset of the short-wave instability approximately coincides with the AI limit of the long-wave Kapitza instability. This could explain why predictions of the flooding threshold based on the AI limit have been found to agree reasonably well with experiments (Vellingiri et al. 2015), even though the trends of these two thresholds w.r.t. to the liquid Reynolds number are opposed.

(4) At larger counter-current gas flow rates, the short-wave instability mode merges with the long-wave Kapitza mode, leading to a sudden and drastic increase of the cut-off wave number. This may explain the sudden change in the -trend of the neutral stability curves reported in figure 11 of Vellingiri et al. (2015), which we have reproduced in figure 29a based on our own computations.

(5) Absolute instability of the long-wave Kapitza mode and instability of the new shortwave mode can coincide in a certain parameter range (see panels 12a and 24c). It remains to be seen, how downward-travelling long waves generated by AI interact/compete with upward-travelling ripples generated by the short-wave instability in a naturally evolving falling liquid film. Unraveling the interaction between these two wave types, may be the key to understanding flooding in gas-sheared falling liquid films. In our current experiments, this could not be studied, as fixed-frequency saturated-amplitude nonlinear waves were allowed to develop in a protected region, before entering into contact with the counter-current gas flow. In this configuration, Kapitza waves are privileged until the growth rate of the merged instability mode (panel 24a) becomes dominant and upward-travelling ripples appear.

Conversely, computations with our current WRIBL-LW model cannot capture the new short-wave instability. Although this is a limitation of the model, it allowed us to show that the long-wave AI alone does not produce any catastrophic events. An interesting goal for future work is to extend our model to overcome this limitation. For this, the gas-side representation, which currently relies on an O ( ) long-wave approximation, needs to be improved. This will require relaxing our symmetry condition (3.13b). Velocimetry experiments similar to those of Cohen & Hanratty (1968), would allow to gauge the extent of asymmetry in the gas flow.

By contrast, our O ( 2 ) liquid-side WRIBL representation is capable of capturing short waves, as evidenced by the precursory capillary ripples in figure 9, which have a smaller wavelength than the upward-travelling ripples. Also, our comparisons between WRIBL-OS

Appendix A. Validation of WRIBL-OS and OS-OS approaches

In figure 28, we have used our WRIBL-OS approach from section 4.1 to reproduce the growth rate dispersion curves obtained from temporal linear stability analysis in figure 15 of Vellingiri et al. (2015), for a vertically-falling liquid film sheared by an unconfined counter-current turbulent gas flow. To recover the formulation used in that reference, we have Agreement between crosses and circles in panel 29a is good, except for data at

. This is where the trend of the cut-off wave number in terms of the 

. Solid blue: long-wave Kapitza mode; dashed red: short-wave Tollmien-Schlichting mode.

dimensionless gas shear stress Θ changes. We believe that this is the result of the mode merging that we have observed in section 6.2. At thresholds where the stability behavior changes, large discrepancies between two calculations may occur as a result of small differences between the employed procedures. In particular, we have used a different set of curvilinear coordinates than Vellingiri et al. (2015). We believe that this explains the discrepancy between the cross and circle for Θ=3.

Interestingly, we have observed that our OS-OS predictions in panel 29a change significantly when setting Π =0 (not shown). This confirms our conclusion based on equation (5.5) tha G can affect stability even in the unconfined limit.

In panel 29b, we have reproduced with our OS-OS approach the growth rate dispersion curves in figure 4e of Schmidt et al. (2016), where a vertically-falling liquid film sheared by a confined laminar ( ˜ t =0 in equations 3.27 and 3.28) counter-current gas flow was considered.

All quantities have been scaled with L= ★ and Ũ=[ ★ ★ G0 ★ / G ] 1/2 , according to Schmidt et al. (2016). Thus, results are directly comparable with data in figure 4e of that reference, exhibiting very good agreement, both for the long-wave Kapitza mode (solid blue curve) and the Tollmien-Schlichting mode (dashed red curve).

Appendix B. Neutral stability bound based on equation (5.2)

In (5.2), we have introduced the first-order contribution 1 , arising in the long-wave expansion ( →0) of the linear wave speed :