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Abstract
AUTOSAR conformance testing is based on requirements verification.
This work focuses on multicore operating system (OS) requirements,
of which there are eighty. We present a semi-automated formal pro-
cess to check multicore OS compliance using High-Level Colored Time
Petri Net and model-checking methods. To apply our approach, we use
the Roméo tool to build an operating system model called Trampoline
that conforms to the AUTOSAR OS specification. Each requirement of
the multicore OS is formalized by an observer modeled by a Petri net
to evaluate compliance. The observers evolve according to the operat-
ing system evolution without altering its behavior to check whether the
specification is true or false. The approach ensures that the operating
system model respects the multicore specification of AUTOSAR OS.

Keywords: High-Level Colored Time Petri Nets, Model-checking, Real-Time
Operating System (RTOS), AUTOSAR OS verification
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1 Introduction
The development of technologies has led to the increased use of embedded soft-
ware in all areas of our daily life. In the automotive field, embedded electronic
control units have multiplied, performing different functions in the vehicle over
the last few years. Therefore, the complexity of the embedded software evolves
and requires high safety standards to ensure proper behavior. That complexity
is handled by the operating system, which serves as the hardware and soft-
ware interface. The operating system implants the functionalities, manages the
hardware and software resources, and schedules the application processes.

In addition, several standard software architectures have been implemented
for the automotive industry. We can cite OSEK/VDX (?) and AUTOSAR
(AUTomotive Open System ARchitecture) (?) standards that aim to facilitate
software development by providing the necessary mechanisms for software and
hardware independence. These standards provide a specification for developing
real-time operating systems (RTOS) with numerous features such as scheduling
policy, timing, and memory protection. Thus, the RTOS must comply with
the OS specification to guarantee security and functional safety.

Compliance verification of an OSEK/VDX and AUTOSAR OS is gener-
ally performed using a test suite that includes several sets of applications or
test sequences (??). The standard certification is thus obtained by executing
the conformance test suite on the RTOS. Software testing has been the stan-
dard technique, but it cannot perform exhaustive tests to show bugs and error
absence. Verification approaches based on formal methods have shown high
efficiency. They permit proving mathematically that a system satisfies its spec-
ification. Two categories exist, deductive methods based on theorem proving
(?) and automatic methods based on model-checking (?).

In theorem proving, we examine infinite systems specified in an appropri-
ate mathematical logic to verify the properties and provide proof. On the other
hand, model-checking is an automated approach to verify that a model of a
system conforms to a specification expressed as a property. This specification
defines the requirements for the expected behavior of the system. The verifica-
tion is performed by exploring the model’s states with the help of algorithms
and allows to guarantee the properties. Achieving the system abstraction and
specification is a crucial step that may require system mastery and expertise
in the methods used. The model must also be accurate and as close as possible
to the system from a behavioral point of view. Therefore, the property verifi-
cation must be the same for the system and its model. In this work, we rely on
model-checking to verify the RTOS’s conformity to the AUTOSAR multi-core
standard.
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1.1 Contribution and outline
In this paper, we present a formal verification approach to verify the com-
pliance of a multicore RTOS with the AUTOSAR OS specification1. We use
model-checking technique, that exhaustively checks the state-space if the
model respects specific specification and automatically generates a counter-
example. This approach has been applied to the Trampoline operating system,
a multicore RTOS compliant with OSEK/VDX and AUTOSAR standards used
in automotive embedded systems, and written in C language.

A C program model-checker may seem usable for RTOS requirements ver-
ification, such as (?). However, RTOS service calls are performed through
assembly code that would require a complete hardware architecture model for
formal analysis, making it non-portable. Furthermore, the aim is not only to
check the properties of a C program but also to handle simultaneous execution
and concurrency in a multicore context and to deal with interleaving and the
resulting interruptions. Therefore, we need a model that considers all these
aspects to be accurate and close to the multicore RTOS behavior.

Petri nets formalism is one of the many mathematical modeling languages
used to describe distributed systems whose vertices are places and transitions.
However, it does not directly capture the concurrency of multicore real-time
systems and is unsuitable for modeling systems where data affects the system’s
behavior. We will thus use the formalism of time Petri nets, extended with
colors, i.e., each color modeling the core on which the code is executed, and
high-level functionality, i.e., a predefined syntax manipulating different types
of expressions made up of variables. The detailed presentation of this extended
formalism has been proposed in our previous contribution (?).

This work presents a systematic approach to verifying the AUTOSAR
compliance of multi-core RTOS using High-Level Colored Time Petri Nets
(HCTPN). The steps of the approach are illustrated in Figure 1. It shows the
two main stages of the process. We rely on the Roméo model-checker tool,
available under a free license (?) and recently improved to support HCTPN.

• The first phase involves developing a complete model that includes the
multi-core RTOS model and is complemented by application models. We
construct the models manually based on the HCTPN translation rules
presented in Section 5.2. The RTOS model is described by HCTPNs and
Roméo functions written in a syntax similar to the C language called
C-like Roméo syntax. These functions can be called on the transitions
of the model, as shown in Figure 6. The model contains 115 Petri sub-
networks that form a single one and describe the RTOS behavior. The
application model is a HCTPN which describes all the system calls per-
formed based on the application’s source code. We developed a module
in the compilation phase of an application on the RTOS to automatically
extract the data structures and constants and generate a C-like configu-
ration file to be included in the Roméo tool. Once the configuration file

1https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_
OS.pdf

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_OS.pdf
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is defined, the application model can be simulated and formally verified
within the RTOS model.

• The verification phase is based on two possible formalizations of prop-
erties with model-checking: (i) expressing them formally with temporal
logic to be verified by the model-checker and (ii) adding Petri nets man-
ually as external observers able to evaluate whether requirements are
respected. In the first case, the TCTL (Timed Computation Tree Logic)
(?) allows expressing requirements as properties in Roméo. However,
these requirements can easily become difficult to express by involving
several parameters, leading to nested properties where one property is
defined inside another. The Roméo tool does not support this kind of for-
mula, which motivates our choice to use observers. Indeed, the expression
of the requirements is systematically performed through an observer. The
verification is therefore achieved automatically by a reachability test on a
given observer state. Observers are read-only processes that keep track of
some invariants in the execution of the Petri Net and do not modify the
system state. The multi-core AUTOSAR requirements are thus translated
into observers describing the expected behavior. Then, with the help of
properties written in TCTL logic, we can verify by the model-checker their
satisfaction or generate, on the contrary case, a counter-example trace.

Complete system model

RTOS Model

Application Model
Model-checker

TCTL properties

Observer models (set of AUTOSAR test cases)

True

False,
Automatic
generation
of counter-
example

Fig. 1 Formal verification approach

The remains of this paper are as follows. Section 2 presents some related
works, and Section 3 the Trampoline RTOS. Section 4 defines the HCTPN
formalism used for modeling. Section 5 explains the formal model of the
RTOS. Section 6 describes our formal verification approach and observer mod-
els. Section 7 presents some results of verification of compliance with the
AUTOSAR standard. Section 8 concludes the paper.

2 Related works
These works are selected because the verification conducted on operating
systems is based on formal methods.

Many studies have been done on AUTOSAR OS verification. Peng et al.
in (?) use timed CSP to model AUTOSAR OS and the engine management
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system (EMS) application. They verify some safety properties through Pro-
cess Analysis Toolkit (PAT). The authors in (?) propose a formalization of the
AUTOSAR OS memory protection specification. They use the Event-B spec-
ification language and verify the consistency. Yan et al. in (?) focus on the
AUTOSAR schedule table mechanism. They formally model a schedule table
using a transition system and analyze the schedulability. Many studies have
been done on the verification of the AUTOSAR operating system. They focus
on scheduling, timing, and memory protection aspects. However, research on
the verification of the AUTOSAR multicore RTOS has been limited.

Some studies (??) propose a test program generator for OSEK/VDX and
multicore AUTOSAR standards. Chen et al. (?) present an exhaustive test
generation method to ensure compliance with the OSEK/VDX standard using
the model-checking tool SPIN. The authors built a test model based on the
formal test specification and the formal model of the OSEK operating system
in PROMELA. Using model-checking techniques on these models, they devel-
oped their test case generation tool (TGT). Fang et al. in (?) show a formal
model-based approach to improve the test coverage for AUTOSAR multicore
RTOS. They first defined the concrete formal model conforming to the require-
ment of AUTOSAR RTOS in Promela. Then, with the model, they proposed
a test program generator. Finally, they calculated the optimal test sequence
for every test case and translated it into an execution program. This approach
can complement ours to generate test cases and ensure good coverage.

There is some research (??) that present a compliance verification to
OSEK/VDX standard. Huang et al. in (?) concentrate on the compliance
verification of an OSEK/VDX operating system. They model the code-level
with the process algebra CSP and verify some properties with the PAT
model-checker. The approach does not contain the complete OSEK/VDX spec-
ifications. Therefore, it does not guarantee that the operating system conforms
to the OSEK/VDX specification. Tigori T. et al. in (?) propose to check
the conformity of the RTOS model to the OSEK/VDX standard through
observers and the UPPAAL model-checker. They first model the complete
mono-core version of the Trampoline RTOS with extended and timed automata
in the UPPAAL tool. Then, they translate the OSEK/VDX conformance test
cases into observers that allow checking whether the RTOS model meets the
OSEK/VDX specification.

Several works are done on the Trampoline RTOS. In (?), the authors
convert the Trampoline kernel source code into a formal model specified in
PROMELA. Using model-checking, they check the exactness of the kernel
model and identify some possible safety violation scenarios. The authors in (?)
propose a complete mono-core model of the Trampoline RTOS with extended
and timed automata in the UPPAAL tool. They perform a reachability anal-
ysis on the application and OS model states to eliminate infeasible paths, and
prune the model appropriately. From the pruned model, they generate the
configured application source code. Based on the Trampoline formal model
done by Tigori T. et al. in (?), Boukir K. et al. (?) integrate the model of
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the global EDF scheduling and verify the scheduler implementation. However,
the Tigori T. model does not represent the accurate time aspect. Indeed, the
execution time is discrete, expressed with invariant and clock variables. In a
previous work (?), we propose a formal approach that verifies the schedulabil-
ity of a real-time system using model-checking. We use Parametric High-Level
Stopwatch Petri Nets in the ROMÉO tool to model the application and the
multicore kernel with Biglock. We use the Petri net formalism for modeling
preemption and temporal precision.

3 Trampoline RTOS
Trampoline is a real-time operating system2 developed by the STR group of the
LS2N laboratory in Nantes, France. This operating system is OSEK/VDX 2.2.3
and AUTOSAR 4.0 compliant. It is used by many European car manufacturers
and in several French universities.Trampoline is mostly written in C language
with some parts, like context switching, written in assembly language because
they depend on the Instruction Set Architecture (ISA) of the microcontroller.

This type of operating system occupies few resources, both memory and
CPU, and is suitable for both 8-bit and 32-bit targets. It offers the classic
services:

• Management and scheduling of tasks according to a fixed priority
scheduling policy;

• Synchronization between tasks via signaling (events) and mutual exclu-
sion (resources) mechanisms;

• Periodic execution of tasks or setting of events (alarms and schedule
tables);

• Communication between tasks on the same Electronics Control Unit
(ECU) or running on different ECUs.

• Interrupt Service Routines (ISR) management.
Additionally, AUTOSAR is an evolution of OSEK and specifies a multicore

design that implements a partitioned scheduling policy with fixed priority.
In this type of scheduling policy, the OS manages a list of ready tasks by
computing core. Partitioning is obtained by assigning the objects managed by
the OS (tasks, ISR, alarms, schedule tables, events, resources, ...) to an entity
named OS Application. Then, each OS Application is assigned to a computing
core. An additional mutual exclusion mechanism, dedicated to multicore and
using spinlocks is also present.

In the multicore version of Trampoline, following a service call, rescheduling
is performed on the core where the service call occurred. Thus, when a task
running on core 0 activates a task assigned to core 1, the task activation
service is performed on core 0 and modifies the list of ready tasks of core 1.
Additionally, when this activation requires a context switch on core 1, it must
necessarily be performed on core 1 as well. To trigger this context switch, core
0 therefore sends an inter-core interrupt request to core 1.

2https://github.com/TrampolineRTOS/trampoline

https://github.com/TrampolineRTOS/trampoline
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The OSEK and AUTOSAR OS are configured according to the application.
The objects necessary for the application, tasks, ISRs, alarms, ... are described,
as well as their relations, in a dedicated language called OIL3 for OSEK and in
XML for AUTOSAR. A dedicated compiler called Goil reads this description
and, using templates described in a Goil template language (GTL), produces C
data structures (task descriptors, alarms, etc.) and code that is then compiled
and linked with the OS and application code, as shown in Figure 8, page 21.

While in the past the OSEK/VDX consortium has published several docu-
ments specifying how the conformance of an OS to the OSEK/VDX standard
should be tested (?), this is not the case for the AUTOSAR consortium.
However, the Trampoline project has developed a test suite based on the
requirements listed in (?). Among more than 200 requirements related to the
implementation of AUTOSAR OS, 80 concern multicore implementation. In
this work, we have focused on the multicore requirements. Of course, we will
not list all of them here and we will only point out the ones that are nec-
essary to understand the examples used in Section 6. Table 4, given in the
appendix, lists the requirements related to the multicore implementation of an
AUTOSAR OS.

4 Background
Petri nets (?) are a mathematical formalism and a bipartite graph whose
vertices are places and transitions. Places are drawn as circles and transitions
as squares. A place can contain any number of tokens. A marking M of a Petri
Net is a vector representing the number of tokens of each place. A transition is
enabled (it may fire) in M if there are enough tokens in its input places for the
consumption to be possible. Firing a transition from a marking M consumes
tokens from each input place and produces tokens in each output place.

Petri nets are unsuitable for modeling systems where data affects the sys-
tem’s behavior because of the lack of a data structure. High-level Petri nets
(?) have been proposed to model scientific problems with complex structures
that describe both system data and control. The term High-level Petri net is
then used for many Petri nets (?) such as Predicate/Transition Nets, colored
Petri nets, or hierarchical Petri nets. However, the common point is that they
allow the manipulation of different types of expressions that use state vari-
ables. Input arcs are labeled with Boolean expressions specifying conditions
(guards or gates) that can also be associated with transitions. Arc annotations
are expressions that can be associated with output arc. They can be viewed
as computing systems that operate on shared data.

Notations
The sets N, Q≥0, and R≥0 are, respectively, the sets of natural, non-negative
rational, and non-negative real numbers. An interval I of R≥0 is a Q-interval

3OSEK Implementation Language.
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iff its left endpoint ↑I belongs to Q≥0 and its right endpoint I↓ belongs to
Q≥0 ∪ {∞}. We denote by I(Q≥0) the set of Q-intervals of R≥0.

BA stands for the set of mappings from A to B. If A is finite and |A| = n,
an element of BA is also a vector in Bn. The usual operators +,−, < and =
are used on vectors of An with A = N,Q,R and are the point-wise extensions
of their counterparts in A.

4.1 Informal presentation
High-level Petri nets
Among the mathematical modeling languages, Petri nets are well suited to
describe distributed concurrent systems. A place can contain any number of
tokens. A transition is enabled (it may fire) in M if there are enough tokens
in its input places for the consumptions to be possible. Firing a transition t in
a marking M consumes one token from each input place s and produces one
token in each of its outputs places s.

Petri nets manipulating variables. High-level Petri nets have been proposed
for modeling scientific problems with complex structures and manipulating
different types of expressions made up of variables and written in a predefined
syntax.

In this paper, we consider that preconditions (guard) and postconditions
(update) over a set of variables (X) are associated with transitions. A tran-
sition is enabled (it may fire) if there are enough tokens in its input places
and if the guard is true. When the transition fires, the corresponding updates
are executed, modifying the values of the variables, and producing tokens in
its output places. The variables take their values in a finite state, such as
bounded integers or enumerate types. Guards are Boolean expressions over X,
and updates can be described as a sequence of imperative code expressed in
a programming language whose execution is atomic from the transition firing
point of view. This class is illustrated in Figure 3.

Colored Petri nets. Colored Petri nets extend marked Petri nets to allow the
distinction between tokens.

Although the set X of High-level Petri nets presented in the previous para-
graph can be of arbitrarily complex type, places in colored Petri nets contain
tokens of one type. This type noted C is called the color set of the place.

An arc from a place to a transition (PT) specifies the color(s) that enabled
the transition and will be consumed by its firing. An arc from a transition to
a place (TP) specifies the token’s color produced in that place by the firing
of the transition. A particular color called any indicates in a PT arc that any
color enabled the transition and implies in a TP arc that the color consumed
in the input place will be the same produced in the output place.

A marking M of a colored Petri Net represents the number of tokens in
each place and their respective colors. That is represented either by a multiset
or by a matrix.
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Colored Time Petri Nets
Time Petri nets (TPN) extend Petri nets with temporal intervals associated
with transitions, specifying firing delay ranges for the transitions. Assuming
transition t became last enabled at time d, and the endpoints of its firing
interval are α and β, then t cannot fire earlier than d + α and must fire no
later than d + β unless disabled by the firing of another transition. Firing a
transition takes no time.

The introduction of color in time Petri nets leads to multiple enableness
of transitions and then allows the modeling of multiple servers and multi-
ple instances of codes (?). For Colored Time Petri Nets, multiple enableness
occurs when several combinations of colors enable a transition simultaneously,
requiring a dynamic number of timers. This class is illustrated in Figure 2.

4.2 High-level Colored Time Petri Net
Colored Petri nets allow tokens to have a data value called the token color.
In the applications we are considering, the color of a token actually represents
the processor on which the code is executed. We, therefore, consider a token of
integer type that designates the processor number. Moreover, we add a special
color called any to specify that any color can be used for enabling and firing
a transition.

Definition
Definition 1 (High-level Colored Time Petri Net) A High-level Colored Time Petri
Net (HCTPN) is a tuple N = (P, T,X,C, pre, post, (m0, x0), guard, update, I) where

• P is a finite non-empty set of places,
• T is a finite set of transitions such that T ∩ P = ∅,
• X is a finite set of variables taking their value in the finite set X (such as

bounded integer),
• C is a finite set of colors and Cany = C ∪ {any} where any is a variable that

can be instantiated to any value of C,
• pre : P × T → NCany is the backward incidence mapping,
• post : P × T → NCany is the forward incidence mapping,
• guard : T×X×P×C• → {true, false} is the guard function with C• = C∪{•}

where • denotes the fact that no color is specified,
• update : T ×X × P × C• → XX × NP×C is the update function,
• (m0, x0) ∈ NP×C ×XX → is the initial values m0 of the marking and x0 of the

variables,
• I : T → I(Q≥0) is the static firing interval function.

Discrete behavior
For a marking m ∈ NP×C , m(p) is a vector in NC , and m(p)[c] represents the
number of tokens of color c ∈ C in place p ∈ P . A valuation of the set of
variables X is noted x ∈ XX . (m,x) is a discrete state of HCTPN.
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Enabling a transition. Informally, an arc is associated either with a color
c ∈ C or with a particular color called any. To enable transition t, a place p
with an arc from p to t must have enough tokens with the arc’s color. Moreover,
all the arcs of t associated with any must agree on the color given to any.
Therefore, we forbid an arc to be associated with both any and a color c ∈ C.

An arc pre(p, t) ∈ NCany is a vector such that pre(p, t)[c] is the number
of tokens of color c ∈ C in place p needed to enable the transition t and
pre(p, t)[any] > 0 represents the fact that any color can enable the transition.
Let Tany ∈ T the set of transitions that can be enabled by any color: i.e.
Tany = {t ∈ T, ∃p ∈ P, s.t. pre(p, t)[any] > 0 }. Moreover, we define the set
Tany = T \ Tany.

A transition t ∈ T is said to be enabled by a given marking m ∈ NP×C in
two cases depending on whether t ∈ Tany or not:

• if t ∈ Tany, and ∀p ∈ P and ∀c ∈ C, m(p)[c] ≥ pre(p, t)[c]. We denote
en(m, t) ∈ {true, false}, the true value of this condition.

• if t ∈ Tany, and ∃ca ∈ C such that ∀p ∈ P , m(p)[ca] ≥ pre(p, t)[any] and
∀c ∈ C \ {ca}, m(p)[c] ≥ pre(p, t)[c]. The corresponding set of color ca is
noted colorSetany(m, t) ⊆ C

Finally, a transition t ∈ T is said to be enabled by a given mark-
ing m ∈ NP×C and a valuation x ∈ XX if en(m, t) = true and either
colorSetany(m, t) = ∅ and guard(m, t, x, •) = true or ∃ca ∈ colorSetany(m, t) ̸=
∅ and guard(m, t, x, ca) = true .

We illustrate the enabling condition with two examples with two colors
C = {blue, red} For the HCTPN given in Figure 2.a, the transition T1 ∈ Tany.

We have pre(T1) =


red blue any

P1 0 1 0
P2 1 0 0
P3 0 1 0
P4 0 0 0

 . The initial marking is m0 =


red blue

P1 1 1
P2 1 0
P3 0 1
P4 0 0

 that enables the transition T1 and en(m0, T1) = true.

P1 P2 P3

T1

[2, 3]

blue red
blue

•• • •
P1 P2 P3

T1

[2, 3]

P4

any any
blue

•• • •

P4P4

anyblue

2.a: T1 ∈ Tany 2.b: T1 ∈ Tany

Fig. 2 Enabling transition

Now we consider the HCTPN given in Figure 2.b with the same initial
marking m0 but where the transition T1 ∈ Tany since at least one arc (here
two) is associated with the color any.
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We have pre(T1) =


red blue any

P1 0 0 1
P2 0 0 1
P3 0 1 0
P4 0 0 0

 . The transition is enabled only if

any takes the red value then colorSetany(m0, T1) = {red}. If place P2 had two
tokens with one token per color, then the transition would be multi-enabled
by the two colors leading to colorSetany(m0, T1) = {blue, red}.

The firing of a transition. An arc post(p, t) ∈ NCany is a vector such that
post(p, t)[c] is the number of tokens of color c ∈ C produced in place p by
the firing of the transition t, and post(p, t)[any] gives the number of tokens
produced in p with the color c ∈ colorSetany(m, t) used for the enabling and
then for the firing of t.

Firing an enabled transition t ∈ Tany from (m,x) such that en(m, t) =
true and guard(m, t, x, •) = true leads to a new marking m′ defined by ∀c ∈
C,∀p ∈ P , m′(p)[c] = m(p)[c] − pre(p, t)[c] + post(p, t)[c] and a new valuation
x′ = update(m, t, x, •). This new marking is denoted m′ = firing(m, t, •) where
• denotes the fact that no any color has to be instantiated for this firing.

Firing an enabled transition t ∈ Tany from (m,x) with the any color
ca ∈ colorSetany(m, t) leads to a new marking defined by ∀c ∈ C \{ca},∀p ∈ P ,
m′(p)[c] = m(p)[c] − pre(p, t)[c] + post(p, t)[c] and ∀p ∈ P , m′(p)[ca] =
m(p)[ca] − pre(p, t)[ca] − pre(p, t)[any] + post(p, t)[ca] + post(p, t)[any] and a
new valuation x′ = update(m, t, x, ca). This new marking is denoted m′ =
firing(m, t, ca).

We denote by newen((m,x), t, c) the set of transitions that are newly
enabled by the firing of t from (m,x) with the color c (c = • if t ∈ Tany ).

Let us go back to the HCTPN of Figure 2.a, the firing of T1 ∈ Tany from

m0 leads to the marking m1 =


red blue

P1 1 0
P2 0 0
P3 0 0
P4 0 1

. It is noted m0
(T1,•)−−−−→ m1.

Let us now consider the HCTPN of Figure 2.b, the firing of T1 ∈ Tany is

possible only for any = red and leads to the marking m2 =


red blue

P1 0 1
P2 0 0
P3 0 0
P4 1 0

.

It is noted m0
(T1,red)−−−−−→ m2.

If place P2 had two tokens with one blue and one red color, T1 is multi-
enabled, and the firing of T1 ∈ Tany is possible for any = red or any = blue.
For any = blue, it leads to the following marking m3 from this new initial

marking m′
0. m′

0 =


red blue

P1 1 1
P2 1 1
P3 0 1
P4 0 0

 (T1,blue)−−−−−−→ m3 =


red blue

P1 1 0
P2 1 0
P3 0 0
P4 0 1

.

High-level functionalities
We now illustrate the high-level functionalities. In the figures, the guards are
in brown, and the updates are in purple.
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The model in Figure 3 is an HCTPN with a set of three colors C =
{blue, red, black}. Several combinations of color usage, on guards and in
updates, via the $any variable are presented4.

Transition T1 ∈ Tany since at least one arc is associated with the color any.
A firing of this transition produces a blue token in P3 and produces a token in
P2 with the color ($any) used for the firing. Moreover, the value of $any is used
in the precondition (guard) and the postcondition (update). Hence transition
T1 is not enabled by the blue token because of the guard $any ≥ 1. Moreover,
the firing of T1 leads to the execution of the update cpt[$any]=f($any,cpt).
Then the transition T1 will be fired twice, respectively, with red and black
tokens leading to a marking with red and black tokens in P2 and 2 blue tokens
in P3. A blue token remains in P1, and the final value of cpt is {2,4,4}.

P1

$any ≥ 1
T1

[8, 8]
cpt[$any]=f($any,cpt)

P2

P3

any

any
blue

•••

typedef color {blue = 0, red = 1, black = 2};
int [3] cpt = {2,2,5};

int f(int firedColor , int [3] c) {
if (firedColor == red) {

return c[firedColor ]*2;
}
else if {

return c[firedColor] -1 ;
}

}

Fig. 3 HCTPN illustrating high-level manipulation of variables

Time behavior
For any t ∈ Tany, v(t, c) is the valuation of the clock associated with t and the
color c ∈ C. i.e., it is the time elapsed since the transition t has been newly
enabled by m with c ∈ colorSetany(m, t). For other transitions t ∈ Tany, v(t, •)
is the valuation of the clock associated with t.

0̄ is the initial valuation with ∀t ∈ T , ∀c ∈ C ∪ {•}, 0̄(t, c) = 0.

4In the example in this section and in the examples that follow we present models designed
with the tool Roméo. In this tool, $any is used instead of any in guards and updates for syntactic
reasons but both have the same meaning.
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As an example, if we keep only the useful clocks, the initial valuation of

the HCTPN of Figure 2, is v0 =
( • red blue

T1 0
) for Figure 2.a, and v0 =

( • red blue

T1 0 0
) for Figure 2.b,

We now go back to the HCTPN given in Figure 3

The initial marking m0 =


blue red black

P1 1 1 1
P2 0 0 0
P3 0 0 0

 enables the transition T1.

The valuations of the clocks are given by the matrix such that the initial

valuation is v0 =
( • blue red black

T1 0 0
) . Since the set of variables is X = {cpt},

we note a state s = (m, cpt, v). The initial state is q0 = (m0, {2, 2, 5}, v0). The
transition T1 is enabled twice and can fire after elapsing 8 time units for both
enabling. After 8 time units, T1 fires with either the red or the black colors and
then can fire again with the other one. Assume that we first fire with the red

color, the corresponding run is as follows:
(
m0, {2, 2, 5},

( • blue red black

0 0
)) 8−→

(
m0, {2, 2, 5},

( • blue red black

8 8
)) (T1,red)

−−−−−−→

( 
blue red black

P1 1 0 1
P2 0 1 0
P3 1 0 0

, {2, 4, 5},
( • blue red black

8
)) (T1,black)

−−−−−−−→

( 
blue red black

P1 1 0 0
P2 0 1 1
P3 2 0 0

, {2, 4, 4},
( • blue red black ))

Decidability and complexity
The formal semantics of HCTPN is given in (?), in which the complexity and
decidability of verification problems are studied. We give here the result that
will interest us in the following sections: Reachability problem and TCTL (?)
model-checking for bounded High-level Colored Time Petri Net are decidable
and PSPACE-complete.

5 Modeling with HCTPN
This section presents our modeling approach applied to the Trampoline RTOS.
In general, there are three challenges in modeling an RTOS with its application:

• Find a model class that is sufficiently expressive and on which model-
checking algorithms exist, as proposed in the previous Section 4;

• Choose the level of abstraction regarding the desired verification, which
will be specified in Section 5.1;

• Establish modeling rules that allow the same approach on a different OS
and automate the process, as will be presented in Section 5.2.

The Trampoline source code is over 20,000 lines and is mainly written in
the C language. It includes 180 functions modeled manually by a systematic
approach based on HCTPN translation rules in Section 5.2, using the Roméo
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tool (?), extended to support the HCTPN formalism. We describe 55 func-
tions that do not require fine-grained, as imperatives code with C-like Roméo
syntax. The model contains 115 Petri subnets that form a unique one. It con-
tains in total 600 transitions, 550 places, and 250 variables, and other data
structures and variables generated automatically in the compilation phase of
the application, using a developed Goil Template Language (GTL) module.

5.1 Level of abstraction
The code associated with a transition in a HCTPN is executed sequentially
and considered atomic in the state space, i.e., if several variables are updated
on a transition, the intermediate state(s) are not present. This code can be
one or a sequence of instructions, and it can also be a function call written
in the C-like Roméo language. In the modeling step, the association of an
instruction sequence or a C-like function call to a transition reduces the state
space. The execution of the function call associated with a transition is also
considered atomic in the modeling.

The level of abstraction can be defined with atomicity. We can consider
the maximum level of abstraction with one OS service call per transition or
adopt a more detailed level with one instruction per transition. The max-
imum abstraction level leads to a much less fine-grained state observation
and makes checking AUTOSAR requirements impossible. With a detailed
abstraction level, where instruction is assigned to a transition, we consider all
possible interleavings, and the number of states will increase considerably. So
we decided to define an intermediate level of abstraction where we have one
function call per transition, and all non-interruptible code is put in a transi-
tion update in null time. An update can read and/or write variables as the
kernel access is sequential thanks to a global lock. When it is a shared variable
of the modeled system, one must be careful to reproduce the race condition
of the real system. Therefore the modification of a shared variable accessible
in concurrency situations must be cut in two: the reading on a transition and
the writing on the following transition.

5.2 Modeling rules
We consider the following modeling bases:

• The Petri net faithfully describes the operating system control flow.
• The variables and structures used in the model are the same as those of

the operating system.
• Actions and conditions on variables in the model are those of the operating

system control.
• Pointers are represented by indexes in arrays in the model.
• The number of cores is represented by the number of colors in the model.
• All transitions are fired in a time interval [0, 0] because (i) the time is

not necessary for the modeling of the kernel (ii) the knowledge of the
time would apply only to a precise hardware target, and the genericity of
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f

[0, 0]
g[$any]=g[$any]+1

end_g[$any]>0
[0, 0]

end_g[$any]=end_g[$any]-1

end_f

[0, 0]

g

end_g

Fig. 4 Function call mechanism.

the model would be lost, (iii) it is necessary to capture all the possible
interleavings.

• Functions that do not require fine-grained model checking instruction by
instruction (e.g., functions that initialize or increment variables or results
and error comparison functions) are written in the C-like Roméo language
and are associated with single transitions in the model;

• The application model is described by service calls.
• The conditional expressions, as found in the if-else or loops statement,

are represented by the transition guards corresponding to the conditions.
For example, an if-else statement is modeled by a place and two outgoing
transitions where the condition and complementary condition are assigned
to the transition guards.

• The updates of the transitions correspond to the atomic block of
instructions to be executed.

Function call
The function call synchronization is done by tokens deposited in places,
indexed by the variable any representing the core identifier on which the func-
tion call is made. The calling function drops a token in the initial place of the
Petri subnet modeling the called function. A guard on the token blocks the
execution of the calling Petri subnet. Once the called Petri subnet completes
its execution, the calling Petri subnet is released. The token is finally con-
sumed to avoid accumulation in the last place, causing an unbounded Petri
net. Figure 4 presents the mechanism.

5.3 Multi-core RTOS modeling
The source code of Trampoline includes both the single-core and the multi-
core versions. To unify the code of the two versions, a set of macros allows us
to generate adequate code according to whether we compile for multi-core or
single-core. The RTOS model is composed of the Application Programming
Interface (API) services and the kernel. Each modeled Trampoline source code
function is described by a Petri subnet and, if needed, by a Roméo function
defined in a C-like syntax. The Roméo tool allows using a variable any, which
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gives the value of the color used for the transition firing. A global lock prevents
concurrent execution of the kernel by the cores in the multi-core implemen-
tation of Trampoline. This lock is acquired when calling an OS service by an
application task. We represented it by a Boolean variable serving as a guard
on the transitions modeling the service call. The transition is fireable if the
variable is false; the variable is set to true when the transition is fired.

5.3.1 Services modeling

The API contains the various services available to the application. The API
function calls allow the application’s tasks to access the requested service in
user mode. The kernel is locked during its execution on a core by entering
kernel mode → the global lock is then taken to prevent competitive situations
between the cores in the kernel.

All the services of the API layer are modeled with HCTPNs in the same
manner. The first transition of the model describes that when an API function
is called to execute the requested service, the core switches from user mode to
kernel mode using the kernel_mode array. This passage is local to this core,
hence the array kernel_mode is indexed by $any. The variable $any gives
the value of the color used for the transition firing. Thus, the transition firing
can be performed simultaneously for different cores. The global lock variable
lock_kernel is a shared variable that prevents simultaneous service calls by
different cores. When the API function completes its execution, it unlocks the
kernel (lock_kernel = 0), and another service can then be called → it finally
leaves the kernel mode (kernel_mode[$any] = 0).

Let us consider the API GetAlarmBase service that allows to obtain the
requested information on the alarm base and to store it in a global vari-
able. An error is returned if the alarm identifier is invalid. This service
call model is shown in Figure 5. GetAlarmBase calls the kernel function
tpl_get_alarm_base_service model5, represented in details in Figure 6.

5.3.2 Kernel functions modeling

The Kernel contains all the low-level functions on which the Trampoline ser-
vices are based. It ensures the start and shutdown of the OS and allows
the activation of tasks, their scheduling, and their synchronization.The kernel
model consists mainly of three components that contain the functions required
by the Trampoline services. We explain each module in the following.

Task manager
The task manager contains the function models that manage the applica-
tion tasks’ activation, synchronization, and termination. They also perform
scheduling and context switch if necessary.All the functions contained in the

5The two double dots (::) are equivalent to an arc in the model. This syntax proposed by Roméo
allows a clear and better organization of the Petri subnet in different XML files, which form only
one Petri net. Thus a function call is ensured by the following syntax: the XML file name of the
Petri subnet:: the place name to which we want to send a token.



Springer Nature 2021 LATEX template

Formal verification of a multicore AUTOSAR OS 17

P1

kernel_mode[$any] == 0
[0, 0]

kernel_mode[$any] =1

lock_kernel ==0
[0, 0]

lock_kernel =1
tpl_tpl_get_alarm_base_service::P1[$any] =
tpl_tpl_get_alarm_base_service::P1[$any] +1

Call_tpl_get_alarm_base_service

tpl_tpl_get_alarm_base_service::End[$any] >0
[0, 0]

lock_kernel =0
tpl_tpl_get_alarm_base_service::End[$any] =
tpl_tpl_get_alarm_base_service::End[$any] -1

[0, 0]
kernel_mode[$any] = 0

End

Fig. 5 GetAlarmBase service model

task manager are modeled. It includes the function models tpl_activate_-
task_service and tpl_terminate_task_service responsible for activating and
terminating a task and setting its state, respectively.

Scheduler
The scheduler model is the core module of the kernel; it is based on the
one proposed by the OSEK/VDX and AUTOSAR standards. The multicore
version of Trampoline implements a fixed priority partitioned scheduler. The
scheduler manages a data structure, tpl_kern, to store information about the
running process and uses functions to handle the list of ready tasks and ISRs
of category 2. Among them, we can highlight the following modeled functions:

• tpl_put_new_proc adds a newly activated process to the list of ready
processes;

• tpl_put_preempted_proc adds a preempted process to the list of ready
processes;

• tpl_remove_front_proc removes the highest priority process from the
list of ready processes.

Counter manager
The counter manager model handles any interruptions coming from the timer.
When an interrupt occurs, the action related to the set of expiring alarms is
executed. The action of the alarm can correspond to the activation of a task,
an event, or a call-back function. The interrupt can also cause a rescheduling.
Alarms and counters are defined statically according to the OSEK/VDX and
AUTOSAR standards. In the model, tpl_call_counter_tick increments the
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counter tick and checks the next alarm date. tpl_raise_alarm model describe
when an alarm time object is raised.

Alarm base information can be obtained through the
tpl_get_alarm_base_service kernel function called by GetAlarmBase API
service (Figure 5). Figure 6 present this HCTPN model that provides the
information on the alarm base. The Petri subnet also checks if the interrupts
are not disabled by the user when calling an API service and that the alarm_id
is a valid alarm identifier using function calls written in Romeo language.

P1

[0, 0]
alarm_id_var[$any] = alarm_var[$any].stat_part.timeobj_id

result[$any] = E_OK

[0, 0]
CHECK_INTERRUPT_LOCK(result[$any])

CHECK_ALARM_ID_ERROR(alarm_id_var[$any], result[$any])

result[$any] == E_OK
[0, 0]

alarm = tpl_alarm_table[alarm_id_var[$any]]
info.ticksperbase = alarm.stat_part.counter.ticksperbase

info.maxallowedvalue = alarm.stat_part.counter.maxallowedvalue
info.mincycle = alarm.stat_part.counter.min_cycle

result[$any]
!= E_OK
[0, 0]

[0, 0]
process_error(result[$any])

End

Fig. 6 tpl_get_alarm_base_service model

5.3.3 Properties of the model

In the absence of an application, the model of the OS kernel remains in its
initial state. In this section, we study the properties of OS kernel state space
when it is called upon by any application.

The variables and the code of the kernel are included in the model.
Let N = (P, T,X,C, pre, post, (m0, x0), guard, update, I) the HCTPN

model of the OS. The set X is the set of variables of the OS. The state of pro-
gram pointers is given by the marking. An observable state s = (M,x) of the
model is a marking M and a valuation x of X.

By modeling the OS kernel with an assembler instruction per Petri net
transition, all the states would be observable and we would get a perfectly
equivalent net to the kernel but at the cost of a state space explosion. As
explained in Section 5.1, this is not the level of abstraction chosen in the
modeling phase. Atomicity avoids this explosion and allows conciseness of the
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model, but this means that all the states of the kernel are not observable and
are not in the state space of the model.

Recall that all instructions associated with a transition t ∈ T are executed
sequentially (like the actual code of the kernel on a given core) and considered
atomic in the state space. To observe a particular state enclosed in a sequence
of instructions associated with a transition t, we only need to add a place in
the Petri net at the point we want to observe.

The use of colors allows the simultaneous enabling of transitions for differ-
ent cores. However, the kernel access is sequenced thanks to a global lock. In
addition, atomicity is applied on uninterruptible code executed in kernel mode
in null time. Hence, the state space of the complete model abstracts the state
space of the kernel. We then have the following proposition:

Proposition 1 Modulo atomicity, the formal model N and the RTOS kernel have
the same state space over the RTOS variables.

It means that as in (?), for any application, N contains all the paths that
might be traversed during the execution of the operating system program.

It is important to note that for another version of the OS kernel without
global lock, it would be necessary to ensure that any access to a global OS
variable is in a separate transition.

Property 1 The model N of the kernel is bounded.

Proof The variables manipulated by the kernel (and then by the model N ) take their
values in a finite set i.e. either bounded integers (such as the value of task priority)
or enumerated types (such as the state of a task). Moreover the program pointers
have a finite number of values hence the markings are bounded and then also the
model N . □

Since reachability and TCTL model-checking are decidable for bounded
HCTPN, as discussed in Section 4.2, this property is essential to guarantee
verification termination. When the HCTPN is not bounded, the number of
markings is unlimited, preventing the state calculation from being completed.

5.4 Application modeling
An application contains a concurrent set of tasks that interact with the oper-
ating system through system calls such as ActivateTask() or TerminateTask().
An application model consists of two parts: (i) the modeling of tasks and their
interaction with the RTOS model and (ii) the automatic generation of data
structures for the Roméo tool from the OIL application description.
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5.4.1 RTOS and application models interaction

The first part is a set of Petri subnets, one per application task. The network
reproduces the control flow graph of the task that accesses the operating system
services through system calls. The RTOS service calls are made as explained in
Section 5.2. The OS model controls the task running in the model through the
function isRunning(taski) associated with the transition guards. When taski
is scheduled, and the OS is not running, then the function isRunning(taski)
returns 1, allowing the firing of the transition. The IsReady(taski) guards on
Acttaski

means that the task model is ready for execution. The transitions
contain intervals of the form [BCET,WCET ]6 and allow checking the appli-
cation schedulability and temporal properties as we did in our previous work
(?). Since our objective is not to study the application’s schedulability, time
is neglected at the task level, setting the intervals to [0, 0], and all interleaving
API system calls are considered.

Figure 7 shows an example of modeling an application task that calls the
GetAlarmBase service, which provides information on the alarm base.

Task1

Run11

IsRunning(task1) == 1
[0, 0]

Run12

IsRunning(task1 == 1
[0, 0]

GetAlarmBase[$any]::P1=GetAlarmBase[$any]::P1+1
alarm_var[$any]=alarm_descriptor

Run13

(IsRunning(task1) == 1) and (GetAlarmBase::End[$any]>0)
[0, 0]

GetAlarmBase::End[$any]=GetAlarmBase::End[$any]-1

IsReady(task1)
Acttask1

[0, 0]

•

Fig. 7 Application task model. Time is not considered at the task level, setting the intervals
to [0, 0].

5.4.2 The GTL module

The second part is the set of data structures corresponding to the descriptors
of the different objects in the application: tasks, alarms, spinlocks, etc. These
data structures are automatically transposed from the OIL description to the
Roméo C-like language.

6WCET corresponds to the worst execution time of the code between two service calls, and
BCET to the best case execution time of the code between two service calls.
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Roméo
Template
Module

(.goilTemplate)

C-like
Roméo

file
(.c)

Kernel
sources (.c/.h)

OS infras-
tructure

(.c/ .asm)

OIL appli-
cation

description

Application
sources
(.c / .h)

XML appli-
cation

description

Templates
(.goilTemplate)

Static data
structures

(c/.h)
Goil

Compiler

C compiler
+ linker

Executable
code

(binary)

Fig. 8 Trampoline application configuration with the added GTL module.

In practice, we added a module to the Trampoline OIL compiler to auto-
matically generate the structures used by Roméo from the OIL description
of the application, as shown in Figure 8 in red. Goil compiler includes a tem-
plate interpreter for file generation with the extension .goilTemplate. These
template files are created in the Goil Template Language (GTL), which allows
the application’s configuration data to be combined with text to generate files.
The syntax of this language is detailed in the Trampoline OS documentation
in the git7. The added GTL module is a set of template files that produces the
Roméo file.

6 Formal verification of Autosar compliance
AUTOSAR conformance testing is based on requirements verification by exe-
cuting a test suite. In our work, we propose a verification chain that includes
the steps presented in Figure 1, page 4. The requirement expression can be
simple through an observer modeled by an additional HCTPN associated in a
non-intrusive way with the original model without altering its behavior. The
satisfaction of the requirement is thus verified by a reachability property of a
particular state. This section presents the observer model used to verify multi-
core OS compliance with the AUTOSAR standard using model-checking. The
advantage of this technique is to be able to verify the AUTOSAR requirements
on any application and not only on the Autosar test suite by using observer
and RTOS models.

7https://github.com/TrampolineRTOS/GTL/blob/master/documentation/GTL.pdf

https://github.com/TrampolineRTOS/GTL/blob/master/documentation/GTL.pdf
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t1

Core 0 Core 1

t2
activate_task_-

across_cores
set_event_-
accross_cores should_not_expire

SetAbsAlarm(atac, 10, 0)

SetRelAlarm(seac, 20, 0)

SyncAllCores(sync) ActivateTask(t2)

SetAbsAlarm(sne, 15, 0)

CancelAlarm(sne)

SetRelAlarm(sne, 5, 0)

CancelAlarm(sne)

SetRelAlarm(sne, 5, 0)

GetAlarmBase(sne, alarmRef)/GetAlarm(sne, tickRef)

CancelAlarm(sne)

WaitEvent(t2_event)

SetEvent(t2, t2_event)

SyncAllCores(sync)

Fig. 9 mc_alarm_s1 test sequence

6.1 AUTOSAR OS tests
The operating system compliance with the AUTOSAR standard is determined
at the end of the test suite that comprises a set of applications. The applica-
tion is a test sequence containing a set of service calls, and each service call
represents a test case. When all test cases succeed, the test sequence is verified.
Similarly, all test sequences that are completed correctly lead to the success of
the test suite, thus verifying the conformance.

We rely on the set of multicore test cases developed by the Trampoline
project to verify the OS compliance with the AUTOSAR standard. The project
is available in the Trampoline repository8, and it contains 75 AUTOSAR OS-
specific tests, of which 18 are dedicated to multicore. These tests implement
a series of test cases that are derived from the requirements listed in (?) with
good coverage.

We illustrate the first AUTOSAR test sequence of the Trampoline reposi-
tory, mc_alarm_s1, in Figure 9. This example contains a set of three tasks
τ = {t1, t2, should_not_run} to be executed on two cores (Core 0 and Core
1), and three alarms assigned to Core 0, Λ= {activate_task_accross_cores,
set_event_accross_cores, should_not_expire}. Since the should_not_run
task does not run, it is not shown on Figure 9. This sequence was
developed to verify the AUTOSAR requirements from SWS_Os_00632 to
SWS_Os_00640 in Table 4. We detail our verification approach on this
application in Section 7.1.

8They are available in the Trampoline repository: https://github.com/TrampolineRTOS/
trampoline/tree/master/tests/functional

https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
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6.2 AUTOSAR requirements observers
According to our approach, each AUTOSAR requirement is formalized by an
observer able to assess its compliance. Therefore, the AUTOSAR specifications
are individually verified by model-checking on an application. The observer
is modeled by a Petri net that evolves according to the operating system
evolution without altering its behavior. The reachability of the observer’s states
is examined to verify the satisfaction of the requirement.

How an observer works in the model?
The observer relies on a function written in Roméo language, returning a
boolean according to the satisfaction of the conditions forming the require-
ment. The observers are built in a general way. Each requirement is formalized
by an observer and translated by a C-like function that returns true for each
satisfied condition. These functions are called in the RTOS model at loca-
tions updating the data structures involved in verifying the requirement. The
observer uses a Roméo feature called committed transitions, i.e., transitions
with a higher priority, to guarantee they are fired before all the other system
transitions. Thus, if there are several firable transitions at a given state of
execution, the committed ones are fired first before all the others.

The requirement verification is satisfied if the observer reaches his final
place. First, the observer waits in its initial state containing a token until the
first condition of its transition guard becomes true to evolve and fire its com-
mitted transition. It then moves to the next state to check the second condition
until reaching the final state and does not modify, in any case, the RTOS
model’s behavior or the application. Proper verification of future observer
states is ensured by resetting the other conditions of the requirement once the
first one is true.

Requirement observer model
Let’s consider the observer model of the SWS_Os_00639 requirement (Figure
10), which consists in verifying that the GetAlarmBase service shall also work
on an alarm that is bound to another core. This requirement is checked using
two conditions during the service call. First, we check whether the core to
which the alarm is statically assigned differs from the core identifier on which
the service is executed. Then, we verify that the service call finalized its exe-
cution and exited the kernel mode. Thus, the test function is called at the
beginning and end of the service call using any that represents the core_id.
The final state of the observer is reached only if both conditions are satisfied.
All the observers used are based on the same structure, contain only committed
transitions, and do not compromise the evolution of the RTOS model.

6.3 Model-checking with Roméo
Model-checking allows the exploration of the system’s state space from its
initial state, taking as input a logic formula (such as TCTL temporal logics
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SWS_Os_00639

boolean_639.condition1==1
[0, 0]

Corei_verification

boolean_639.condition2==1
[0, 0]

Kernel_exit

typedef struct{
bool condition1;
bool condition2;

} Requirement_conditions

Requirement_conditions boolean_639;

Requirement_conditions SWS_639_Observer(int core_id ,
Requirement_conditions boolean_639 , tpl_time_obj alarm_desc)
{

// core_id comparison
if (alarm_desc.core_id != core_id)
{

boolean_639.condition1 =1;
// Erasing the past
boolean_639.condition2 =0;

}
// Kernel exit if everything was OK
if(( alarm_desc.core_id != core_id )&&( kerne_mode[core_id ]==0)
&&( result_var[core_id ]== E_OK))
{

boolean_639.condition2 =1;
}
return boolean_639;

}

Fig. 10 SWS_Os_00639 Observer model

(?)) to be verified. Thanks to property in Section 5.3.3, the system model
is bounded and reachability problem and TCTL model-checking are decid-
able with PSPACE-complete complexity (??). Requirement in Roméo are
expressed in a subclass of TCTL and verified with an on-the-fly efficient
algorithm (?).

The requirement verification is performed using the logical formula AG((p)
implies AF(q)), expressed by the syntax (p)->(q). The formula (p)->(q) holds
if and only if whenever p holds, eventually q will hold. Verifying a requirement
is written in the form of this response property (AG((p) implies AF(q))),
which can be considered a liveness property and be reduced by duality to a
safety property. This response property of the generic observer reduces the
problem to the verification of two simple atomic properties, p, and q. Some
requirements can be checked by AF (g), i.e., A: Forall and F: Eventually, such as
requirements SWS_Os_00668 or SWS_Os_00669. However, one can reduce
all requirements to the AG((p) =⇒ AF (q)) response property by setting p
to true and thus always keeping the same observer.

Based on the observer model of the SWS_Os_00639 requirement (Figure
10) for the first AUTOSAR application test, the corresponding verification
formula is as follows: (SWS_Os_0063[0])->(Kernel_exit[0]). The token in the
initial place of the model triggers the observer once the guard condition is
satisfied.
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7 Compliance of the AUTOSAR Trampoline OS
The set of multicore test sequences proposed by the Trampoline project is
modeled following the procedure detailed in the previous section to conduct
a formal verification with the Roméo model-checker. This section illustrates
the application of our formal verification approach on the two applications
mc_alarm_s1 and mc_spinlock_s1 with the verification results obtained.
These examples include several test cases that verify the satisfaction of a set
of requirements related to alarms and spinlocks.

7.1 Alarm application
This part focuses on the first multicore test sequence of the Trampoline repos-
itory, mc_alarm_s1, represented in Figure 9. Tasks are partitioned such that
t2 runs on Core 1, while t1 and should_not_run run on Core 0 and task t1
has a lower priority than task should_not_run.

Initially, t1 is an autostart task that runs on Core 0 in the RTOS startup
phase. This task calls the API service SetAbsAlarm and SetRelAlarm.
SetAbsAlarm(AlarmID, start, cycle) activates the task t2 assigned to alarm
activate_task_across_cores when its absolute value in start ticks is reached.
If the alarm is single, cycle is equal to zero, otherwise the cycle value is greater
than 0 in the case of a cyclic alarm. Core 0 must then acquire the kernel lock
and set alarm activate_task_across_cores. When it expires, the reschedul-
ing is done for Core 1, and as a result, a context switch notification is sent
with an inter-core interrupt to execute task t2. The SetAbsAlarm service
call will verify the SWS_Os_00632 requirement, checking if an alarm can
activate a task on a different kernel. The set_event_across_cores alarm acti-
vates the assigned event for task t2 considered as an extended task with the
SetRelAlarm(AlarmID, increment, cycle) service call, after increment ticks
have elapsed. Once the interrupt sent by Core 0 is considered, task t2 starts
executing and calls the following services for the should_not_expire alarm:
SetAbsAlarm, CancelAlarm, SetRelAlarm, and GetAlarmBase (Figure 5),
ending with the event waiting. Task should_not_run assigned to alarm
should_not_expire will never be executed on Core 1 as the alarm is canceled
at the end of the test sequence. This service calls set ensures that they work
when an alarm occurs on a different core.

7.1.1 Application model

The developed application model precisely describes the life cycle of
each task through the performed system calls. Figure 11 shows the test
sequence of task t1. This task allows activating t2 through the expira-
tion of alarm activate_task_across_cores and setting its event by alarm
set_event_across_cores. Alarm activate_task_across_cores is enabled by
the SetAbsAlarm system call, taking as parameters the required alarm and
the expected absolute value to reach for expiry through the alarm_var and
start_var variables, respectively. The t2 test sequence is modeled similarly
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based on the called services. The application model is thus constructed for
each test sequence to verify the whole multicore requirements.

Task1

Run11

IsRunning(task1) == 1
[0, 0]

Run12

IsRunning(task1 == 1
[0, 0]

SetAbsAlarm[$any]::P1=SetAbsAlarm[$any]::P1+1
alarm_var[$any]=activate_task_accross_cores_alarm_desc

starts_var[$any]=activate_task_accross_cores_alarm_desc.date
cycle_var[$any]=activate_task_accross_cores_alarm_desc.cycle

Run13

(IsRunning(task1) == 1) and (SetAbsAlarm::End[$any]>0)
[0, 0]

SetAbsAlarm::End[$any]=SetAbsAlarm::End[$any]-1

Run14

IsRunning(task1) == 1
[0, 0]

SetRelAlarm::P1[$any]=SetRelAlarm::P1[$any]+1
increment_var[$any]=set_event_accross_cores_alarm_desc.date

cycle_var[$any]=set_event_accross_cores_alarm_desc.cycle

Run15

(IsRunning(task1) == 1) and (SetRelAlarm::End[$any]>0)
[0, 0]

SetRelAlarm::End[$any]=SetRelAlarm::End[$any]-1

IsReady(task1)
Acttask1

[0, 0]

•

Fig. 11 Task1 model of the mc_alarm_s1 test sequence

7.1.2 Verification results

We apply the verification approach presented in this section to check
the requirements covered by this example. We formalize each requirement
by an observer model as presented in Section 6.2. The first requirement
SWS_Os_00632, for example, is represented by the observer model in Figure
12. It verifies that an alarm can activate a task on a different core. Thus, we
must check that alarm activate_task_across_cores assigned to core 0 can
activate task t2 on Core 1. This alarm is set by the service SetAbsAlarm that
task t1 calls, as shown in the model in Figure 11. We first verify that the alarm
core ID and the task core ID are distinct, then we ensure that the task is cor-
rectly activated on Core 1. Two states are observed by the function: the ready
state when the task is elected and the running state when it is in execution.
Finally, the kernel-mode exit condition is verified after the activation of the
task.
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SWS_Os_00632

boolean_632.condition1==1
[0, 0]

Corei_verification

boolean_632.condition2==1
[0, 0]

task_running

boolean_632.condition3==1
[0, 0]

Kernel_exit

Requirement_conditions boolean_632;

Requirement_conditions SWS_632_Observer(int core_id ,
tpl_time_obj alarm_desc , Requirement_conditions boolean_632 ,
tpl_proc task)
{

// core_id comparison + task is ready
if (( alarm_desc.core_id != task.core_id) &&
(tpl_dyn_proc_table[task.id]. state_d == READY_AND_NEW)
or (tpl_dyn_proc_table[task.id]. state_d ==READY ))
{

boolean_632.condition1 =1;
// Erasing the past
boolean_632.condition2 =0;
boolean_632.condition3 =0;

}

// task is running
if(( alarm_desc.core_id !=task.core_id )&&
(tpl_dyn_proc_table[task.id]. state_d == RUNNING ))
{

boolean_632.condition2 =1;
}

// Kernel exit if everything was OK
if(( alarm_desc.core_id != task.core_id )&&( kerne_mode[core_id ]==0)
&&( result_var[core_id ]== E_OK))
{

boolean_632.condition3 =1;
}
return boolean_632;

}

Fig. 12 SWS_Os_00632 Observer model

Table 1 shows the verification results of the requirements covered by this
application, listed in Table 4. The column time (s) refers to the time needed to
obtain the model-checker’s response. The memory (MB) column is the memory
consumed when checking the property (p)->(q) of the observer corresponding
to a requirement. The result column shows that the property is satisfied by
the model. The requirements verification is performed in a similar time and
memory.

7.2 Spinlock application
The AUTOSAR standard defines the spinlock mechanism for tasks and
ISR2s with several locking methods. For example, with the method
LOCK_WITH_RES_SCHEDULER, the specific pre-declared resource
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Table 1 Computing time and memory used for observer verification - mc_alarm_s1. For
all verifications, the result is true.

(p) → (q)

Memory used (MB) Computing time (s)
SWS_Os_00632 662.0 12.4
SWS_Os_00633 647.7 12.1
SWS_Os_00636 666.5 12.1
SWS_Os_00637 663.7 12.0
SWS_Os_00638 656.0 12.1
SWS_Os_00639 662.5 12.1
SWS_Os_00640 672.7 12.1

RES_SCHEDULER is got, and all other processes will be prevented from
preempting for the time that the resource is held. Following the meth-
ods LOCK_ALL_INTERRUPTS or LOCK_CAT2_INTERRUPTS, all
interrupts or OS interrupts are suspended, respectively. Tasks and ISR2s
can simultaneously access the kernel by calling spinlock services on different
cores. Only one core can acquire a specific spinlock with the GetSpinlock
or TryToGetSpinlock API services. GetSpinlock(SpinlockId) allows the
spinlock to be occupied by the calling core. If another core already takes
the spinlock, the tasks or ISR2s wait in a loop, repeatedly checking for
the shared lock to become free. TryToGetSpinlock(SpinlockId, success)
is similar to GetSPinlock, except the busy-waiting if a different core
acquires the spinlock. Thus, TryToGetSpinlock returns without wait-
ing for the spinlock release, setting its return variable success to
TRY TOGETSPINLOCK_NOSUCCESS. The spinlock previously taken
by the GetSpinlock and TryToGetSpinlock services is released using the
ReleaseSpinlock(SpinlockId) service.

We present in Figure 13 the mc_spinlock_s1 multicore test sequence of
the Trampoline repository. The application contains four spinlocks handled by
the services mentioned above, already_taken, not_successor, lock_isr, and
lock_task, and defines the correct nesting of spinlocks to avoid deadlocks.
Task t1 runs on Core 0, task t2 and the Cat2 Interrupt Service Routine ISR2
run on Core 1 such that task t2 has a lower priority than ISR2. Cat2 ISRs are
supported by OSEK and can make OS calls that may cause a rescheduling.
Task t1 is an autostart task that begins automatically at system start-up. It
calls a set of spinlock API services as shown in Figure 13. First, it gets two
times the same spinlock already_taken with the GetSpinlock service and
ends with the activation of task t2 on core 1. Task t2 tries to get the spinlock
lock_task that Core 0 has. It has an execution budget with protection time
enabled. Once its execution budget is consumed, the operating system module
calls the ProtectionHook() function that sends a software interrupt to the
interrupt handler for enabling the core1’s ISR2. This application verifies the
requirements from SWS_Os_00649 to SWS_Os_00661 listed in Table 4.
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t1

Core 0 Core 1

t2 ISR2 already_taken not_successor lock_task lock_isr

GetSpinlock(already_taken)

GetSpinlock(already_taken)

GetSpinlock(not_successor)

ReleaseSpinlock(already_taken)

GetSpinlock(not_successor)

ReleaseSpinlock(not_successor)

TryToGetSpinlock(lock_task, &success)

GetSpinlock(lock_isr, &success)

ActivateTask(t2)

TryToGetSpinlock(lock_task, &success)

GetSpinlock_IE(lock_task, &success)

ProtectionHook and
call the core1’s ISR2

GetSpinlock(already_taken)

GetSpinlock(already_taken)

ReleaseSpinlock(already_taken)

TryToGetSpinlock(already_taken)

ReleaseSpinlock(already_taken)

TryToGetSpinlock(lock_isr, &success)

Fig. 13 mc_spinlock_s1 test sequence

7.2.1 Application model

We build the application by HCTPN and a declaration written in Roméo lan-
guage as presented in Section 5.4. The declaration gathers constants and data
structures with their initialization, handled by the application. These pieces
of information are extracted from the files generated during the compilation
phase. The application model gathers the models of the two tasks and ISR2,
which constitute it. ISR2 is considered a process activated by the software
interrupt sent at the end of task t2 execution. Its detailed model is represented
in Figure 14. It starts with calling the GetSpinlock service twice to acquire the
same spinlock already_taken and then follows up with a set of service calls.
Each service call represents a requirement check scenario. For example, the
error E_OS_INTERFERENCE_DEADLOCK is expected on the second
attempt to get the spinlock because it already belongs to the calling core.

7.2.2 Verification results

We conduct the verification on the elaborated application model by
adding the observers. All the requirements tested by this application are
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ISR2

Run11

IsRunning(ISR2) == 1
[0, 0]

Run12

IsRunning(ISR2 == 1
[0, 0]

GetSpinlock[$any]::P1=GetSpinlock[$any]::P1+1
spinlock_id[$any]=already_taken_id

spinlock_var[$any]=already_taken_spinlock_desc

Run13

(IsRunning(ISR2) == 1) and (GetSpinlock::End[$any]>0)
[0, 0]

GetSpinlock::End[$any]=GetSpinlock::End[$any]-1

Run14

IsRunning(ISR2) == 1
[0, 0]

GetSpinlock::P1[$any]=GetSpinlock::P1[$any]+1
spinlock_id[$any]=already_taken_id

spinlock_var[$any]=already_taken_spinlock_desc

Run15

(IsRunning(ISR2) == 1) and (GetSpinlock::End[$any]>0)
[0, 0]

GetSpinlock::End[$any]=GetSpinlock::End[$any]-1

Run16

IsRunning(ISR2) == 1
[0, 0]

ReleaseSpinlock::P1[$any]=ReleaseSpinlock::P1[$any]+1
spinlock_id[$any]=already_taken_id

spinlock_var[$any]=already_taken_spinlock_desc

Run17

(IsRunning(ISR2) == 1) and (ReleaseSpinlock::End[$any]>0)
[0, 0]

ReleaseSpinlock::End[$any]=ReleaseSpinlock::End[$any]-1

Run18

IsRunning(ISR2) == 1
[0, 0]

TryToGetSpinlock::P1[$any]=TryToGetSpinlock::P1[$any]+1
spinlock_id[$any]=already_taken_id

spinlock_var[$any]=already_taken_spinlock_desc

Run19

(IsRunning(ISR2) == 1) and (TryToGetSpinlock::End[$any]>0)
[0, 0]

TryToGetSpinlock::End[$any]=TryToGetSpinlock::End[$any]-1

Run20

IsRunning(ISR2) == 1
[0, 0]

ReleaseSpinlock::P1[$any]=ReleaseSpinlock::P1[$any]+1
spinlock_id[$any]=already_taken_id

spinlock_var[$any]=already_taken_spinlock_desc

Run21

(IsRunning(ISR2) == 1) and (ReleaseSpinlock::End[$any]>0)
[0, 0]

ReleaseSpinlock::End[$any]=ReleaseSpinlock::End[$any]-1

Run22

IsRunning(ISR2) == 1
[0, 0]

TryToGetSpinlock::P1[$any]=TryToGetSpinlock::P1[$any]+1
spinlock_id[$any]= lock_isr_id

spinlock_var[$any]=lock_isr_spinlock_desc

Run23

(IsRunning(ISR2) == 1) and (TryToGetSpinlock::End[$any]>0)
[0, 0]

TryToGetSpinlock::End[$any]=TryToGetSpinlock::End[$any]-1

IsReady(ISR2)
ActISR2
[0, 0]

•

Fig. 14 ISR2 model of the mc_spinlock_s1 test sequence
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formalized. Figure 15 shows the observer models verifying the require-
ments SWS_Os_00650 and SWS_Os_00651. Both requirements concern
the ability to call GetSpinlock from tasks and ISR2s and are checked
through the same function SWS_650_651_Observer. The first field of the
boolean_650_651 data structure, condition1, triggers the observer of require-
ment SWS_Os_00650 when the task is running. Similarly, the second field,
condition2, triggers the observer of requirement SWS_Os_00651 when the
ISR2 is executed. The observers end their verification with the kernel-mode
exit condition via the third field condition3, reset with the check of each trigger
condition.

The description of the requirements from SWS_Os_00649 to
SWS_Os_00661, verified by this test sequence, are found in Table 4. The
property (p)->(q) is satisfied by the Roméo model-checker for each require-
ment observer, such that p represents the first place and q the last place of the
observer. The verification time in seconds and the memory consumed in MB
for each observer verification are included in Table 2.

Table 2 Computing time and memory used for observer verification - mc_spinlock_s1.
For all verifications, the result is true. The state space size is around 2000 symbolic states
with a Lower Bound of 1897 states for the verification of the requirement SWS_Os_00650
and an Upper Bound of 2101 for the verification of the requirement SWS_Os_00654.

(p) → (q)

Observer Memory used (MB) Computing time (s)
SWS_Os_00649 108.2 2.7
SWS_Os_00650 107.7 2.7
SWS_Os_00651 111.6 2.8
SWS_Os_00652 121.7 2.7
SWS_Os_00653 120.9 2.7
SWS_Os_00654 130.2 2.8
SWS_Os_00655 114.4 2.7
SWS_Os_00656 113.5 2.7
SWS_Os_00657 126.6 2.7
SWS_Os_00658 108.5 2.7
SWS_Os_00659 121.6 2.7
SWS_Os_00661 109.7 2.7

7.3 Discussion
In our verification process, the computer on which the verification is conducted
has a quad-core Intel Core i5 processor running at 2.4 GHz and a RAM of 16
GB. We were not confronted with the combinatorial explosion problem of the
state spaces. The combinatorial explosion can be induced by the interleaving
of multicore scenarios such that all concurrent events are enumerated in the
state space, which makes its size vary exponentially. Interleaving is induced
by the time added at the application level. We consider all possible interleav-
ing by setting all application model transitions to [0, 0]. The AUTOSAR test
sequences are sequential and do not involve concurrency, therefore, we did not
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SWS_Os_00650

boolean_650_651.condition1==1
[0, 0]

task_running

boolean_650_651.condition3==1
[0, 0]

Kernel_exit

SWS_Os_00651

boolean_650_651.condition2==1
[0, 0]

ISR_running

boolean_650_651.condition3==1
[0, 0]

Kernel_exit

Requirement_conditions boolean_650_651;

Requirement_conditions SWS_650_651_Observer(int core_id ,
tpl_proc task ,tpl_proc isr ,Requirement_conditions boolean_650_651)
{

// Task is running
if (tpl_dyn_proc_table[task.id]. state_d == RUNNING)
{

boolean_650_651.condition1 =1;
// Erasing the past
boolean_650_651.condition3 =0;

}

// ISR2 is running
if (tpl_dyn_proc_table[isr.id]. state_d == RUNNING)
{

boolean_650_651.condition2 =1;
// Erasing the past
boolean_650_651.condition3 =0;

}

// Kernel exit
if(kerne_mode[core_id ]==0)
{

boolean_650_651.condition3 =1;
}
return boolean_650_651;

}

Fig. 15 SWS_Os_00650 and SWS_Os_00651 Observer models

have interleaving in our verification. However, the model allows checking all
possible execution paths and interleaving of service calls (?).

Thanks to the expressiveness of the chosen HCTPN model class, all test
applications9 can be easily modeled with the stated observer technique. All
AUTOSAR multi-core operating system specifications were met for the fifteen
modeled test applications, and the verification time is between 2.7 and 11
seconds consuming between 100 and 600 MB of memory. The response time of
the model-checker represents the time needed to explore the set of state spaces
and check the property.

9mc_alarms_s1 to mc_taskTermination_s2 are modeled and verified except for
mc_taskTermination_s1, mc_schedtables_s1, and mc_autostart_s3 that are in progress:
https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional

https://github.com/TrampolineRTOS/trampoline/tree/master/tests/functional
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The difference between the computation time and memory size obtained
when checking the properties is explained by the fact that the state space
calculation is distinct for applications. For example, the alarm application
leads to the rescheduling of core 1 on core 0. In contrast, there is never any
rescheduling in the spinlock application, and a core cannot progress anymore
when another core holds the spinlock. That implies a different calculation of
the state space.

The time and memory size computed when checking the requirements of
an application are almost the same because the response property is true and
its verification involves exploring the whole state space. In contrast, if the
property is false, the state space computation will stop as soon as possible,
and the measures will differ. However, this was not the case in our verification,
where the properties were always satisfied.

Several factors helped prevent the exponential computation time or mem-
ory size explosion. Among them are the model atomicity, the sequential access
to the kernel through a global lock, except for the spinlock services where the
cores can access simultaneously, the complexity of the application, and its small
number of cores. The approach is efficient for AUTOSAR compliance testing.

8 Conclusion
In this work, we have presented an approach that determines the compliance
of the AUTOSAR multicore real-time operating system (RTOS) from its for-
mal model. The RTOS formal model built with a High-level Colored Time
Petri Net (HCTPN) embeds the operating system’s control flow, variables, and
data structures. The application models constructed represent the AUTOSAR
multicore test sequences. The RTOS and application models form a complete
model that allows performing verification. It describes the deployment of the
application on the operating system through service calls. For each application,
the conformity of the operating system is verified according to the AUTOSAR
specifications. Each specification is formalized with an observer connected to
the model that verifies the satisfaction of its conditions. When its final state is
reached, the specification they translate is well respected by the operating sys-
tem during its execution. Reachability verification is thus performed through
model-checking by exhaustively exploring the system’s state space from its
initial state.

We applied our approach to Trampoline’s RTOS, an embedded operating
system aligned to the OSEK/VDX and AUTOSAR standard. We modeled the
set of multicore test cases developed by the Trampoline project and verified
the compliance of the RTOS with the AUTOSAR standard.

In future work, we propose to design a Domain Specific Language
(DSL) that would be dedicated to the specification of small OS such as an
OSEK/VDX or AUTOSAR compatible OS. From this description, the OS
source code and the HCTPN model would be generated. In this way, the
guarantee that the implemented OS strictly matches the model and that the
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checked properties are also respected by the target implementation would be
strengthened by removing manual translations between the OS source code
and its model.

This research work has been partly funded by ANRT and Huawei
Technologies France under doctoral contract CIFRE2019-0798.
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A Requirements corresponding to multicore OS

SWS_OS_00568 Execute a TASK on each core
SWS_OS_00569 Scheduling on each core
SWS_OS_00602 Possible to set an Event of another core if application has access
SWS_OS_00604 SetEvent’s call is synchronous
SWS_OS_00605 SetEvent’s error are handled in the calling core
SWS_Os_00622 WaitEvent returns E_OS_SPINLOCK if the calling core has spin-

locks
SWS_Os_00624 Schedule returns E_OS_SPINLOCK if the calling core has spinlocks
SWS_Os_00625 GetCoreId callable before StartOs
SWS_Os_00626 GetNumberOfActivatedCores returns the number of activated cores
SWS_Os_00627 Macros OS_CORE_ID_0, OS_CORE_ID_1
SWS_Os_00628 Macros OS_CORE_ID_MASTER
SWS_Os_00632 An Alarm can activate a task on a different core
SWS_Os_00633 An Alarm can set an event on a different core
SWS_Os_00634 An Alarm is processed on the alarm’s core
SWS_Os_00635 An Alarm callback is executed on the alarm core (SC1 only)
SWS_Os_00636 SetRelAlarm work on an alarm on a different core
SWS_Os_00637 SetAbsAlarm work on an alarm on a different core
SWS_Os_00638 CancelAlarm work on an alarm on a different core
SWS_Os_00639 GetAlarmBase work on an alarm on a different core
SWS_Os_00640 GetAlarm work on an alarm on a different core
SWS_Os_00641 A schedtable can activate tasks bound on another core
SWS_Os_00642 A schedtable can set an event bound on another core
SWS_Os_00643 Schedtable be processed on its own core
SWS_Os_00644 StartScheduleTableAbs can start schedtable on another core
SWS_Os_00645 StartScheduleTableRel can start schedtable on another core
SWS_Os_00646 StopScheduleTable can stop schedtable on another core
SWS_Os_00647 GetScheduleTableStatus can get the status of a schedtable on another

core
SWS_Os_00648 OS Provides a Spinlock mechanism
SWS_Os_00649 GetSpinlock service
SWS_Os_00650 GetSpinlock callable from Tasks
SWS_Os_00651 GetSpinlock callable from ISRS2
SWS_Os_00652 TryToGetSpinlock service
SWS_Os_00653 TryToGetSpinlock callable from Tasks
SWS_Os_00654 TryToGetSpinlock callable from ISRS2
SWS_Os_00655 ReleaseSpinlock service
SWS_Os_00656 ReleaseSpinlock callable from Tasks
SWS_Os_00657 ReleaseSpinlock callable from ISRS2
SWS_Os_00658 Error if trying to get a spinlock that already belongs to the calling

core from a task
SWS_Os_00659 Error if trying to get a spinlock that already belongs to the calling

core from an ISRS2
SWS_Os_00661 Error if trying to get a spinlock that is not the successor of a spinlock

the core already occupies
SWS_Os_00668 All Autostart Tasks are activated
SWS_Os_00669 All Autostart Alarms are activated
SWS_Os_00670 All Autostart Schedule Tables are activated

Table 4 Subset of AUTOSAR OS requirements related to multicore.
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