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Small networks of expressed genes 
in the whole blood and relationships to profiles 
in circulating metabolites provide insights 
in inter‑individual variability of feed efficiency 
in growing pigs
Camille Juigné1,2, Emmanuelle Becker2 and Florence Gondret1* 

Abstract 

Background  Feed efficiency is a research priority to support a sustainable meat production. It is recognized 
as a complex trait that integrates multiple biological pathways orchestrated in and by various tissues. This study aims 
to determine networks between biological entities to explain inter-individual variation of feed efficiency in growing 
pigs.

Results  The feed conversion ratio (FCR), a measure of feed efficiency, and its two component traits, average daily 
gain and average daily feed intake, were obtained from 47 growing pigs from a divergent selection for residual 
feed intake and fed high-starch or high-fat high-fiber diets during 58 days. Datasets of transcriptomics (60 k porcine 
microarray) in the whole blood and metabolomics (1H-NMR analysis and target gas chromatography) in plasma were 
available for all pigs at the end of the trial. A weighted gene co-expression network was built from the transcriptom-
ics dataset, resulting in 33 modules of co-expressed molecular probes. The eigengenes of eight of these modules 
were significantly ( P ≤ 0.05 ) or tended to be ( 0.05 < P ≤ 0.10 ) correlated to FCR. Great homogeneity in the enriched 
biological pathways was observed in these modules, suggesting co-expressed and co-regulated constitutive genes. 
They were mainly enriched in genes participating to immune and defense-related processes, and to a lesser extent, 
to translation, cell development or learning. They were also generally associated with growth rate and percentage 
of lean mass. In the whole network, only one module composed of genes participating to the response to substances, 
was significantly associated with daily feed intake and body adiposity. The plasma profiles in circulating metabolites 
and in fatty acids were summarized by weighted linear combinations using a dimensionality reduction method. Close 
association was thus found between a module composed of co-expressed genes participating to T cell receptor 
signaling and cell development process in the whole blood and related to FCR, and the circulating concentrations 
of polyunsaturated fatty acids in plasma.

Conclusion  These systemic approaches have highlighted networks of entities driving key biological processes 
involved in the phenotypic difference in feed efficiency between animals. Connecting transcriptomics and metabolic 
levels together had some additional benefits.
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Introduction
In the context of various geopolitical tensions and 
societal questions on the agri-agro-food systems, feed 
efficiency (FE) is a research priority to support food 
security and a sustainable meat production. Indeed, 
better FE is associated with a reduced amount of feeds 
needed for production and lower environmental wastes 
and emissions. Feed efficiency is measured on farms by 
the feed conversion ratio (FCR), an index calculated as 
the ratio of feed intake to body weight (BW) gain during 
a test period. Residual feed intake (RFI) has been also 
proposed as a refined measure of FE for genetic selec-
tion; it is calculated as the difference between observed 
feed intake and predicted feed intake from production 
and maintenance needs, which allows RFI to reflect 
digestive and metabolic variabilities [1, 2]. A number of 
studies have been performed in the past years to depict 
and understand the biological bases of FE. Based on the 
comparison of animals with low or high FCR or RFI, 
they all concluded to the complex nature of FE since 
this trait integrates multiple biological pathways orches-
trated in and by various tissues [2–4]. Among tissues, 
peripheral blood is a convenient and relatively easy sam-
pling source of biological information that can highlight 
the variations in tissues metabolism and physiology to 
understand complex phenotypes [5] and with potential 
outcomes for applications in diagnostics and selection 
[6]. In pigs, about one thousand genes were found dif-
ferentially expressed in the whole blood between two 
lines of pigs divergently selected for RFI [7, 8]. Gene 
set enrichment analysis on the whole blood transcrip-
tome in beef cattle has also allowed identifying biologi-
cal pathways associated with a divergent selection for 
low or high RFI [5]. Moreover, we recently showed that 
gene expression profiling in the whole blood is suitable 
to identify a few number of molecular candidate bio-
markers for FCR in growing pigs, when gene expression 
levels were analyzed by machine learning algorithms 
based on classification or regression trees [9]. Likewise, 
metabolomic studies have shown that circulating con-
centrations of metabolites in the blood can be related to 
economically-important traits including FE [10]. How-
ever, all these approaches did not address the inter-indi-
vidual variation in FE traits and did not attend to depict 
the interactions among the biological entities at a given 
level or different levels of omics organization. Therefore, 
a systemic approach considering the multiple relation-
ships between molecules can add new insights in the 
architecture of complex traits such as FE.

Among various systems biology approaches, 
the weighted gene co-expression network analysis 
(WGCNA) has been proposed as a suitable method for 
defining interactions between transcripts of genes, by 
grouping them in modules of pairwise correlations to 
reveal the higher-order organization of the transcrip-
tome [11]. Based on RNA-sequencing data in the liver, 
two co-expression networks were identified as asso-
ciated with high or low FE in dairy cows [12]. Another 
approach based on linear models allowed to combine 
gene expression data and high throughput metabolomics 
data in skeletal muscle [13]; in this study, pairs of metab-
olite-transcript associated with sphingolipid catabolism, 
multicellular organismal process, and purine metabolic 
processes were associated with differences in FE between 
two pig breeds and between two groups of pigs of low or 
high FE values.

The aim of the present study was to depict the biologi-
cal bases underlying inter-individual variability in FE and 
other related traits in growing pigs by identifying small 
networks of interconnected gene transcripts in the whole 
blood and their relationships with global profiles of cir-
culating metabolites. Eight molecular modules mainly 
composed of interconnected genes involved in immune 
and defense-related processes, were related to vari-
ability between pigs in FCR. Other important biological 
processes represented in these gene networks were the 
response to organic substance, ribosome biogenesis and 
translation, and cell development and learning, respec-
tively. One module of inter-connected expressed genes 
related to immune process was associated with circulat-
ing concentrations of omega3 fatty acids in the plasma, 
thus connecting transcripts to metabolites in the deter-
minism of variability in FE.

Material and methods

Ethics  We reused transcriptomics and metabolomics 
datasets acquired in the whole blood from purebred 
French Large White pigs produced in a divergent selec-
tion experiment for RFI [7, 14], and that have been pre-
viously analyzed separately and for the line-associated 
effects only. The animal phenotypes have been published 
by [15]. These data were complemented by data on circu-
lating concentrations of fatty acids (FA) in the plasma of 
the same pigs to specify lipid-related processes, that have 
not been previously published. In the original publica-
tions, the care and use of pigs were performed in com-
pliance with the European Union legislation (directive 
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2010/63/EU). The protocol was approved by an Eth-
ics Committee in Animal Experiment (Comité Ren-
nais d’Ethique en matière d’Expérimentation Animale, 
CREEA N ◦007, agreement N ◦07-2012). All animals were 
reared and killed in compliance with the national regu-
lations and according to procedures approved by the 
French veterinary Services. All methods were reported 
in accordance with ARRIVE guidelines. In the present 
study, reusing published data to perform new analyses for 
different animal traits perfectly fits with the 3R (Replace-
ment, Reduction and Refinement) principles.

Origin of phenotypic data  Full description of the exper-
imental design that provided the original datasets is ref-
erenced by [15]. Briefly, data were obtained from a total 
of 48 growing pigs (barrows) of two lines in the 7th gen-
eration of divergent selection for RFI, and fed diets for-
mulated at isocaloric and isoproteic bases but differing in 
energy source and nutrients (lipids and fibers vs. starch), 
were tested from 74d ± 0.3d of age to 132.5d ± 0.5d 
(SEM) of age. All pigs were reared in isolated pens dur-
ing the test period to allow the control of spontaneous 
feed intake, thus minimizing also the usual pen effect 
when pigs are reared in groups. From this publication, 
we considered body weight at slaughter (BW in kg), age at 
slaughter (in days), average daily feed intake (ADFI, in g/
day), average daily gain (ADG, in g/day), FCR (calculated 
as the ratio between ADFI and ADG during the feeding 
trial), and the percentage (relative to carcass weight) of 
the dorsal subcutaneous adipose tissue (%backfat) and 
of the loin muscle cut (%loin) as surrogates of body 
composition.

Transcriptomic dataset  The transcriptomic data were 
retrieved from NCBI’s Gene Expression Omnibus (GEO) 
Subserie accession number GSE70838 (http://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE70​838). These 
data have been obtained from the whole blood collected 
in pigs at 132.5d ± 0.5d (SEM) of age, by using a custom 
porcine microarray ( 8× 60K  , GPL16524, Agilent Tech-
nologies France, Massy, France) containing 60, 306 por-
cine probes. Full description of the methods to produce 
the raw microarray data can be found in [7]. After qual-
ity filtration based on four criteria (background intensity 
value, diameter, saturation and uniformity of the spot), 
the original dataset contained 26, 322 annotated probes 
expressed in the whole blood. There were approximately 
2.2 replicates per unique gene in the transcriptomic data-
set (min: 1; max: 33).

Metabolomic dataset  The metabolomic dataset con-
sisted in high resolution 1H-NMR spectra generated in 
plasma of the 48 pigs, and was retrieved from Jegou et al. 

[14]. The generated spectra were processed with one level 
of zero-filling and Fourier transformation after multiply-
ing free induction decays by an exponential line broaden-
ing function of 0.3 Hz. The 1D NMR spectra were manu-
ally phase- and baseline-corrected, and referenced to the 
chemical shift of the alpha-glucose at delta 5.235. The bin 
area method was used to segment the spectra between 
0.6 and 8.5 ppm using the intelligent variable size buck-
eting tool. Bin areas generated a matrix, which was nor-
malized by dividing each integrated segment by the total 
area of the spectrum. This resulted in a new matrix that is 
used to perform statistical analyses. A total of 94 buckets, 
and consequently of 94 variables in this matrix, was con-
sidered for dedicated analyses in the present study. Buck-
ets are individual metabolites or groups of two metabo-
lites. They were notably assigned to different amino acids, 
creatine, lactate and glucose.

When using the 1H-NMR approach, lipids were all 
grouped as a single spectrum. In the present study, to 
investigate more deeply the role of the lipidic family in 
FE variability, the circulating concentrations of fatty acids 
(FA) in plasma were newly determined in the 48 pigs. 
For that, lipids were extracted from plasma as previously 
described for tissues [15], and methylated. Dedicated 
analyses were then performed on a gas chromatograph 
(Nelson Analytical, Manchester, NH) equipped with a 
fused-silica capillary column ( 30m × 0.25mm inter-
nal diameter), with a base-deactivated silica stationary 
phase (a 0.25− µm film thickness) filled with a stationary 
phase (80% biscyanopropyl and 20% cyanopropylphenyl) 
and using margaric acid (C17:0) as the internal stand-
ard. The furnace temperature was 180◦C , and injector 
and detector temperatures were 240◦C . Retention times 
and peak areas were determined. Peaks were identified 
by comparison with the retention times of standard FA 
methyl esters. Individual FAs were then quantified as 
percentages of the sum of FA identified in each sample. 
To facilitate the biological interpretation, FA have been 
then grouped into families of saturated FA with 14C or 
less (sC14:0), polyunsaturated FA of the omega-6 family 
(ssn-6c), and polyunsaturated FA of the omega-3 family 
(ssn-3). All other identified FA were kept as these. This 
led to a total of 14 variables representing circulating FA 
concentrations in plasma (Supplementary Table 1).

Construction of the weighted gene co‑expression 
networks
Starting from a matrix whose individuals are pigs and 
features are probes expression levels (48 pigs × 26,  322 
probes), we performed a hierarchical clustering to iden-
tify outlier individuals as recommended [16]. One pig 
was detected as an outlier and further removed from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70838
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70838
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the dataset due to aberrant values. Then, we quanti-
fied the number of probes that were significantly linked 
to the animal phenotypic traits of interest (linear mod-
els with a P-value < 0.05 as cut-off). The results of the 
linear regressions showed that age at slaughter and line 
were the factors affecting the most the expression lev-
els of molecular probes (19% of the probes significantly 
affected by age at slaughter and 14% by the line effect) 
(Supplementary Table  2). For next steps of analysis, we 
used the residuals of these linear regressions for the age 
effect, but preserved the intra- and inter-line variability 
of FE.

Corrected probe expression levels were then filtered. 
Only probes i whose log fold-change FCi was greater than 
1 were selected, with

Indeed, we considered that the variant probes formed a 
reduced dataset in which connected probes can be more 
easily found when reducing noise and spurious asso-
ciations. A smaller dataset is also associated with a less 
computationally demanding analysis for analyzing gene 
networks. This reduced dataset included 16, 190 probes 
for the 47 pigs.

To calculate the co-expression network, we used 
the Weighted Gene Co-expression Network Analysis 
(WGCNA) step-by-step method [11], performed with R 
4.2.2. The first step consisted in calculating a measure of 
co-expression similarity si,j between each pair of probes 
to highlight the pairs of probes whose expression var-
ies in a similar way. The adjacency matrix A = [ai,j] was 
then constructed by raising the co-expression similarity 
measure si,j to the power β , using the signed hybrid 
method (only positive correlations were kept) [Eq. 2].

where aij is the element (i,  j) of the adjacency matrix A, 
β is the soft-thresholding, xi is the level expression of 
the ith probe, and cor(xi, xj) is the Pearson correlation 
between expression profiles of the i and j probes.
β is a non-dichotomic soft thresholding that allows to 

evaluate connection between probes without losing the 
continuous character of the co-expression. Low correla-
tions are better masked with high β values. We set β to 6 
according to the criterion of the “approximate scale free 
topology” [17].

Considering probes as nodes, a weighted co-expression 
network can be then deduced from the adjacency matrix, 
by adding edges of weight aij between pairs of probes 
whose weight is strictly positive.

(1)
log2(FCi) = max(log2(expressioni))−min(log2(expressioni))

(2)signed hybrid aij =
cor(xi, xj)

β cor(xi, xj) > 0

0 cor(xi, xj) < 0

Detection of modules of co‑expressed probes and their 
relationships with animal phenotypic traits
To detect modules in this network of co-expressed 
probes, a proximity measure was calculated using the 
Topological Overlap Measure [18], which is a valuable 
similarity measure set as default approach in WGCNA 
framework and a hierarchical clustering was performed 
using the standard R function “clust” and the “average” 
agglomeration method. This results in a dendrogram, 
in which clusters can be detected using the dynamic-
TreeCut algorithm [11] and a sensitivity threshold set 
to 2. To keep modules of highly co-expressed genes, we 
set the minimum module size to 25 probes. Each mod-
ule was then summarized by its first principal component 
called the module eigengene (ME), that is a mathematical 
solution to condense the expression profile of the probes 
in the module.

A heatmap of correlations between ME and phenotypic 
traits was then produced. The heatmap can be examined 
to find the most significant associations. In this study, 
we considered P ≤ 0.05 as significant association and 
0.05 < P ≤ 0.10 as a tendency.

We also calculated the gene significance (GS) as (the 
absolute value of ) the correlation between the probe 
and the phenotypic trait. For each module, we defined 
the quantitative measure of module membership (MM) 
as the correlation of ME and the gene expression pro-
file. Using both the GS and MM measures, we can iden-
tify genes that have a high significance for FE traits 
(central players) and high module memberships in the 
modules. For a subset of modules, we provide a graphi-
cal representation of the sub-networks considering the 
annotated probes only. For that, pairs of probes with 
correlation coefficients greater than the 95th percen-
tile in a given module were selected from the adjacency 
matrix, and represented using Cytoscape with nodes 
corresponding to probes and edges corresponding to 
the adjacency matrix values. For probes with low cor-
relation with other probes, edges were represented in a 
different color.

Biological functional enrichment in modules 
of co‑expressed probes
For modules that were significantly related to FCR based 
on the heatmap examination between module eigengenes 
(ME) and animal traits, we matched their constitutive 
molecular probes to the corresponding unique genes 
(official gene symbol), using the annotation provided by 
the manufacturer of the expression microarray. When 
applicable, the gene ontology (GO) terms for biological 
processes were then automatically searched in each mod-
ule, using the Database for Annotation, Visualization and 
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Integrated Discovery (DAVID) bioinformatics knowl-
edgebase v2022q4 released (http://​david.​abcc.​ncifc​rf.​
gov/). The GOBP terms_FAT were selected to filter the 
broadest terms. The results were downloaded using the 
“Functional annotation clustering” option of the DAVID 
tool. Only clusters of terms with an enrichment score 
(measured by the geometric mean of the EASE score of 
all enriched annotations terms) greater than 1.2 were 
considered. Within each cluster, the top GO term was 
listed together with its own enrichment score and the 
associated modified Fisher exact P-value.

Establishing profiles of circulating metabolites 
and evaluating connections between metabolic 
and transcriptomic levels
The second and third datasets considered in this study 
encompassed the circulating concentrations of metab-
olites and of FA, respectively. To reduce the dimension 
and facilitate correlation analyses with gene expres-
sion networks, these datasets were each summarized 
by Principal Component Analysis (PCA) using the 
R packages FactoMineR and factoextra [19, 20]. This 
would avoid bias when considering hundreds meta-
bolic variables with only few modules of highly corre-
lated genes. A PCA was used to summarize the profile 
in metabolites identified after 1H-NMR analysis (94 
variables) and another PCA was used for circulating 
concentrations of FA (14 variables). From each table 
kept separately (one for 1H-NMR analysis and one 
for FA), PCA transforms the original (mean-centered) 
observations to a new set of variables (dimensions) 
using the eigenvectors and eigenvalues calculated 
from a covariance matrix of the original variables. The 
first components of the PCA were called Dimi_Metab 
for the metabolomic 1H-NMR table and Dimi_FA 
for the FA table, respectively, with i = 1 to 5. These 
dimensions were linear combinations of the original 
variables.

To connect information at the two omics levels, the 
dimensions of each PCA were then correlated to the 
eigengenes of the WGCNA modules (ME) by using Pear-
son correlations. The correlations were represented by 
heatmaps to facilitate the description.

Results
Data obtained in a total of 47 growing pigs with inter-
individual differences in FCR (i.e., the measure of FE on 
farms) due to genetic selection for RFI and to the diet 
received during a test period of 58 days, were considered 
in the present study. In addition to FCR, the average daily 
gain (ADG) and average daily feed intake (ADFI) (i.e., the 
two components of FCR), and body composition esti-
mated by percentage (relative to carcass weight) of back-
fat (%backfat) and of the loin cut (%loin) were also 
obtained (Supplementary Table 1).

Definition of gene co‑expression network in the whole 
blood of pigs
A network was built with the WGCNA package from the 
expression levels of 16, 190 molecular probes expressed 
in the whole blood, where nodes correspond to the 
expression profile of the molecular probes, and edges are 
determined by the pairwise correlations between probes 
expression (the adjacency matrix is available at https://​
data-​access.​cesgo.​org/​index.​php/s/​YPz0J​2ItxI​EuN5M). 
This network was then analysed to find modules defined 
as groups of co-expressed probes that may represent the 
molecular architecture behind the animal phenotypic 
traits.

After excluding the grey module which is used to 
hold all the probes that do not clearly belong to any 
other modules, we show that the co-expression network 
was composed of 33 modules composed of 27 to 3, 829 
molecular probes (Supplementary Table 3). Annotations 
were used when applicable to identify the correspond-
ing genes. The distribution in the number of probes and 
their corresponding unique genes per module is shown 
in Fig. 1.

The module eigengene (ME) was then calculated as 
the representative of expression profiles of the genes in 
the module. The module membership (MM) was cal-
culated by correlating ME and the expression profile of 
the probes within each module. By definition, the closer 
to 1 or −1 is MM, the higher is the gene connected to 
ME. The medians of the MM values indicated a satisfac-
tory clustering from the whole network of the molecular 
probes expressed in the whole blood of the 47 pigs. The 
values are available in Supplementary Table 3.

(See figure on next page.)
Fig. 1  Heatmap of correlations between module eigengenes and animal phenotypic traits. Module eigengene (ME) was the representative 
of gene expression profile in the module of co-expressed molecular probes elicited from the weighted gene correlated network analysis (WGCNA) 
from microarray data in the whole blood of 47 growing pigs. Animal phenotypic traits were recorded during a test period of 58 days. The heatmap 
indicates the Pearson correlation coefficient between ME and the phenotypic trait together with the statistical significance (Pvalue). Abbreviations: 
ADG = average daily gain; ADFI = average daily feed intake; FCR = feed conversion ratio; %loin = percentage of loin weight relative to carcass 
weight; %backfat = percentage of dorsal subcutaneous fat tissue weight relative to carcass weight; ME = module eigengene

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
https://data-access.cesgo.org/index.php/s/YPz0J2ItxIEuN5M
https://data-access.cesgo.org/index.php/s/YPz0J2ItxIEuN5M
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Fig. 1  (See legend on previous page.)
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Relationships between modules of co‑expressed genes 
and animal phenotypic traits
The heatmap of the correlation coefficients between the 
module eigengene (ME) of each WGCNA module and 
the animal phenotypic traits is presented in Fig.  1. For 
six modules, the ME was significantly correlated (P-
value ≤ 0.05 ) with FCR: they were the modules vio-
let (probes: 32, unique genes: 16, P-value = 8e − 04 ), 
darkred (probes: 82, unique genes: 53, P-
value = 2e − 04 ), royalblue (probes: 111, unique 
genes: 81, P-value = 0.04 ), lightcyan (probes: 180, 
unique genes: 114, P-value = 0.008 ), white (probes: 59, 
unique genes: 28, P-value = 0.04 ), and darkorange 
(probes: 60, unique genes: 21, P-value = 0.05 ). For two 
other modules, ME tended (P-value < 0.1 ) to be cor-
related with FCR: they were the modules darkolive-
green (probes: 27, unique genes: 13, P-value = 0.08 ) 
and steelblue (probes: 45, unique genes: 23, P-
value = 0.09).

For the modules violet, darkred, royalblue, 
lightcyan, and white, the correlations between ME 
and ADG were also significant, and for the module dar-
korange, there was a trend for correlation between ME 
and ADG. As expected, the signs of correlation between 
ME and ADG and between ME and FCR (which is the 
ratio between ADFI and ADG during the test period), 
were opposite. For the modules darkolivegreen and 
steelblue, the correlation coefficients between ME 
and ADG did not reach statistical significance.

Four of the eight modules associated with FCR also 
displayed significant correlations with %loin (with 
opposite signs of correlation): the modules violet, 
darkred, lightcyan and white. For these modules, 

there was no significant correlation between ME and 
%backfat.

Finally, none of the eight modules associated with FCR 
were significantly related to ADFI. In the whole net-
work, only the darkgreen module (probes: 82, unique 
genes: 43, P-value = 8e − 04 ) was highly correlated with 
ADFI; it was also significantly related with %loin (P-
value = 0.004 ) and %backfat (P-value = 2e − 04 ). The 
saddlebrown module (probes: 46, unique genes: 12) 
tended to be correlated with ADFI (P-value = 0.1 ) and 
with %backfat (P-value = 0.1 ). Finally, the eigengenes 
of the modules green (probes: 1, 113, unique genes: 412, 
P-value = 0.07 ), brown (probes: 1,  441, unique genes: 
773, P-value = 0.02 ) and skyblue (probes: 46, unique 
genes: 45, P-value = 0.05 ) displayed significant associa-
tions with %loin, but without significant correlations 
with any other animal phenotypic traits.

Close‑vicinity of the different modules of co‑expressed 
genes
To evaluate the connectivity between modules in the net-
work, a hierarchical clustering was performed between 
the eigengenes (ME) of the modules. The resulting den-
drogram is shown in Fig. 2, in which the eight modules 
that were significantly associated or tending to be asso-
ciated with FCR are enlightened. Among these eight 
modules, two clusters were identified. The first cluster 
associated the lightcyan (114 genes), steelblue (23 
genes) and darkolivegreen (13 genes) modules. The 
second cluster associated the darkred (53 genes), vio-
let (16 genes) and royalblue (81 genes) modules. 
The white (28 genes) and the darkorange (21 genes) 
modules were isolated in the dendrogram. In addition, 

Fig. 2  Hierarchical clustering of module eigengenes. The modules that were found highly correlated with feed conversion ratio (FCR) are 
enlightened (*** P ≤ 0.001 , * P ≤ 0.05 , and † 0.05 < P ≤ 0.10)
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the green (411 genes) and brown (772 genes) modules, 
that were significantly associated with %loin, were clus-
tered together (Fig. 2).

Functional enrichment of the modules in biological 
processes
For the eight modules identified as significantly corre-
lated or tending to be correlated with FCR, an enrich-
ment analysis was performed to find the main biological 
processes shared by the co-expressed gene transcripts 
within each module (Table 1). Annotations of the probes 
were first retrieved, and the corresponding gene name 
was associated to each probe when applicable. The 
DAVID tool was used on the gene list uploaded for each 
module.

The lightcyan which was the biggest module cor-
related to FCR (180 probes corresponding to 114 unique 
genes), displayed a large number of different clusters of 
biological processes. On the opposite, for the other seven 
modules considered, there was/were only one to three 
clusters ( E > 1 ) identified among the GO terms in each 
module (Table 1). This indicates a good consistency of the 
biological processes shared by the intra-connected genes 

within each module. The modules violet, royalblue, 
darkorange, lightcyan and darkolivegreen 
showed a predominance of immune, inflammatory and 
defense-related pathways across their constitutive genes. 
The darkorange module also included genes involved 
in the response to organic substance. The darkred 
module was rather oriented towards ribosome biogen-
esis and the process regulating translation. The white 
module was related to circulatory cell development and 
to learning.

The biological processes identified in the other mod-
ules related to feed intake (ADFI) or body composition 
(%loin and %backfat), but not to FCR, were described 
in Table 2.

The module saddlebrown that tended to be cor-
related to ADFI and %backfat was composed of 16 
unique genes participating to the response to stimulus. 
The skyblue module that was significantly correlated to 
muscle mass (%loin), showed a predominance of genes 
related to protein metabolism among its 44 unique con-
stitutive genes (Table 2). The green module was a large 
module of 411 unique genes related to various processes 
such as epigenetics processes (chromatin organization, 

Table 1  Functional enrichment in biological pathways for molecular modules related to FCR 

The DAVID tool was used to identify the top enriched pathways across the list of unique annotated genes within each module. The gene ontology (GO) terms for 
biological processes are indicated together with enrichment score (E) of the process and Fisher P value

Module probes unique genes match ID 
DAVID

GO_terms

darkolivegreen 27 13 9 GO:0006954 inflammatory response E = 15.6 P < 0.05

darkorange 60 21 15 GO:0010033 response to organic substance E = 4.4 P < 0.001,

GO:0002376 immune system process E = 2.9 P < 0.05

darkred 82 53 44 GO:0042273 ribosomal large subunit biogenesis E = 18.8 P < 0.01,

GO:0002181 cytoplasmic translation E = 16.5 P < 0.01

lightcyan 180 114 96 GO:0007166 cell surface receptor signaling pathway E = 2.3 P < 0.001,

GO:0032502 developmental process E = 1.5 P < 0.001,

GO:0006955 immune response E = 2.74 P < 0.001,

GO:0006909 phagocytosis E = 4.5 P < 0.01,

GO:0042113 B cell activation E = 9.8 P < 0.001,

GO:0070887 cellular response to chemical stimulus E = 1.7 P < 0.01,

GO:0045088 regulation of innate immune response E = 3.4 P < 0.05,

GO:0050727 regulation of inflammatory response E = 3.1 P < 0.05

royalblue 111 81 71 GO:0050852 T cell receptor signaling pathway E = 21.1 P < 0.001,

GO:0030155 regulation of cell adhesion E = 5.6 P < 0.001,

GO:0048869 cellular developmental process E = 2.0 P < 0.001

steelblue 45 23 10 GO:0008104 protein localization E = 3.9 P < 0.05

violet 32 16 12 GO 0045087 innate immune response E = 9.4 P < 0.001,

GO:0016567 protein ubiquitination E = 7.5 P < 0.05,

GO:0006952 defense response E = 6.0 P < 0.001

white 59 28 23 GO:0072359 circulatory system development E = 4.4 P < 0.01,

GO:0007612 learning E = 16.9 P < 0.01,

GO:0030036 actin cytoskeleton organization E = 5.0 P < 0.05
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histone methylation), to cellular responses to compounds 
(nitrogen, organic cyclic) for stress and defense, and to 
circadian regulation. The brown was also a big module of 
772 unique genes that regulated cell differentiation, pro-
tein and lipid processes, and signaling pathways.

Hierarchy of expressed genes in the modules related 
to feed efficiency traits
To determine which expressed genes accounted the most 
in the correlations between the module eigengene (ME) 

and FCR, we calculated the Gene Significance (GS) in 
each module, and expressed the GS as a function of FCR. 
The top genes are listed in Table  3 and the all data are 
provided in Supplementary Table 3.

For the white module, IGDCC3, TMEM14C, HRH1, 
HTR7 and AFF1 were notably found as top genes. For the 
violet module, SLPI, P2RY1, MUCA, MED8, HSPA1B 
and HSP70.2 were the most important genes triggering 
the correlation of the module with FCR. For the royal-
blue module, POFUT1, LPAR3, CCR7, PTTG1, STRN, 

Table 2  Functional enrichment of molecular modules correlated with feed intake or body composition, but not to FCR 

The DAVID tool was used to identify the top enriched pathways across the list of unique annotated genes within each module. The gene ontology (GO) terms for 
biological processes are indicated together with enrichment score (E) of the process and Fisher P value

Module probes unique genes match 
ID 
DAVID

GO_terms

brown 1,441 772 623 GO:0009966 regulation of signal transduction E = 1.4 P < 0.001,

GO:0050790 regulation of catalytic activity E = 1.4 P < 0.001,

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway E = 1.9 P < 0.001,

GO:0036211 protein modification process E = 1.3 P < 0.001,

GO:0042886 amide transport E = 1.4 P < 0.001,

GO:0007167 enzyme linked receptor protein signaling pathway E = 1.7 P < 0.001,

GO:0031400 negative regulation of protein modification process E = 1.9 P < 0.001,

GO:0042692 muscle cell differentiation E = 1.8 P < 0.01,

GO:0071363 cellular response to growth factor stimulus E = 1.9 P < 0.001,

GO:0031331 positive regulation of cellular catabolic process E = 1.7 P < 0.05,

GO:0008654 phospholipid biosynthetic process E = 2.5 P < 0.01,

GO:1903320 regulation of protein modification by small protein conjugation or removal 
E = 2.2 P < 0.01,

GO:0045595 regulation of cell differentiation E = 1.4P < 0.01,

GO:0034284 response to monosaccharide E = 2.1 P < 0.01

darkgreen 82 42 33 GO:0009636 response to toxic substance E = 9.9 P < 0.01,

GO:0032496 response to lipopolysaccharide E = 7.9 P < 0.01,

GO:0051128 regulation of cellular component organization E = 2.2P < 0.05,

GO:0042063 gliogenesis E = 8.9 P < 0.01

green 1,113 411 356 GO:0006325 chromatin organization E = 2.0 P < 0.001,

GO:0009891 positive regulation of biosynthetic process E = 1.7 P < 0.001,

GO:0034968 histone lysine methylation E = 5.3 P < 0.001,

GO:0033555 multicellular organismal response to stress E = 4.8 P < 0.01,

GO:1901699 cellular response to nitrogen compound E = 2.1 P < 0.001,

GO:0032922 circadian regulation of gene expression E = 5.7 P < 0.01,

GO:0006622 protein targeting to lysosome E = 9.37P < 0.001,

GO:0016050 vesicle organization E = 2.4P < 0.001,

GO:0071407 cellular response to organic cyclic compound E = 2.0 P < 0.01,

GO:0016071 mRNA metabolic process E = 2.0 P < 0.001,

GO:0009611 response to wounding E = 2.1P < 0.01

saddlebrown 46 16 13 GO:0006357 regulation of transcription E = 3.72 P < 0.01,

GO:0009628 response to abiotic stimulus E = 9.6P < 0.001

skyblue 46 44 36 GO:0006807 nitrogen compound metabolic process E = 1.80 P < 0.001,

GO:0045184 establishment of protein localization E = 2.7 P < 0.01,

GO:0034660 ncRNA metabolic process E = 4.8 P < 0.05
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NPY and PPAR26 were pointed as important in the cor-
relation with FCR. For the darkred module, EIF1B, 
RPL14 and KRTCAP3 were among the top 15 genes. For 
the lightcyan module, ITGAD, DDG, HTRA1, EBF1 
and CBR3 were notably listed. A graphical representa-
tion of the importance of the genes in the modules is also 
provided. For the royalblue (Fig.  3), this shows that 
the probes that were highly correlated to other probes 
were listed in the top list of probes based on their module 
membership (MM).

Metabolic profiles in the whole blood
The second part of the present study addressed the met-
abolic level by considering several variables obtained in 
the circulating blood of the 47 pigs, after non-target anal-
ysis (1H-NMR spectra) of plasma and specific analysis of 
the lipidic fraction (gas chromatography-derived infor-
mation) of plasma.

The relationships between the 94 variables obtained 
from the 1H-NMR spectra were summarized by the first 
five dimensions of a principal component analysis (PCA). 
We showed that the two first dimensions represented 
41.4% and 26.8% of the total variability, respectively. Fig-
ure  4 shows the corresponding correlation circle. The 
first dimension of this PCA mainly opposed lactate to the 
majority of the identified amino acids (lysine, tyrosine, 
valine, phenylalanine, methionine, leucine, isoleucine, 
glutamine-glutamate) and to high density lipoproteins 
(HDL). The second dimension mainly opposed glucose, 
eventually combined with other molecules, to circulat-
ing lipoproteins (very low density lipoproteins VLDL, 

low density lipoprotein LDL, and lipids) and to threo-
nine. The third, fourth and fifth dimensions represented 
respectively 7.9% , 6.0% and 3.8% of the total variability. 
The third dimension mainly opposed circulating con-
centrations of glutamine (Gln), glutamate (Glu) and pro-
line (Pro) on one hand, and beta-hydroxybutyrate on the 
other hand. The fifth dimension opposed circulating con-
centrations of betaine (bet) and trimethylamine N-oxide 
(TMAO; i.e., a metabolite produced by the liver and 
associated with microbiote metabolism), to VLDL and 
inositol concentrations. Correlation circles for the third, 
fourth and fifth are available in Supplementary Figs.  1 
and 2.

Considering specifically the lipid fraction of the 
plasma, we analyzed the fatty acids (FA) composition by 
target methodology. From the 30 FA (10 to 22 carbon 
chains) that can be analyzed, some of them were present 
in negligible concentrations in the plasma or even can-
not be detected from the background in some pigs (e.g.; 
C10:0, C12:0, C18:4 n-3). Therefore, parts of the FA were 
grouped in biologically relevant families (saturated FA 
with 14 carbons or less, n-6 FA family; n-3 FA family). 
This led to a total of 14 variables representing single FA 
or groups of FA. They were then represented by a second 
PCA to summarize the profiles in circulating FA among 
the 47 pigs. Figure 5 shows the corresponding correlation 
circle. The first dimension represented 42.5% of the total 
variability and opposed omega-6 (n-6) family of FA and 
to a lesser extent omega-3 (n-3) FA, to saturated family of 
FA. The second dimension represented 13.5% of the total 
variability and opposed C15:0 to C20:0 FA. The third, 

Table 3  Top genes in the molecular modules related to FCR

The unique genes corresponding to the annotated probes were listed in each module according to their GS.FCR value. In the table, only genes with a value greater 
than 0.3 for GS.FCR are indicated. The GS.FCR is the correlation between Gene Significance (GS) of the module eigengene and FCR

darkolivegreen darkorange darkred lightcyan royalblue steelblue violet white

PTGER3 BMP6 SLCO2B1 ITGAD POFUT1 UQCC2 SLPI IGDCC3

TUBB6 PADI2 E4 DDC LPAR3 P2RY1 TMEM14C

SLA-DRB1 DNAJB9 CCR3 HTRA1 CCR7 MUC4 KIAA0247

WBSCR27 SLC46A2 EBF1 PTTG1 MED8 HRH1

TAOK3 EIF1B CBR3 NIPSNAP3B HSPA1B HTR7

SERHL2 ZFAND6 MYBL1 EPHB6 TR10D AFF1

CD300C C4BPB SLC4A11 HSP70.2 ZUFSP

FAM102A KIAA0556 STRN LDB3

RPL14 MS4A1 ZCCHC10 PROX1

WWP1 SLA-DOA FMNL3 ACVR2B

KRTCAP3 HMG20A SKAP1 DGKA

POLB CYAC3 NPY LUM

PIGL RALGPS2 PPP1R26 TBC1D19

TMEM52B ELL3 IZUMO4

PLA2G12A PIKFYVE NIPSNAP3A
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fourth and fifth dimension represented respectively 8.0% , 
7.5% and 7.1% of the total variability. The third dimension 
opposed C20:1 to C20:2 FA on one hand and C20:0 FA on 
the other hand, whereas the fourth dimension opposed 
the sum of n-3 FA to C20:1 FA. Correlation circles for 
the third, fourth and fifth are available in Supplementary 
Figs. 3 and 4.

Connecting the two omics levels
We calculated the correlations between the eigengenes 
of the molecular modules (ME) and the profiles in circu-
lating metabolites or fatty acids represented by the dif-
ferent dimensions of each PCA. This allows connecting 
the transcriptome (via the WGCNA modules) and the 
metabolome (via the principal components of the PCA).

The numbers of modules for which ME was correlated 
with at least one of the five dimensions of each PCA are 
presented in Table 4. A heatmap representing the corre-
lation coefficients calculated between ME of all modules 
identified from microarrray data and the first five dimen-
sions of the PCA, is available in Supplementary Figs.  5 
and 6.

There were few associations between molecular mod-
ules and metabolic and lipid profiles. A summary is pre-
sented in Fig.  6 considering only the list of modules of 
interconnected genes that have been found to be associ-
ated with the phenotypic traits of interest in the previous 
Definition of gene co-expression network in the whole 
blood of pigs section. There were no significant correla-
tions between the eigengenes of the modules associated 
with FCR and the profiles in circulating metabolites. 
Only the darkorange module tended to be associated 
with the second dimension (dim2_met) which opposed 
circulating concentrations of glucose to circulating con-
centrations of LDL and VLDL lipoproteins. For the other 
animal traits, the darkgreen module which was signifi-
cantly associated with ADFI, was highly correlated with 
dim3, which summarized the circulating concentrations 
in some amino acids (Gln, Glu and Pro) and hydroxybu-
tyrate. The saddlebrown module which tended to be 
associated with ADFI and %backfat, was significantly 
correlated to the second dimension (dim2_met), and also 
tended to be associated with the fifth dimension (dim5_
met) which opposed betaine and TMAO circulating 

Fig. 3  Graphical representation of the royalbue module. The network was constructed from the adjacency matrix of the royalblue module 
using Cytoscape. The nodes are the molecular probes, labeled with their annotation and connected by purple edges that represent the correlation 
coefficients greater than the 95th percentile and by green edges, for probes that were not sufficiently correlated to other probes, to the annotated 
probe to which they were the most correlated. The size of the nodes is a function of their degree
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concentrations to inositol concentration. Interestingly, 
more correlations were generally observed between 
dimi_met and modules related to %loin: the dark-
green module was highly correlated with dim3_met, 
and the brown module was correlated with dim3, and to 
a lesser extent with dim1_met, dim4_met and dim5_met.

Regarding plasma concentrations of FAs, we observed 
that the module eigengene (ME) of the royalblue 

module, that was negatively correlated with FCR and 
positively correlated with ADG, was highly positively 
correlated to the first dimension (dim1_FA) of the 
PCA. The darkorange module that was also nega-
tively correlated with FCR, tended to be correlated 
with the fourth dimension (dim4_FA). The ME of the 
green also tended to be positively correlated with the 
first dimension (dim1_FA), whereas ME of the darko-
livegreen tended to be negatively correlated.

Fig. 4  Correlation circle of the principal component analysis summarizing the profiles of circulating metabolites. 1H-NMR spectra were 
obtained in the plasma prepared from the whole blood of 47 growing pigs. The matrix of correlations was calculated from 94 individual variables 
corresponding to the different annotated spectra
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Discussion

Analyzing inter‑individual variability in feed effi‑
ciency  In animal and plant breeding, there has been 
an increasing interest in intermediate omics traits such 
as metabolomics and transcriptomics that mediate the 
effect of genetics on the phenotype of interest [21]. This 
study confirms that analyzing transcriptome in the whole 
blood and metabolome in plasma of growing pigs enables 

to depict the biological molecular pathways involved in 
various phenotypic traits related to feed efficiency (FE), 
namely feed conversion ratio (FCR) (i.e., the on-farm 
measure of feed efficiency) and average daily gain (ADG) 
(i.e., one of the component of FCR describing growth rate 
during the test period), and to a lesser extent, body com-
position (%loin, %backfat). This study is a step ahead 
for the understanding of the relationships between enti-
ties that can act in the inter-individual variability in these 

Fig. 5  Correlation circle of the principal component analysis summarizing fatty acid composition in blood. The fatty acid composition (in 
percentage) was obtained in the plasma prepared from the whole blood of 47 growing pigs by using gas chromatography. Some of the individual 
FA were grouped in biologically relevant families (saturated FA with 14 carbons or less, omega-6 sum of n− 6 and omega-3 sum of n− 3 ), whereas 
the other fatty acids were kept as these
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traits. Indeed, previous studies have rather addressed dif-
ferentially-expressed (DE) genes [7, 8], gene set enriched 
pathways [22] or metabolic signatures [5, 14, 23] between 
the lowest and the highest FE animals in pigs, cattle or 
sheep. They have thus compared a gene or a molecule 
with itself in different conditions such as the response 
to selection for RFI (a measure of net feed efficiency) 

or extreme groups based on RFI or FCR. This does not 
enlighten and explain the interactions between enti-
ties in the architecture of the traits, and the behavior of 
regulatory genes acting in complex traits [24]. Moreover, 
the aforementioned studies often analyzed only a single 
type of omics data. Even when they included serum bio-
chemistry in addition to transcriptomics [25] to illustrate 

Table 4  Relationships between transcriptomic and metabolomic levels

Modules of co-expressed genes were identified from microarray data in the whole blood by using weighted gene correlation network analysis (WGCNA). Circulating 
biochemical molecules in the plasma were analysed by 1H-NMR (metabolites; met) or target gas chromatography for the lipid fraction subset (FA) and the data were 
summarized by weighted linear regressions (dim) using principal component analysis (PCA). Correlations were calculated between the module eigengenes (ME) and 
the first five dimensions of each PCA. The table indicates the number of significant correlations or trends between modules of coexpressed genes and PCA dimensions

Dimensions of the principal component analysis of the metabolic 
level in blood

Dimensions of the principal component analysis of the 
fatty acids in blood

Modules Dim1_met Dim2_met Dim3_met Dim4_met Dim5_met Dim1_FA Dim2_FA Dim3_FA Dim4_FA Dim5_FA

Significantly corre-
lated ( Pvalue ≤ 0.05)

1 2 8 0 11 2 1 1 1 1

Trend ( Pvalue ≤ 0.1) 3 5 6 7 6 4 0 3 3 0

Fig. 6  Heatmap of correlations between molecular modules and profiles of circulating molecules. Modules of co-expressed probes were obtained 
from a weighted gene correlation network analysis (WGCNA) from microarray data in the whole blood of 47 growing pigs. The eigengene of each 
module (ME) was considered as a mathematical representative of the expression levels of the molecular probes within the module. Circulating 
biochemical molecules were analyzed and the data were summarized by weighted linear correlation using principal component analysis (PCA). 
The first two dimensions of the PCA were called dim1_met and dim2_met for the metabolites obtained by 1H-NMR high throughput method 
and dim1_FA and dim2_FA for the fatty acids analyzed by target gas chromatography, respectively
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consequences of variations in gene expression profiles, 
they did not intent to depict the correlations between 
the two levels of life organization (i.e., gene expression 
profiles and metabolites). The present study used net-
works approaches to reveal the main biological processes 
that are associated with the inter-individual differences 
in animal traits related to FE. Networks approaches are 
based on the assumption that the effect of the change 
in the expression level of one entity can be propagated 
through the interactions on other entities to orchestrate 
complex phenotypes [26]. We identified a total of 33 sub-
networks (modules) of co-expressed genes in the whole 
blood across 47 pigs. The network was built with a low 
threshold set for the minimum number of co-expressed 
entities in the modules, with the assumption that this 
may facilitate not only the identification of co-expressed 
but also of co-regulated genes. Finding one to three clus-
ters of enriched biological processes for the majority of 
the molecular modules argues for the homogeneity in 
biological processes shared by the co-expressed genes 
participating to each module. Furthermore, modules in 
close-vicinity in the dendrogram (hierarchical cluster-
ing), such as the darkolivegreen, lightcyan and 
steelblue modules or the royalblue, darkred 
and violet modules, respectively, did not share iden-
tical GO terms. This argues for keeping these modules 
separated rather than merging them. Altogether, the pro-
cedure used for network building in this study was then 
adequate for the identification of co-regulated entities in 
the different modules.

Enriched pathways in co‑expressed genes modules related 
to variability in feed efficiency  From the 33 modules 
identified in the whole genes network across the 47 pigs, 
six modules were significantly associated with FCR and 
two modules tended to be related to FCR. In the whole 
blood of young pigs, another study [8] has previously 
identified four co-expression modules (minimum of 30 
genes per module as threshold, leading to 89 to 786 genes 
per modules) in the low or high RFI groups, and indi-
cated that DE genes overlapped with each of the four dif-
ferentially expressed modules; however, they found only 
one module that was significantly correlated to the RFI 
phenotype. Moreover, 34 modules of co-expressed genes 
were identified [24] from RNA-seq analysis in the liver 
of low vs high RFI cattle (using a threshold of 30 genes 
as the minimum in each module), out of which four 
modules showed significant correlations to RFI. Impor-
tantly, the majority of the modules related to FCR in the 
present study were also related to ADG and to %loin, 
whereas none of them were significantly associated with 
individual feed intake (ADFI). This suggests that the 
main molecular entities in the whole blood explaining 

the inter-individual variations in FE were involved in 
the determinism of lean growth potential rather than 
acting in the regulation of feeding behaviour. The pigs 
used in this study originated from a divergent selection 
for RFI and fed different diets during the test period. 
Because ADG is an independent variable in the regres-
sion that estimates predicted feed intake, RFI and ADG 
have no correlation. The situation is however quite differ-
ent for FCR, since ADG is part of the ratio in the calcula-
tion. Although Gilbert and colleagues [2] indicated low 
responses (although statistically significant) to RFI selec-
tion on lean meat content across generations of pigs, sev-
eral studies have consistently found a higher proportion 
of lean pieces in the most feed efficient pigs as induced 
by genetic selection [27, 28] or by management strate-
gies [29]. Skeletal muscle is the largest organ in the body 
and plays important roles in the utilisation and storage 
of a large proportion of the energy from feed. This likely 
explains why the molecular modules related to FCR were 
also partly associated with %loin.

To depict the biological functions of the modules identi-
fied in the current study, a functional enrichment analy-
sis was performed within the modules separately. Five 
of the aforementioned eight modules related to FCR, 
the violet, lightcyan, darkorange, royalblue 
and darkolivegreen, were significantly enriched 
in immune and defense-related processes. In the whole 
blood, immunity and stress response have been previ-
ously identified as biological pathways shared by DE 
genes between low and high efficient pigs [8]; however, 
correlation analysis to RFI phenotype rather suggested 
the importance of a module of co-expressed genes par-
ticipating to cell adhesion, apoptotic process and immu-
noglobulin production. In the present study, the impor-
tance of immunity and defense-related pathways in the 
architecture of FCR trait may be over-estimated, since we 
considered the blood where these processes are specifi-
cally enriched. However, previous studies on DE genes in 
pigs have also reported differences in expression levels 
of genes involved in defense pathways when examined 
in different tissues (liver, skeletal muscle, adipose tissue) 
between divergent lines for RFI [28]. In cattle, [25] also 
found an enrichment of the transcriptomic networks in 
the inflammatory response, regulation of monocyte dif-
ferentiation, proliferation and differentiation of T lym-
phocytes in the liver from animals with low or high RFI. 
Since the whole blood reflects the concerted actions of 
the different tissues, these data support the current find-
ings that immunity and defense-related pathways are 
important in the determination of feed efficiency. Finally, 
the recent identification of variations in expression of 
genes associated with the immune system in milk from 
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low vs high FE dairy sheep [30] , further argues for the 
informative potential of immune and defense pathways to 
depict feed efficiency phenotypes of farm animals when 
analyzed in various biological fluids. Defense mecha-
nisms trigger the use of nutrients for basal metabolism 
rather than for production performance. This likely 
explain the importance of defense mechanisms in the 
determination of feed efficiency, through regulations of 
ADG and %loin. In support, [31] shows that high RFI 
piglets (the less efficient animals) had greater resting 
energy expenditure and respiratory quotient than low 
RFI piglets (the most efficient). Among defense mecha-
nisms, we suggested that T cell signaling (royalblue) 
was negatively related to FCR, whereas B cell activation 
(lightcyan) and inflammation (darkolivegreen) 
were positively associated to FCR. This association is 
likely due to the fact that inflammatory stimulation was 
associated with a re-orientation of nutrients and altera-
tion of metabolism [31] in growing pigs, thus deteriorat-
ing feed efficiency of the animals.

In the present study, other biological processes were 
also enlightened as important contributors to the inter-
individual variability of FCR. Indeed, three modules were 
composed of co-expressed genes involved in translation 
(darkred), protein localization (steelblue) or circu-
latory system development and learning (white). In the 
whole blood of cattle, a set of genes associated with the 
metabolism of proteins was also identified as the most 
enriched pathway of genes differentially inhibited or 
activated in high-RFI when compared to low-RFI beefs 
[22]. These pathways could more specifically account for 
the regulation of lean growth rate, because significant 
correlations with ADG and %loin were also identified. 
Finding nitrogen metabolic process (skyblue), protein 
modification and muscle cell differentiation (brown) as 
enriched processes in modules related to %loin further 
support the assumption that whole blood can encompass 
molecular mechanisms involved in muscle development 
and metabolism. Finally, two modules, the darkgreen 
and saddlebrown, were or tended to be related to both 
ADFI and %backfat, a surrogate of body adiposity. The 
darkgreen module encompassed genes involved in 
the response to toxic substances. In accordance, there is 
generally a marked reduction in voluntary feed intake in 
disease-challenged pigs [32].

Important genes in molecular networks related to feed 
efficiency  The main objective of the current study was 
to enlighten interaction networks related to feed effi-
ciency, rather than focusing on single genes. However, 
when looking at the hierarchy of the genes in the molecu-
lar modules found as underlying FCR, we pointed RPL14 

in the darkred module. This gene has been previously 
suggested by bioinformatics as a hub node gene in regu-
latory networks [33]. This is an important point to argue 
for the biological relevance of gene network architecture 
built herein. Moreover, some of the genes contribut-
ing the most to the association between transcriptomics 
level and animal trait as ranked according to (GS.FCR) 
values in each module, have been previously identi-
fied as genes with fold changes in their expression level 
greater than |2| between groups of low and high (RFI) 
pigs [7]. There were SLPI (violet module), EIF1B 
(darkred module) and HTRA1 (ligthcyan module). 
As expected, these genes are participating to different 
biological processes listed as specifically enriched in their 
parent modules, such as immune response by protect-
ing epithelial surfaces (SLPI), regulation of cell growth 
(HTRA1) and translational initiation (EIF1B). Of note, 
HTRA1 encodes a secreted enzyme that may regulate the 
availability of insulin-like growth factors (IGFs), and cor-
related responses of IGF-I to RFI have been observed in 
pigs [34]. Altogether, these genes are likely biologically 
important in the variability of FCR.

The royalblue module is of upmost interest since it 
was associated with FCR and with profiles of circulating 
fatty acids (see next section). Therefore, the molecular 
functions of its top-ranked genes deserve deeper inves-
tigations in the Human Gene Database. The LPAR3 
(Lysophosphatidic Acid Receptor 3) and CCR7 (C-C 
Motif Chemokine Receptor 7) genes are members of 
the G protein-coupled receptor family (GPCR). Espe-
cially, the protein encoded by CCR7 is known to activate 
B and T lymphocytes and to control the polarization of 
T cells in chronic inflammation. Another gene involved 
in T-cell signaling was SKAP1 (Src Kinase Associated 
Phosphoprotein 1) that is required for an optimal con-
jugation between T cells and antigen-presenting cells. 
Although EPHB6 (EPH Receptor B6) codes for a pro-
tein that mainly influences cell adhesion and migration 
and regulates cell developmental process rather than 
immunity, one of its related pathways is GPCR signaling. 
Interestingly, the GPCR pathway has been also identi-
fied as a putative candidate for RFI difference in pigs by 
genome-wide association studies [35]. Another member 
of the royalblue module is NPY, a gene coding for 
the neuropeptide Y that influences many physiological 
processes including stress response, food intake, energy 
balance and circadian rhythms. In accordance, hypotha-
lamic genes expression including NPY plays a potential 
role in feed efficiency variation in different farm species 
[36]. The neuropeptide Y also functions through GPRC. 
Finally, among the top genes in the white module, 
HTR7 encodes the serotonin receptor which belongs to 
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the GPCR family and is regulating several behaviours of 
animals.

Relationships between transcriptomic and meta‑
bolic levels in the definition of feed efficiency or related 
traits  Combined phenotype-metabolome-genome 
analysis by inferring gene networks based on partial cor-
relation and information theory approaches has been val-
uable to confirm cellular maintenance processes as major 
contributors to genetic variability in bovine feed effi-
ciency [37]. Therefore, the present study also addressed 
the interactions between two levels of organization in the 
circulating entities, i.e., transcriptome and metabolome, 
and their relations to productive traits in the pigs. Varia-
tions at the metabolic level were first summarized by lin-
early transforming the data into few new coordinates that 
explained most of the total variance, thanks to principal 
component analysis (PCA). Correlating the PCA coordi-
nates to the eigengenes of the 33 modules allows to deter-
mine whether pigs with the same profiles in circulating 
fatty acids (FA) and lipoproteins, amino acids (AA) or 
energy-related metabolites (glucose, lactate, betaine, etc.) 
shared similarities in groups of co-expressed genes. How-
ever, few significant correlations were identified between 
the two organization levels. The eigengene of the roy-
alblue module was highly correlated to the PCA coor-
dinate that associated circulating concentrations in satu-
rated FA and in polyunsaturated FA (omega-6 FA, and to 
a lesser extent, omega-3 FA families). In other words, the 
greater expression levels of genes involved in T signal-
ing, cell adhesion and cell developmental process in the 
whole blood, were associated with a higher proportion of 
saturated FA and a lower proportion of PUFAs in plasma, 
and altogether, these changes accounted for a better feed 
efficiency (lower FCR) and higher ADG). An important 
regulatory element underlying this association might be 
the expression level of LPAR3, a gene that is involved 
in phospholipid binding. Similarly, the eigengene of 
the darkorange module which was composed of co-
expressed genes related to immune process, tended to be 
correlated with the circulating concentrations of omega-3 
FA, and these processes simultaneously accounted to 
FCR. Among the top-ranked genes in this module, BMP6 
encodes a secreted ligand of the transforming growth 
factor (TGF-beta) superfamily of proteins that regulate 
a wide range of biological processes including fat cell 
development, and TAOK3 encodes a serine/threonine 
protein kinase that activates the p38/MAPK14 stress-
activated MAPK cascade, a pathway regulating also adi-
pose cell development and metabolism. Thus, whereas 
the gene network approach did not identify any enriched 
pathways related to lipid metabolism in the whole blood 
transcriptome, the combination between transcriptomics 

and metabolic data suggests that fatty acid metabolism in 
different tissues can be related to FCR and further influ-
enced/be influenced by interconnected molecular path-
ways of genes related to immunity. In support, muscle 
of high-FE pigs exhibited lower proportion of saturated 
FA and an enhanced proportion of polyunsaturated FA 
when compared with low-FE pigs [27], and co-expression 
analysis in the liver has revealed altered lipid metabolism 
between high and low feed efficient steers [25]. Relation-
ships between FA metabolism and immunity have been 
also described in the literature, showing that omega-3 
(n-3) PUFA can suppress T cell antigen presentation, 
activation, proliferation and cytokine expression [38]. In 
addition, high fat western diet promotes inflammation 
and modifies immunity [39].

Among significant associations identified between mod-
ules of co-expressed genes in the whole blood and pro-
files in circulating metabolites, the darkgreen module 
composed of genes involved in the responses to lipopol-
ysaccharide (LPS) and toxic substances and related to 
ADFI, was associated with the circulating concentra-
tions of beta-hydroxybutyrate and of Pro, Glu and Gln 
amino acids. Beta-hydroxybutyrate is a ketone body 
whose concentration is rising up after fasting and in situ-
ation of energy deficit, illustrating its dependence to the 
regulation of feed intake. Sensing of AA can also act on 
the hypothalamic control of food intake [40]. Networks 
of co-expressed genes related to %loin (such as brown 
and green) also displayed significant correlations with 
the metabolome profile, which suggests strong relation-
ships between AA metabolism and the molecular regu-
lation of muscle growth in the pigs. In support, protein 
(amino acids) metabolism is essential for optimizing 
efficiency of nutrient absorption and metabolism and 
to enhance growth performance. Relationships between 
transcriptomics and metabolomic data to depict the bio-
logical processes underlying complex production traits 
like FCR, ADG, ADFI, have been identified herein 
by statistical analyses (multivariate-based procedures 
for data concatenation) and then, scrutinized with the 
functional annotation tools DAVID (pathway-based 
integration techniques) and expert knowledge about the 
potential roles of specific entities. However, when tran-
scriptomic and metabolomic data are integrated, there is 
no direct association between metabolite and transcript. 
Although commercially available tools have been devel-
oped to visualize ranked pathways among molecules, 
there are many biases when treating genes and metabo-
lites as equivalent entities [41]. To explore the causality 
within the interconnected entities at the different levels 
of cell organization, it seems necessary to use the graph 
theories. First, the feed efficiency networks identified 
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herein could be compared in their topologies (direct 
interactions, connectivity degree per gene, etc.) with ran-
dom networks [37]. Second, knowledge graphs can be 
generated thanks to web semantic-dedicated queries to 
identify paths composed of chains of relationships. Path 
lengths between entities (pairs of co-expressed genes 
and small molecules), traversed properties (edges) and 
encountered biochemical reactions could be then ana-
lyzed. However, the mapping between different identifi-
ers of genes/metabolites in naming systems is still a prob-
lem to be overhelmed in this process [41].

In conclusion, the inter-individual differences in feed 
conversion ratio (FCR, i.e., the on-farm measure of 
feed efficiency), were inferred to be mainly due to 
variation of co-expressed genes participating to immu-
nity, defense mechanisms, inflammatory response, 
cell developmental process, translation and protein 
localization. These variations induced changes in the 
capacity of amino acids usage and lipid (fatty acids) 
metabolism between pigs. Among the component 
traits of FCR, these processes accounted likely more 
in the variation of growth rate than in the regulation 
of feed intake. However, few genes in the gene net-
works (e.g., NPY) are suggested for their roles in regu-
lating feeding behaviour. Analyzing the gene network 
also allowed to propose integrative regulatory mecha-
nisms such as G protein-coupled receptors (GPCR). 
Relationships were indicated between T cell receptor 
signaling, cell development process and circulating 
concentrations of omega-3 fatty acids in plasma, which 
both underlined inter-individual variability in feed 
efficiency. This suggests that nutritional recommenda-
tions for growing pigs should consider the lipid frac-
tion of diets to improve health and production traits in 
synergy.
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