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Abstract

Motivation: Simulating Multiple Sequence Alignments (MSAs) using probabilistic models of
sequence evolution plays an important role in the evaluation of phylogenetic inference tools, and
is crucial to the development of novel learning-based approaches for phylogenetic reconstruction,
for instance, neural networks. These models and the resulting simulated data need to be as real-
istic as possible to be indicative of the performance of the developed tools on empirical data and
to ensure that neural networks trained on simulations perform well on empirical data. Over the
years, numerous models of evolution have been published with the goal to represent as faithfully
as possible the sequence evolution process and thus simulate empirical-like data. In this study, we
simulated DNA and protein MSAs under increasingly complex models of evolution with and with-
out insertion/deletion (indel) events using a state-of-the-art sequence simulator. We assessed their
realism by quantifying how accurately supervised learning methods are able to predict whether a
given MSA is simulated or empirical.

Results: Our results show that we can distinguish between empirical and simulated MSAs with
high accuracy using two distinct and independently developed classification approaches across all
tested models of sequence evolution. Our findings suggest that the current state-of-the-art models
fail to accurately replicate several aspects of empirical MSAs, including site-wise rates as well as
amino acid and nucleotide composition.

Data and Code Availability: All simulated and empirical MSAs, as well as all analysis re-
sults, are available at https://cme.h-its.org/exelixis/material/simulation_study.tar.gz.
All scripts required to reproduce our results are available at https://github.com/tschuelia/

SimulationStudy and https://github.com/JohannaTrost/seqsharp.

Contact: julia.haag@h-its.org

1 Introduction

Reconstructing the evolutionary history of species or genes by inferring phylogenetic trees is a ubiqui-
tous task in comparative genomics. Typically, phylogenetic inference is based on an MSA that contains
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aligned sequences of the species under study. A plethora of inference algorithms, tools, and models
have been developed to infer phylogenetic trees based on the MSA, for example RAxML-NG [29],
IQ-Tree [34], BEAST [9], or RevBayes [24]. When developing novel methods and validating their per-
formance, comparing them to existing state-of-the-art methods on both, empirical, and simulated data
is mandatory. Simulated data are particularly useful for conducting inference accuracy and implemen-
tation verification assessments, when a known, ground truth phylogeny is needed. Both simulation
tools [33, 17, 12] and state-of-the-art inference methods are based on probabilistic models of sequence
evolution. Most of the latter exploit models through likelihood functions, by searching for trees that
maximize this likelihood [29, 34] or by sampling from posterior distributions via Metropolis-Coupled
Markov Chains (MCMC), which also require likelihood computations [9, 24]. Alternatively, researchers
have started to explore likelihood-free approaches (for examples outside our field, see Lueckmann et al.
[32]). These approaches sample the posterior density instead of evaluating it, and thereby avoid com-
puting the likelihood. The resulting simulated samples are used to build an estimate of the posterior
distribution. This so-called simulation-based inference paradigm was pioneered in population genetics
under the Approximate Bayesian Inference (ABC) framework [14], and extended over the past decade
to neural density estimation techniques [36], where a neural network is trained to output the correct
distribution of parameters for a given input observation. In the context of phylogenetic inference,
neural density estimation has been restricted to the reconstruction of a single tree as opposed to a full
distribution. For example, Suvorov et al. [48] use convolutional neural networks to reconstruct phylo-
genies from alignments with 4 sequences, and Nesterenko et al. [35] use a transformer-based network
architecture to predict evolutionary distances between all pairs of sequences in an alignment.

In all these contexts — evaluation, likelihood-based, or -free inference — it is essential that the
probabilistic model of sequence evolution is consistent with empirical data. For evaluation, performance
on simulated data is indicative of performance on empirical data, only if the two are sufficiently similar.
For inference, a misspecified model can lead to inaccurate and misleading results. For training learning-
based methods, it is important that the training data and empirical data are sufficiently similar to
circumvent “out-of-distribution” problems [13]. Such problems occur when the training data does not
accurately represent the empirical data or when it misses subgroups of the empirical data: the trained
method has never “seen” data similar to the empirical data, and can thus behave poorly.

Authors using simulated data in their publications typically set simulation parameters according
to attributes (e.g., MSA lengths, or proportions of gaps) of empirical reference MSAs (see e.g., Price
et al. [40]). Some also attempt to extract or sample simulation parameters from Maximum Likelihood
estimates in large scale empirical databases, such as TreeBASE [38]. The intention is that thereby,
simulated data will more closely resemble empirical data [1, 23]. Despite this effort, there still exist
performance and/or program behavior differences on simulated versus empirical data. For example,
Guindon et al. [20] conclude that comparing methods using simulated data is not sufficient, as “the
likelihood landscape tends to be smoother than with real data”, and Hoehler et al. [23] noticed dif-
ferences between empirical and simulated data when comparing ML phylogenetic inference methods.
They conclude that there exist not yet understood differences between simulated and empirical data.

Here, we introduce a metric to quantify how realistic a substitution model is, by simulating data
using the respective model and training a classifier to discriminate between simulated and empirical
data. We expect realistic models to produce data that are hard to discriminate and induce low classifier
accuracy. We leverage recent data simulation tools [33, 17, 12] that are feature-rich and support a
wide range of evolutionary models and simulation parameters. We show that we can distinguish
simulated from empirical data with up to 99% classification accuracy, depending on the used simulation
model. We present two different and independently developed machine learning approaches exploiting
distinct MSA characteristics for this classification task: One, using Gradient Boosted Trees (GBT),
and another approach based on a Convolutional Neural Network (CNN). We show that prediction
accuracy decreases, the more complex the model of evolution used in simulations becomes. Yet, we
also observe exceptions to this general trend. For the most complex models in our experimental setup,
the prediction accuracy is still very high, with the CNN based classifier achieving prediction accuracies
≥ 0.93 on all tested models. This indicates that simulated alignments are easy to distinguish from
empirical alignments, as they do not appear to reproduce some characteristic features of empirical
MSAs. We further show that simulating indels remains a challenging task, as including indels results
in higher classification accuracies with the CNN classifiers compared to simulations without indels.
Further, based on the feature importances of the GBT classifiers, we show that simulated data have
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more evenly distributed site substitution patterns than empirical data.

2 Methods

The goal of our study was to be able to distinguish between empirical and simulated DNA and protein
data with high accuracy under increasingly complex models of sequence evolution. Figure 1 depicts
our experimental setup for one exemplary set of empirical MSAs (empirical data collection) and one
exemplary model of evolution. Using the empirical data collection and the given model of evolution,
we simulated a new set of MSAs (simulated data collection) using the AliSim sequence simulator [33].
Based on the empirical and simulated data collections, we completely independently trained two dis-
tinct classifiers for each simulated data collection: a Gradient Boosted Tree (GBT) and a Convolutional
Neural Network (CNN).

In the following sections, we describe our experimental setup, the sequence simulation process, and
both classification methods in more detail.

2.1 Alignment Simulations

For our study, we separately considered DNA and protein data. We simulated 15 MSA sets, seven
sets containing DNA MSAs and eight containing protein MSAs, respectively. In the following, we
refer to an MSA set as a data collection. To simulate the MSAs for each data collection, as well as
for data discrimination, we used two empirical data collections as reference, one per data type. The
empirical DNA data collection contains MSAs obtained from TreeBASE [38]. The empirical protein
data collection consists of MSAs obtained from the HOGENOM database [37]. We removed outliers
based on MSA length (i.e., number of sites), number of sequences, as well as MSAs with less than four
sequences to ensure a reliable and efficient analysis. Very long sequences would inflate the memory
footprint of the CNN, while very short MSAs are uncommon and are more difficult to accurately classify
as empirical or simulated. Removing outliers allowed us to deploy a balanced and representative data
collection that facilitates robust and unbiased predictions.

Moreover, empirical MSAs may contain sites with ambiguous or exceptional amino acid (AA)/DNA
codes, that are ‘B’, ‘Z’, ‘J’, ‘U’, ‘O’ and ‘X’ for protein MSAs, and ‘N’, ‘D’, ‘H’, ‘V’, ‘B’, ‘R’, ‘Y’, ‘K’,
‘M’, ‘S’, ‘W’ and ‘X’ for DNA MSAs. As a further pre-processing step, yet exclusively for the CNN
classifier, we removed all MSA sites containing at least one ambiguous letter, as they would bias the
prediction. For protein data this concerned 912 out of 6969 MSAs, and we removed 1.34% of all sites
within these MSAs. Furthermore, 13.24% of sites in 6117 MSAs with DNA sequences were removed.

For each data type, we generated simulated data collections based on the corresponding empirical
data collection, resulting in identical numbers of simulated and empirical alignments. We simulated
data using the AliSim sequence simulator [33] under several evolutionary models ranging from easy to
complex, in terms of number of free parameters and computational methods used to derive respective
AA substitution models. The goal of this setup was to progressively increase simulation realism.
First, we simulated five DNA and seven protein data collections without gaps, which allowed us to
characterize the realism of substitution models per se. To this end, we removed all sites containing
gaps (‘-’) from all empirical MSAs. The resulting empirical data collections contain 7637 DNA MSAs
and 6971 protein MSAs, respectively. We henceforth refer to these data collections as gapless data
collections. Second, we simulated two DNA and one protein data collection with indel events, based
on the empirical MSAs containing gaps (9460 DNA MSAs and 6971 protein MSAs).

Note that we chose TreeBASE as the source for empirical DNA alignments, as it is a database
of published alignments and thus best represents data that are analyzed in real-world applications of
phylogenetics. TreeBASE contains heterogeneous data without a specific focus on the type of under-
lying genes. See Section 6 in the Supplementary Material for further information on the TreeBASE
data.

In the following, we describe the simulation procedures for both data types, as well as our approach
to simulate indel events, in more detail. Figures S1 and S2 in the Supplementary Material provide a
detailed schematic overview of all simulation procedures.
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Figure 1: Schematic overview of our experimental setup. Based on a set of empirical MSAs (em-
pirical data collection), we determined parameters for sequence simulation and simulated new MSAs
(simulated data collection) under a specific model of evolution using AliSim. Using the empirical and
simulated data collections, we trained two distinct classifiers: a Gradient Boosted Tree (GBT) and
a Convolutional Neural Network (CNN). The goal of both classifiers is to distinguish empirical from
simulated MSAs. For training and evaluating our classifiers, we used a 10-fold cross validation proce-
dure (not depicted for simplicity). In each fold, 90% of the data were used for training and 10% were
used for performance evaluation. We evaluated the overall performance of the classifiers via balanced
accuracy (BACC).

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.07.11.548509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548509
http://creativecommons.org/licenses/by-nc/4.0/


2.1.1 DNA Simulation

We simulated seven DNA data collections in total (5 gapless and 2 with simulated indel events), with
each data collection simulated separately under a different evolutionary model with increasing model
complexity. We used the following models of evolution. As the simplest model, we used the Jukes-
Cantor (JC) model (equal substitution rates and equal base frequencies) [25]. We also used the HKY
model (four degrees of freedom) [22], and the General Time Reversible (GTR) model (eight degrees
of freedom) [49]. To account for among site rate heterogeneity, we additionally simulated under GTR
in conjunction with the Γ model [53] using four discrete rates (GTR+G). The most complex model
of evolution we used for simulation was the GTR+G model, with an additional free parameter to
accommodate the proportion of invariant sites (GTR+G+I) [45].

We selected 9460 empirical MSAs (Set1) from TreeBASE [38, 51] as basis for our simulations. We
removed all sites containing gaps (‘-’) or fully undetermined characters (‘N’) from the MSAs of Set1.
Thereby, we obtained 7637 non-empty MSAs (i.e., MSAs that still contained at least one site), which
we defined as Set2. This lead to an MSA length reduction of around 55% compared to Set1. We based
our five simulated DNA data collections without indel events on Set2, and the two data collections
with indels on Set1.

AliSim simulates sequences along a given phylogenetic tree. We avoided the problem of simulating
realistic phylogenetic trees for this purpose by initially estimating a best-known ML tree using RAxML-
NG [29] (default parameters), for every MSA of Set2 under each of the five evolutionary models (JC,
HKY, GTR, GTR+G, GTR+G+I). We then used the inferred phylogeny and respective estimated
model parameters to simulate MSAs using AliSim [33] based on every MSA of Set2, without specifying
an indel model. In the following analyses, we refer to the resulting five gapless data collections as
JC, HKY, GTR, GTR+G, and GTR+G+I according to the model of evolution used. In Section 2.1.3
below, we describe the simulation of the two additional DNA data collections with indel events.

2.1.2 Protein Simulation

We simulated seven protein data collections limited to substitution events only, and one additional data
collection with indels. The most rudimentary evolutionary model we used is the Poisson model, with
equal exchangeabilities and equal stationary frequencies. We further used two empirical substitution
models: the WAG [52] and the LG [30] model. The LG model is expected to produce more realistic
simulations than the WAG model as the former was derived from a larger and more diverse data
collection, using more refined inference techniques than the latter. These substitution models use a
single set of stationary frequencies (i.e., one AA profile) to simulate all sites in an MSA. We also used
mixture models that incorporate heterogeneity among sites by employing multiple profiles. In such
models, a profile is drawn from a set of profiles to simulate a single site.

We used the following two mixture models: the C60 model with 60 profiles (LG+C60) [46] and
the more recent UDM model with 256 profiles (LG+S256) [42]. The advantage of the latter model
is that each profile is assigned a probability (i.e., weight) of generating a site, while under the C60
model profiles are drawn with equal probabilities. In addition, the UDM model is based on a subset
of MSAs from the HOGENOM database, and should therefore generate alignments that are similar
to empirical HOGENOM MSAs. To increase model complexity, we performed further simulations
accounting for among site heterogeneity using the Γ model [53], as for DNA simulations. We simulated
two data collections, one using four discrete Γ rate categories (LG+S256+G4) and the second applying
a continuous Γ distribution (LG+S256+GC).

We set the α shape parameters of the Γ distributions based on the values inferred during tree
reconstruction when building the HOGENOM database (see Supplementary Material Section 2.1.1).
In the following, we will refer to these parameters as empirical α parameters. For the simulations,
we drew α parameters from the probability density function (PDF) estimate of the empirical α pa-
rameters (see Supplementary Material Section 2.1.2). We compared the ECDF of the empirical α
parameters with the ECDF of 7000 samples from the PDF estimation to confirm that our distribution
of simulated α parameters matches the empirical distribution well (see Supplementary Figure S3). We
sampled the MSA lengths we used for MSA simulations from the approximated empirical distribution
of HOGENOM MSA lengths, using the same approach as for the α parameters outlined above. Re-
spective PDF and ECDF functions can also be found in the Supplementary Material in Figure S3.
In addition, we compared the AA diversity of empirical protein data and simulations under the LG
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and LG+S256 models (see Supplementary Figure S6). We simulated all seven data collections along
phylogenetic trees that were reconstructed from empirical HOGENOM MSAs where sites containing
indels were removed. We performed the inferences using RAxML-NG (see Section 2.1.1).

In analogy to the simulated DNA data collections, we refer to the simulated protein data collections
according to the model of evolution used. The gapless protein data collections are Poisson, WAG, LG,
LG+C60, LG+S256, LG+S256+G4, and LG+S256+GC. In the following section, we describe the
simulation procedure for the data collection with indels.

2.1.3 Simulating Indels

In addition to the gapless data collections, we simulated two DNA, and one protein data collections
with indels. For both data types, we used the most complex models of evolution as a basis (GTR+G+I
for DNA, LG+S256+GC for protein).

To generate the first DNA data collection with indels, we ran tree searches using RAxML-NG under
the GTR+G+I model for each MSA of DNA Set1. We then simulated MSAs with indels using two
distinct procedures to generate two distinct data collections. For the first data collection, we simulated
the MSAs in the same way as for the gapless collections. Then, we superimposed the gap pattern of
the MSAs used as the basis of the simulation onto the simulated MSAs. We refer to this procedure as
the mimick procedure and denote the resulting data collection as GTR+G+I+mimick.

For the second data collection, as well as the protein data collection with indels, we simulated
the MSAs using not only the inferred trees and estimated evolutionary model parameters, but also
specifying indel parameters. In the following, we describe the procedure to infer and validate these
parameters. We performed this procedure for both DNA and protein data collections separately. We
refer to this procedure as the sparta procedure. We first used the SpartaABC tool [31] to obtain indel-
specific parameters from a subset of empirical MSAs. Here, we employed the rich indel model (RIM),
which differentiates between insertion and deletion events using five free parameters. The inferred
parameters are: Insertion and deletion rate (I R, D R), root length (RL), and the parameter a that
controls the Zipfian distribution of insertion and deletion lengths (A I, A D). We will henceforth refer
to this set of parameters as empirical indel parameters.

To simulate MSAs, we drew indel parameters from the joint parameter distribution of empirical
indel parameters. To approximate the probability density function (PDF), we applied Gaussian kernels
to the five principal components of the indel parameters. This choice was based on our observation
that a more accurate match is achieved between the empirical parameters’ empirical cumulative distri-
bution function (ECDF) and the resulting parameters’ ECDF when using the principal components.
For the Gaussian kernels, we determined the bandwidth using Scott’s rule of thumb [43]. Moreover,
we employed the kernel-density estimation implementation by Virtanen et al. [50], although it tends
to overestimate the distribution’s actual edges. To mitigate this issue, we re-sampled values if they fell
outside the bounds of the parameter prior bounds chosen by Loewenthal et al. [31]. To validate our
approach, we compared the ECDF of the empirical parameter values with the ECDF of parameters
sampled from the empirical PDF for each indel parameter type. Plots of the ECDFs and density
functions are provided in the Supplementary Material Figure S4 and Figure S7. Moreover, we com-
pared the density functions of empirical and simulated MSA lengths as a sanity check (see Figure S5
and Figure S8 in the Supplementary Material). We denote the resulting DNA data collection as
GTR+G+I+sparta, and the resulting protein data collection as LG+S256+GC+sparta.

2.2 Classification Methods

To distinguish simulated and empirical MSAs, we developed two distinct approaches. One approach
is a standard machine learning algorithm based on hand-crafted features and Gradient Boosted Trees
(GBT). Using GBTs allows us to attain insights on feature importance, explain the classification
results, and determine short-comings of MSA simulations. Our second approach uses Convolutional
Neural Networks (CNN). In contrast to GBT, CNNs only require minimal data processing as they are
able to automatically learn relevant features through training. However, to interpret these features,
additional analysis is necessary. In the following, we introduce both machine-learning approaches to
classification, and describe our training setups.
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2.3 Training classifiers

In this section, we briefly describe how we trained our classifiers and introduce useful terms for readers
that are unfamiliar with machine learning. Classifiers are functions that, in our case, take as input a
MSA or MSA features and output the label “simulated” or “empirical”. These functions depend on
numerous parameters, whose values must be set during a so-called learning phase. This learning phase
uses MSAs annotated with their ground truth labels. The function is applied to each alignment, and
its predicted label is compared to the true label, thanks to a cost function that is also often called loss
function. Parameter values are then refined based on the computed cost. By iteratively going through
each alignment, the parameter values are tuned, and the accuracy of the classifier typically improves.
When all the training alignments have been examined by the function once, we say that an epoch has
passed. The training is stopped after a number of epochs, typically because the number of iterations
has been limited a priori (e.g., for the GBT classifier), or because classifier accuracy does not improve
further (e.g., for the CNN classifier). To assess the performance of a classifier after the training, it
is important to use data that has not been part of the training data set. For this reason, we split
our alignment collection into two categories: most of the alignments were used for training (training
data, 90% of all MSAs), and a subset was used for evaluating the performance of the classifier (test
data, 10% of all MSAs). We repeated the training and evaluation 10 times, on different random splits
of the data (i.e., 10-fold cross validation), and averaged over the respective 10 performance/accuracy
metrics. We used the balanced accuracy metric (BACC) [11] to assess performance, as this metric
allows for varying proportions of simulated/empirical MSAs in the data collection and better reflects
classification accuracy for imbalanced datasets. The balanced accuracy is the average of the sensitivity
(here, number of alignments labeled empirical

total number of empirical alignments ) and specificity (here, number of alignments labeled simulated
total number of simulated alignments ).

The best BACC value is 1 and the worst value is 0.

2.3.1 Gradient Boosted Trees

Gradient Boosted Trees (GBT) is an ensemble machine learning technique that combines multiple
decision trees to obtain an accurate prediction model [18]. Training a GBT classifier consists of M
sequential stages, with each stage contributing an additional decision tree that improves the estimator
of the previous stage. For our experiments, we used the GBT classifier as implemented in the LightGBM
framework [26].

Prediction Features To classify MSAs into simulated or empirical ones, we computed 23 features for
each MSA. Four of these features are attributes of the MSA: the sites-over-taxa ratio, the patterns-over-
taxa ratio, the patterns-over-sites ratio and the proportion of invariant sites (% invariant). For data
collections simulating indel events, we also used the proportion of gaps as feature (% gaps). Further, we
quantified the signal in the MSA using the difficulty of the respective phylogenetic analysis as predicted
by Pythia [21] (difficulty), as well as the Shannon entropy [44] of the MSA (Entropy), a multinomial
test statistic of the MSA (Bollback multinomial; [8]), and an entropy-like metric based on the number
and frequency of patterns in the MSA (Pattern entropy). For further details on the computation of
these metrics, we refer the interested reader to Supplementary Material Section 4.1. In order to assess
downstream effects on tree inferences using simulated and empirical data, we inferred 100 trees based on
the fast-to-compute maximum parsimony criterion [15, 16] and a single Maximum Likelihood (ML) tree
using RAxML-NG [29]. We added two features based on the inferred 100 maximum parsimony trees:
the average pairwise topological distance using the Robinson-Foulds distance metric (parsimony RF-
Distance) [41], as well as the proportion of unique topologies (% parsimony unique). We further refer
to these features as difficulty features. Based on the ML tree inferred by RAxML-NG, we computed a
set of branch length features, namely the minimum, maximum, average, standard deviation, median,
and sum of all branch lengths in the ML tree (brlenmin, brlenmax, brlenavg, brlenstd, brlenmed, brlensum).

We used the next six features to highlight one of the recurrent problems of simulated sequence
generators: a common simplification used in generators is the assumption that substitutions occur at
uniformly distributed random locations in the sequence, which appears to not be the case in real-world
genetic data [10]. Thus, we expected empirical MSAs to be less uniform than simulated MSAs, and
we henceforth attempted to confirm this hypothesis.

To quantify substitution frequency distributions along an MSA, we first inferred a parsimony tree
using RAxML-NG. Then, based on the parsimony criterion, we calculated the number of substitutions
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Figure 2: Visualized substitution rates for an anecdotal (specifically selected to highlight the issue)
gapless empirical DNA MSA (left), and gapless simulated MSA (right) generated based on the inferred
tree and estimated evolutionary model parameters of the left MSA under the GTR model. The x-axis
denotes the alignment site index. A brighter color denotes a higher number of substitutions.

for every site, resulting in a vector m. Given the vectors m for empirical and simulated MSAs, we
can anecdotally observe that the locations of substitution occurrences appear to be less uniformly
distributed in empirical than in simulated MSAs (see Figure 2, more examples available in Supplement
Material Section 4.3). To the best of our knowledge, there is no panacea in quantifying the absence
of structure in data, and it is part of ongoing research in the field of cryptography. We resorted
to the Fourmilab Random Sequence Tester (FRST) (https://www.fourmilab.ch/random/), that is
used to evaluate pseudo-random number generators, to quantify randomness in m. FRST computes
six measures of randomness: Entropy (Entropyrand), maximum compression size reduction in percent
(comp), Chi-Square test (Chi2), arithmetic mean (meanrand), Monte Carlo Value for Pi (mcpi) (see
Section 4.2 in Supplementary Material), and Serial Correlation Coefficient (SCC) [28]. We executed
FRST with a binary representation of m on all data collections, then we normalized the computed
measures of randomness, and used these values in our predictions. We henceforth refer to this set of
six features as randomness features.

Training and Optimization For each of the simulated data collections presented above, we trained
a distinct binary GBT classifier. We trained each GBT classifier using a stratified 10-fold cross-
validation procedure. Here, stratified means that the proportion of empirical and simulated MSAs
in both training and test subsets was the same. The training data consisted of one simulated data
collection and the empirical data collection for the respective data type. We used the hyperparameter
optimization framework Optuna [4] to determine the optimal set of hyperparameters for each classifier.
For each GBT classifier, we performed 100 Optuna iterations using a Tree-structured Parzen Estimator
algorithm [7] to sample the hyperparameter space. To prevent the classifiers from overfitting the
data, based on preliminary experiments, we limited the depth of the individual decision trees to a
maximum of 10, the maximum number of leaves to 20, and the minimal number of samples per leaf to
30. Additionally, we applied L1 and L2 regularization to prevent overfitting and better generalize to
unseen data [19]. We determined the optimal weights of L1 and L2 regularization independently using
Optuna. L1 regularization sums over all absolute weights in the decision tree and thus penalizes trees
with a high number of branching events. As a result, L1 regularization sets the least important feature
weights to 0 and thus selects the most important features for classification, leading to shallower trees.
In contrast, L2 penalizes large weights by summing over the square of all weights, thereby leading to
close to zero weights and thus preventing the classifier to heavily rely on but a few features. A more
detailed description of the feature generation, and training process, the hyperparameter optimization,
as well as the hardware setup are available in the Supplementary Material Section 4.1.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a popular prediction method originally developed for
computer vision and image processing. Recently, they have been applied to predict properties of
biological sequences [6, 5, 54]. A CNN jointly learns a representation of the data (through convolution
layer(s)) and the classification of the data based on these representations (in our case using a fully
connected layer). More precisely, a convolution layer slides short probabilistic sequence motifs along
the sequence, and outputs an activation profile (i.e., feature map) for each of these motifs. A motif is
called kernel and the length of the motif, kernel size. Here, we used a CNN to classify empirical and
simulated MSAs. In the following we will detail the input to the network, its architecture, training
and optimization, and the evaluation of its performance.
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MSA Representation In order to obtain a numeric representation of an MSA, where the network
is invariant to the order of sequences, we used a two-step approach. First we decided to represent the
MSA using its site-wise AA or nucleotide composition, i.e., the AA or nucleotide proportions per site,
which sum to one. Second, each AA/nucleotide, as well as gaps are passed to the convolution network
as input features (i.e., channels), resulting in 5 (4 DNA sites + gap) or 21 (20 AAs + gap) channels.
This is analogous to using color channels in an image. It maintains the identity of a nucleotide/AA
and is common practice when applying CNNs to biological sequences [6]. The input size was the
maximum MSA length in the simulated and empirical data collection. All MSAs with fewer sites were
zero-padded at their edges in order to match the fixed input size.

Empirical protein sequences typically start with Methionine (M), which simulations do not account
for. We removed the first and second sites from the empirical protein data to avoid biasing the
prediction. To evaluate the impact of removing the second site, we tested the trained network on
empirical validation data, including the second site. The absolute accuracy difference between data
with and without the second site was below 0.0005 (see Table S2 in the Supplementary Material).

CNN Architecture We developed two architectures, one for each data type (DNA and protein). We
explored alternative architectures and chose the architecture with the best balance between complexity
and performance. For protein MSAs, we used a single one-dimensional convolution layer with 210 filters
of size 1 × 21 (i.e., kernel size × input channels). Of note, these filters do not take into account the
phylogenetic structure of the data, and simply capture AA profiles at single sites, as opposed to larger
motifs spanning several contiguous sites typically used in CNNs. For DNA sequences, we used a two-
layer CNN, whose first layer has 100 filters of size 3 × 5 and is meant to capture codon structure.
The second layer has 210 filters of size 1 × 100. A standard Rectified Linear Unit (ReLU) activation
function is employed in both architectures [3]. An activation function is a nonlinear transformation of
a node’s output. It is applied before passing the output to the next layer. The ReLU outputs its input
if it is positive, and zero, otherwise. For both DNA and protein architectures, the layers following
convolution comprise a dropout layer, which deactivates a node with a certain probability (here we
chose 0.2) to avoid overfitting and global average pooling along the sequences. A final fully-connected
layer combines all features (i.e., channels) for the binary prediction. For this, we used a Sigmoid
activation function. In total, the protein network counts 4831 learnable parameters, while the DNA
network has 23,021 due to the additional convolution layer.

Training and Optimization To update the network weights, we employed the Adam optimizer [27]
along with a binary cross-entropy loss function. The optimized parameters include the learning rate
and the number of filters. For the former, we chose the learning rate range independently for each
data collection and fold using the learning rate range test (LRRT) [47]. The LRRT involves gradually
increasing the learning rate during a few training epochs, monitoring the change of the loss, and
plotting the results. It helps to select a learning rate where the model effectively learns and quickly
converges without extensive manual tuning. Given the LRRT results, we then evaluated different
learning rates by means of the validation loss after 100 epochs and considered the learning curve, that
is, the validation and training loss over epochs. Furthermore, we varied the number of filters and chose
the number that yielded the maximal validation BACC. For more details on the optimized parameters
and hardware used for training, see Section 3 in the Supplementary Material. In addition to the
validation BACC, we considered the Class Mean Absolute Error (MAE), which is the mean absolute
difference between the accuracy on simulated and empirical data collections across folds, as well as the
standard error (SE), which denotes the standard error of the obtained validation BACC across folds.
If these measures were strikingly large, we interpreted this as an indicator that the network needs to
be improved to generalize better. As with the other classifier, we used 10-fold cross-validation. We
applied an early stopping rule [39] to automatically terminate the training of every fold individually.
However, for certain data collections, we observed that the chosen stopping rule seemed overly strict.
The visualized learning curves indicated that the network had converged, even though the stopping
criterion was not met. Consequently, we decided to manually terminate the training in these cases.
Learning curves, Class MAE, and the SE can be found in the Supplementary Material (Table S1,
Figures S9 and S10).

To compare the performance of CNNs trained on various simulated data collections, we determined
the maximum validation BACC over training epochs for each CNN and for each fold. What is referred
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to as BACC is the average BACC across folds at the selected epochs. Because we are using the same
validation data to choose the stopping epoch and assess the resulting accuracy, there is a risk that
this accuracy is overoptimistic. To quantify this risk, we computed summary statistics of BACCs of
epochs surrounding the selected epoch (see Table S1 in the Supplementary Material).

2.3.3 Performance Evaluation

Using the BACC metric per data collection, we compared the performance of pairs of classifiers of
simulated data collections. In order to evaluate whether the difference of the BACCs of two data col-
lections and therefore two different evolutionary models is significant, we conducted multiple unpaired
two-samples t-tests, where one sample consists of the validation BACC for each fold. This allowed us
to compare models in their ability to produce simulations that are more or less or equally realistic.
For protein data, we compared the BACCs of the following groups: Poisson vs. WAG, WAG vs. LG,
LG vs. LG+C60, and all pair-wise combinations of site heterogeneous models. The null hypothesis
is that these models yield equal average BACCs across folds. We rejected the null hypothesis if the
resulting P-value was below the significance level of 0.05. For DNA data, we compared the BACCs of
JC vs. HKY, HKY vs. GTR, GTR vs. GTR+G and GTR+G vs. GTR+G+I. To account for multiple
testing, we applied Bonferroni correction, i.e., we multiplied each P-value by the number of tests for
each data type separately [2]. An overview of all tests is provided in the Supplementary Material
(Tables S7 to S9).

3 Results

Table 1 shows the BACC for our GBT and CNN classifiers across all data collections. Both classifiers
were able to accurately distinguish simulated from empirical data. The GBT classifiers achieved high
BACCs for all simulated protein data collections (≥ 0.98), as well as for all gapless DNA data collections
(≥ 0.89). We observed the worst BACC of 0.77 for the DNA data collection simulated under GTR+G+I
with gaps simulated according to the mimick procedure. The CNN classifiers achieved BACCs ranging
from 0.93 to 0.9996. Interestingly, the GBT classifiers showed similar BACCs or even outperformed
the CNN on the protein data collections, but achieved lower BACCs on DNA collections.

On DNA data collections, substitution models with fewer degrees of freedom than the GTR model,
namely JC and HKY, were classified more accurately (BACC=0.99 for CNN and BACC=0.96 for
GBT). However, increases in model complexity did not always translate into improvements in the
realism of the data. For instance, the performance of the CNN was marginally better on simulations
under the HKY model than on simulations under the simpler JC model (P=0.03, see Table S1 in
the Supplementary Material). The GBT predictions, which were equally accurate for JC and HKY
simulations (BACC=0.96), did not reflect any improvement in the simulations due to more degrees of
freedom in the HKY model either. Moreover, the CNN yielded the lowest BACC (0.93) on simulations
conducted under the GTR model. In contrast, simulations that included rate heterogeneity (GTR+G)
were slightly easier to classify (BACC=0.94, P=0.04). Contrary to our expectations, including a
proportion of invariant sites (GTR+G+I) did not result in a lower BACC compared to GTR+G
simulations (BACC=0.94, P=1.0 for CNN, BACC=0.89, P=1.0 for GBT).

We did not observe the expected trend of an increased realism with an increase in model complexity
for the protein data collections. For instance, the CNN had the lowest BACC on simulations under the
LG substitution model (BACC=0.95) and not on the more complex mixture models. For the GBT,
distinguishing the LG+S256+G4 data collection appeared to be easier than the data collection based
on the simpler LG+C60 model (P=0.77). Unexpectedly, all simulations using a mixture of stationary
frequency profiles (i.e., LG+C60, LG+S256, LG+S256+G4 and LG+S256+GC) were nearly perfectly
discriminated from the empirical data collection with both GBT and CNN (BACC ≥ 0.98). With the
CNN, we did not find a significant performance difference between these evolutionary models (P≥0.38,
see Table S9 in the Supplementary Material).

To rule out the possibility that these rather unexpected findings are a consequence of specific
behaviors inherent to the AliSim simulator, we conducted an experiment to evaluate the performance
of the CNN classifier pre-trained with LG+S256 simulations on data generated using a simulator
developed in house that employs the same model. Our results showed that the CNN classifier performed
comparably well on the alternative simulations (BACC=0.99). In addition, we tested the same CNN on
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simulations using 4096 profiles. These simulations were only slightly harder to classify (BACC=0.98)
than the ones based on only 256 profiles (BACC=0.995).

The CNN trained on empirical data collections with indels and simulations under the most complex
evolution model with indels (i.e., LG+S256+GC+sparta, GTR+G+I+mimick, GTR+G+I+sparta)
also yielded highly accurate predictions (BACC=0.996 for protein and BACC>0.97 for DNA data).
The results were similar to or better than the results obtained without indels. There was no significant
difference between CNN performance on the two DNA indel models employed (P=1.0). Simulat-
ing indels increased the GBT classification accuracy for protein data (BACC=0.99) and the sparta
based DNA data collection (GTR+G+I+sparta; BACC=0.94) compared to the same model of evo-
lution without indel simulations (LG+S256+GC BACC=0.98; GTR+G+I BACC=0.89). We did,
however, observe a significant decrease in accuracy comparing the two DNA indel models (P=0.0).
GBT classified the GTR+G+I+sparta data collection with high accuracy (BACC=0.94), but showed
an unexpectedly low BACC of 0.77 for GTR+G+I+mimick.

Data collection BACC
GBT CNN

DNA data collections
JC 0.96 0.99
HKY 0.96 0.99
GTR 0.94 0.93
GTR+G 0.89 0.94
GTR+G+I 0.89 0.94
GTR+G+I+mimick 0.77 0.97
GTR+G+I+sparta 0.94 0.97

Protein data collections
Poisson 0.99 0.9996
WAG 0.99 0.97
LG 0.99 0.95
LG+C60 0.98 0.99
LG+S256 0.99 0.995
LG+S256+G4 0.99 0.99
LG+S256+GC 0.98 0.99
LG+S256+GC+sparta 0.99 0.996

Table 1: Average of the BACC on empirical and simulated data collections across 10 folds for the GBT
and CNN classifiers. Parameter configurations of simulations listed in the first column are sorted with
increasing complexity from top to bottom for both DNA and protein data. For both, the last row(s)
shows results on data collections with indels.

In order to gain insights into why the general classification task achieved high prediction accuracy
and appears to be rather easy in general, we assessed the influence of the described features on the
prediction of the GBT classifiers. To this end, we computed the gain-based feature importance. The
gain-based feature importance directly measures the contribution of a feature to the reduction of the
loss function. Table S4 in the Supplementary Material shows the three most important features for all
classifiers.

We observed that, except for one data collection, the SCC randomness metric was the most im-
portant feature. For classifying the LG+S256+GC+sparta data collection, it was the second most
important feature. Figure 3 shows the distribution of SCC values for one example DNA data collec-
tion (GTR+G+I), as well as for one example protein data collection (LG+S256+GC) compared to the
distribution for the respective empirical data collection. The lower the SCC value, the more random
is the distribution of rates of evolution across sites in the MSA. The SCC values for simulated MSAs
are substantially lower than for empirical MSAs. This shows that the rates of evolution across sites
are more uniformly distributed in simulated MSAs compared to empirical MSAs, simulated data is
thus more “random” than empirical data. We observed similar patterns for all other data collections
as well.
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(a) Distribution of SCC values for the GTR+G+I and empirical DNA data collections.
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(b) Distribution of SCC feature values for the LG+S256+GC and protein empirical data
collections.

Figure 3: Feature distribution of SCC feature values for one exemplary DNA and protein data col-
lection. The dark blue bars represent the respective empirical data collection and the light pink bars
represent the respective simulated data collection.

We also frequently observed the Entropy, the Pattern entropy, as well as the Bollback multinomial
metrics being among the three most important features. While the randomness features measure the
randomness across sites of the MSA, these three features quantify the randomness across taxa per site,
indicating that simulated data is not only more “random” across sites, but also within sites.

To gain further insights into the importance of the randomness features for classification, we ad-
ditionally retrained all GBT classifiers without this set of randomness features. Table S6 in the
Supplementary Material shows the resulting BACCs alongside the three most important features. As
expected, the BACCs decrease for all data collections. Interestingly, the BACCs for the GTR+G and
GTR+G+I DNA data collections decreased substantially from 0.89 to 0.65 and 0.61 respectively, yield-
ing a prediction only marginally better than random guessing. Using this reduced set of features for the
prediction, we observed interesting differences in feature distributions. We observed that, compared
to simulated data, empirical data tends to have a higher proportion of invariant sites (Figure 4a). The
branch lengths in trees inferred for simulated MSAs tend to be shorter (Figure 4b; for better visualiza-
tion, we only show data between the 10% and 90% percentile), and the parsimony RF-Distance tends
to be higher for empirical data (Figure 4c). While Figure 4 depicts the distribution of feature values
for one exemplary data collection (JC) only, these observations hold true for all simulated data collec-
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tions. The more complex the model of evolution, the less pronounced these differences are, especially
for the simulated DNA data under GTR+G and GTR+G+I (see Supplementary Material Figures S15
and S16). It is noteworthy however that even GTR+G+I, which contains a parameter dedicated to
modelling the proportion of invariable sites, produces alignments with fewer invariant sites than in
empirical data.

We further explored the substantial decrease in accuracy for the GTR+G+I+mimick data with a
BACC of 0.77. To this end, we split MSAs site-wise into 100 parts (buckets), averaged the number of
substitutions per bucket (normalized by the maximum number of substitutions per MSA), and averaged
the buckets over every MSA (see Figures S12 to S14 in the Supplementary Material). Interestingly,
we could observe that the substitutions for empirical and the GTR+G+I+mimick data collections
are concentrated at the beginning and the end of the MSAs, while the number of substitutions in
GTR+G+I+sparta seem to be uniformly distributed. This also seemed to be the case for other
substitution models (results not shown). This result is in agreement with Bricout et al. [10] who also
found this pattern in a large scale analysis of empirical alignments.

As described above, we simulated the DNA data collections and the protein data collections without
indels based on trees inferred using RAxML-NG. Trees for protein data with indels used for our indel
simulations were inferred using IQ-Tree. For 10 out of 15 data collections, one of the branch length
features was among the three most important features. To ensure that we did not leverage a tool-
induced bias for our prediction, we retrained all classifiers using only the MSA-based features by
discarding all branch length features. We observed no substantial impact on the overall prediction
accuracies. With GTR+G+I+mimick we observed the highest BACC difference. Using all features,
the GBT achieved a prediction accuracy of 0.77. Discarding the branch length features resulted in a
BACC of 0.74. Table S5 in the Supplementary Material shows the resulting BACCs for all classifiers,
alongside the three most important prediction features when only using MSA based features.

In addition to the feature analysis of the GBTs, we further investigated the remarkably accurate
performance of the CNN on simulations using mixtures of stationary frequency profiles (i.e., the S256
or C60 model). Given that we could achieve better performance when using average global pooling,
that is, averaging across the sequence, instead of maximum local pooling following the convolution layer
(see paragraph CNN Architecture) we hypothesized that there must be predictive global features that
aid in distinguishing simulated from empirical MSAs. In particular, we hypothesized that alignment-
wise frequencies of AAs or nucleotides may differ between simulated and empirical data. To test
this hypothesis, we trained logistic regression models to undertake the same classification task, but
using site compositions averaged along the alignment, i.e., MSA compositions. Figure 5 shows that
the logistic regression model indeed performed well, particularly for simulated data under mixture
models (BACC>0.94). Moreover, across collections, there is a strong correlation between BACCs of
the CNNs and the logistic regression models (r2 = 0.85). We also attempted to train the logistic
regression model on DNA data simulated under the GTR+G+I model, but found that there was no
significant improvement during the first 100 epochs (BACC=0.51). Therefore, the MSA composition
is not informative for the classification of DNA data, but highly informative for protein data.

For both GBT and CNN classifiers, we observed a general trend for lower classification accuracy
on more difficult MSAs according to the Pythia difficulty score. The higher the Pythia difficulty for an
MSA, the lower the signal in the data and the more difficult it is to obtain a well-supported phylogeny
as the likelihood surface exhibits multiple indistinguishable (by means of standard phylogenetic sig-
nificance tests) likelihood peaks [21]. In addition to assessing the BACC as a function of the difficulty
of simulated MSAs, we also assessed the BACC as a function of the difficulty of the underlying em-
pirical MSAs. For MSAs with a higher Pythia difficulty, it is more difficult to obtain a well-supported
phylogeny, as the likelihood surface exhibits multiple peaks. However, simulating an MSA requires
a reference phylogeny and relying on a “bad” tree might have a negative impact on the realism of
the simulated data. If this holds true, we expected the classification of simulated MSAs based on
easy empirical MSAs (i.e. simulations based on “good” trees) to be more difficult, leading to a lower
BACC than the classification of simulated MSAs based on difficult empirical MSAs. Interestingly, we
observed the opposite effect: the more difficult the underlying empirical MSAs, the lower the BACC.
Figure 6 depict this observation for the simulated data collections with the lowest BACC for GBT
(GTR+G+I+mimick) and CNN (LG) respectively. Both Figures show the BACC as a function of
the Pythia difficulty over the simulated MSAs (left subfigures), as well as the BACC as a function
of the Pythia difficulty over the underlying empirical MSAs (right subfigures). We suspect that both
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(a) Distribution of proportion of invariant feature values for the JC and empirical data
collections.
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(b) Distribution of brlenmax feature values for the JC and empirical data collections.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0%

1%

2%

3%

4%

5%

6%

7%

8%
Empirical data collection (DNA)
Simulated data collection (JC)

parsimony RF-Distance

Pr
op

or
ti
on

 o
f 

M
S
A
s

(c) Distribution of parsimony RF-Distance feature values for the JC and empirical data
collections.

Figure 4: Feature distribution for important features for classifying the JC data collection. The dark
blue bars represent the empirical data collection and the light pink bars represent the simulated JC
data collection.
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Figure 5: Performance of logistic regression on MSA compositions and CNN on site-wise compositions.
For each evolutionary model the BACC of each fold is represented as well as the mean and standard
error.

observations are related to the amount of signal in the data: MSAs with a low signal not only lead
to inconclusive phylogenetic analyses (as indicated by the high Pythia difficulty), but apparently also
lack a strong signal that indicates their realism.

4 Discussion and Conclusion

In this study, we assessed the realism of sequence evolution models by attempting to discriminate
between simulated MSAs and empirical MSAs using two distinct and independently developed classifi-
cation methods. Specifically, we evaluated and interpreted the predictive accuracy of these approaches
as a measure of realism. By addressing this question, we aimed to gain insights into the ability of cur-
rent evolutionary models to accurately simulate evolutionary processes using continuous time Markov
chains (CTMC). The ability to accurately model sequence evolution and thus simulate realistic MSAs
is crucial both for the evaluation of inference tools and the development of neural density estimation
techniques for inference.

Note that producing MSAs that are indistinguishable from empirical ones is a necessary but not
sufficient condition for the degree of realism of the underlying model. First, poor classification per-
formance can occur because the classifier does simply not deploy appropriate functions or data rep-
resentations. Hence, one can not guarantee that the simulated MSAs are realistic under all possible
criteria. Second, poor performance can also be induced by optimization issues, especially when using
deep learning methods. During our experiments, we observed low accuracies for CNNs several times.
We managed to alleviate them by adapting the learning rate, the number of filters, or the pooling
method, for instance. We thus advise researchers interested in classification performance as a realism
metric to closely monitor indicators of poor optimization, in particular, learning curves and gradient
norms — in our case, poor optimization also led to a larger variance across folds and discrepancies
in accuracy for the two classes. Because we found that all simulated MSAs were easy to discriminate
from empirical MSAs, and because our results are consistent across two technically substantially dis-
tinct and independent classification methods, we conclude with confidence that the simulated MSAs
generated in our study are not realistic.

It is worth noting here that we originally chose to develop a CNN for the classification task, as it is
able to capture local dependencies among sites. With a kernel size greater than one, the network could
potentially benefit from these dependencies for classification, as they are present in empirical MSAs
yet cannot be replicated with standard site-independent models of sequence evolution. However, we
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Figure 6: Accuracy of the GBT classifiers depending on the Pythia difficulty of the underlying align-
ments.
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discovered that for protein data, the CNN yields accurate performance, even with a kernel size of one
in combination with global average pooling (as an alternative to the commonly used local maximum
pooling). This type of network primarily focuses on capturing global features while overlooking local
among-site dependencies. Consequently, these choices enabled us to thoroughly explore the limitations
of current sequence evolution simulation approaches and different evolutionary models beyond their
unrealistic assumption of independently evolving sites. However, in the future, a CNN architecture
could be deployed to assess the importance of local site dependencies not accounted for in current
state-of-the-art simulators.

Our study uses two fundamentally different classifiers, which allows for a broader assessment of
possible weaknesses of current sequence evolution simulations: GBTs rely upon diverse, yet well-
defined MSA properties, such as branch lengths or the randomness features that take into account the
assumption of homogeneity along MSAs in standard simulations. Given the high feature importance of
the evolutionary rates (SCC) in the MSA, our GBTs exploit a lack of structure along simulated MSAs.
The CNN only considers site-wise composition vectors, and thus exploits a signal that is not directly
exploited by the GBTs. Furthermore, for the classification we used diverse and representative empirical
protein and DNA databases: TreeBASE comprises representative data sets that are commonly analyzed
in the field because it only contains MSAs of published studies, whereas HOGENOM offers a diverse
sample of existing data, drawing from 499 nuclear Bacterial genomes, 46 from Archaea, and 121 from
Eukaryotes.

The structure detected by our GBTs in empirical nucleotide alignments from TreeBASE is not
due to the type of genetic code present. We computed the number of stop codons in all genes in the
database and at all three phases, and did not observe an excess of alignments with 0 or 1 stop codons
per sequence (Supplementary Figure S17). Instead, it seems to correspond to the pattern found by
Bricout et al. [10]. However, in the future it will be interesting to investigate the realism of existing
codon models, on a data set of coding DNA sequences.

We used phylogenetic trees reconstructed from these empirical data collections to simulate data as
realistically as possible. Thereby, we circumvented having to simulate realistic trees and can invoke
simulations that are as similar as possible to the empirical MSAs. However, it is important to note
that the realism of the simulations depends on the quality of the inferred phylogenetic trees when
deploying this procedure. Since we do not know the true trees of the empirical MSAs, we must
acknowledge that there is some uncertainty or error in the inferred trees that the simulations inherit.
Hence, at least part of the classifier accuracy, that is, part of the difference between the simulations
and the empirical MSAs, could be attributed to the difference between the inferred trees and the
true unknown trees. However, our choice to use Maximum Likelihood trees inferred under the same
models used for the subsequent simulation (except for the protein data, see below) may constitute
the most realistic approach toward generating alignments that resemble empirical MSAs. Indeed, the
best-known Maximum Likelihood tree T̂ under model M for an alignment A is the best tree we can
find that maximizes the probability of observing A. Any other tree is less likely to have generated A
under model M (assuming optimization did find the ML tree). Therefore, by simulating with model
M along tree T̂ , we maximize the probability (or get close to maximizing it) of generating alignment
A. We expect that thereby, we also obtain a high probability of generating alignments that resemble
A, that is, MSAs that “look” empirical.

However, for protein data, the inference of trees from protein MSAs without indels was performed
under the LG substitution model. The resulting trees may be different from the Maximum Likelihood
tree obtained under the WAG model or under mixture models. In particular, trees inferred under the
LG model may have branches that are too short to be used for simulating MSAs with site-heterogeneous
mixture models, because inference with mixture models typically yields longer branches than inference
under the LG model. However, looking at amino acid diversity per site (Figure S6) reveals that sites
simulated using mixture models look more like empirical sites than sites simulated with LG. Therefore,
it remains unclear why mixture models failed to improve alignment realism according to our classifiers.
Overall, for some of our experiments on protein data, the mismatch between substitution models used
to infer the trees and those employed to simulate the MSAs may be consequential and warrants further
investigation.

The classification task was not difficult, neither for DNA nor for protein data. Our CNN achieved
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an average BACC of 0.98 across all evolutionary models. This shows that existing models of sequence
evolution fail to capture important characteristics of empirical site-wise compositions. In turn, this
questions to which extent previous results obtained on simulated data apply to empirical data.

We originally hypothesized that with increasing evolutionary model complexity, classification per-
formance would decrease. However, our results do not fully confirm this initial hypothesis. On the
contrary, both classifiers remained highly accurate on the most complex evolutionary models for pro-
tein simulations with heterogeneous stationary distributions across sites. On DNA simulations, the
inclusion of rate heterogeneity and a proportion of invariant sites did not lead to a substantial decrease
in CNN classification accuracy, either. Using the HKY substitution model instead of the JC model
did also not result in more realistic simulations as a function of observed classification performance.
Finally, the most simple models, JC and Poisson, were classified with ease.

We used a state-of-the-art indel model with individual parameters for insertions and deletions and
sampled indel parameters from approximated joint distributions. Nevertheless, both classifiers could
again easily distinguish simulated from empirical MSAs. In fact, classification accuracy substantially
increased on DNA data with indels compared to data without indels (GTR+G+I). In contrast, using
the mimick procedure to superimpose gaps onto simulated data appeared to result in more realistic
MSAs. Yet, these MSAs could still be easily identified as simulated ones based on their site-wise
compositions, as shown by the CNN results.

Furthermore, the prediction accuracy for protein data tended to be higher than the prediction
accuracy for DNA data. We suspect that this is due to the higher number of states in the protein
alphabet and therefore the increased number of possible patterns in a protein MSA, which makes it
harder to simulate realistic data.

Our findings suggest that existing evolutionary models might not be able to generate data collec-
tions that appropriately resemble global low level site composition features of empirical DNA or protein
data collections using standard site- and position-independent Continuous Time Markov Chains. Con-
sidering the high importance of randomness related features for the GBT classifiers, and the respective
feature value distributions, we conclude that the rate of evolution across sites of simulated MSAs are
generated more uniformly along the MSA compared to empirical MSAs. For instance, we found that
current models cannot reproduce the serial correlation of evolutionary rates that is present in empirical
MSAs. We further observe that the proportion of invariant sites in standard simulations reduces their
realism as measured by GBT. In addition, the CNN results reveal that simulated alignments have
unrealistic properties in terms of site-wise compositions that are independent of correlations among
neighboring sites.

The unexpectedly high accuracy of the logistic regression model on simulations under mixture mod-
els that produce heterogeneous stationary distributions across sites indicates that these models simulate
alignments with an average MSA composition which is distinct from that of empirical data. This is
particularly surprising for the LG+S256 models, which had been trained on HOGENOM data [42].
This discrepancy is unlikely to arise from simulating on trees inferred under the LG model rather than
mixture models. Indeed shorter branches in the LG trees should result in lower AA diversity per site.
However, we did not observe this in our data collections, as sites in simulations under the LG model
have slightly higher AA diversity than those in empirical data (Figure S6). Moreover, the site-wise
AA diversity appeared similar between simulations under LG+S256 and empirical data. The causes
of the discrepancy in average MSA compositions needs to be further investigated.

We believe that in the years to come, learning-based, likelihood-free approaches are likely to be
more widely used in our field. Especially, if their performance (both in terms of phylogenetic re-
construction accuracy and runtime) is superior. However, we further believe that likelihood-based
inference will continue to play an important role in the area of computational phylogenetics, as the
statistical properties of maximum likelihood and MCMC methods for posterior estimation still benefit
from a better empirical knowledge.

Looking forward, this work paves the way for approaches to simulate more realistic alignments
by developing more realistic models of sequence evolution. We conclude that a substantial amount
of research remains to be conducted for improving substitution as well as indel evolution models, for
both protein and DNA data.
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for providing us with the source code of his simulator. We gratefully acknowledge support from
the CNRS/IN2P3 Computing Center (Lyon - France) for providing computing and data-processing
resources needed for this work. This work was granted access to the HPC resources of IDRIS under the
allocation 2022-AD011011137R2 made by GENCI. This work was financially supported by the Klaus
Tschira Foundation, the ANR grants EVOLUTHON ANR-19-CE45-0010 and PIECES ANR-20-CE45-
0017, and by the European Union (EU) under Grant Agreement No 101087081 (Comp-Biodiv-GR).

References

[1] S. Abadi, O. Avram, S. Rosset, T. Pupko, and I. Mayrose. ModelTeller: Model selection for
optimal phylogenetic reconstruction using machine learning. Molecular Biology and Evolution, 37
(11):3338–3352, 2020. doi: 10.1093/molbev/msaa154.
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