
HAL Id: hal-04304189
https://hal.science/hal-04304189

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SigML++: supervised log anomaly with probabilistic
polynomial approximation

Devharsh Trivedi, Aymen Boudguiga, Nesrine Kaaniche, Nikos Triandopoulos

To cite this version:
Devharsh Trivedi, Aymen Boudguiga, Nesrine Kaaniche, Nikos Triandopoulos. SigML++: super-
vised log anomaly with probabilistic polynomial approximation. Cryptography, 2023, 7 (4), pp.52.
�10.3390/cryptography7040052�. �hal-04304189�

https://hal.science/hal-04304189
https://hal.archives-ouvertes.fr

Citation: Trivedi, D.; Boudguiga, A.;

Kaaniche, N.; Triandopoulos, N.;

SigML++: Supervised Log Anomaly

with Probabilistic Polynomial

Approximations. Cryptography 2023, 1,

0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Cryptography for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SigML++: Supervised Log Anomaly with Probabilistic
Polynomial Approximations
Devharsh Trivedi 1 , Aymen Boudguiga 2 , Nesrine Kaaniche 3 and Nikos Triandopoulos 1

1 Stevens Institute of Technology, Hoboken, NJ 07030, USA; {dtrived5,ntriando}@stevens.edu
2 CEA-LIST, Université Paris-Saclay, France; aymen.boudguiga@cea.fr
3 Télécom SudParis, Institut Polytechnique de Paris, France; kaaniche.nesrine@telecom-sudparis.eu
* Correspondence: dtrived5@stevens.edu
† This paper is an extended version of our paper published in the 7th International Symposium on Cyber

Security, Cryptology and Machine Learning (CSCML 2023) on June 29-30, 2023.

Abstract: Security log collection and storage is essential for organizations worldwide. Log analysis 1

can help recognize probable security breaches and is often required by law. However, many organiza- 2

tions commission log management to Cloud Service Providers (CSPs), where the logs are collected, 3

processed, and stored. Existing methods for log anomaly detection rely on unencrypted (plaintext) 4

data, which can be a security risk. Logs often contain sensitive information about an organization 5

or its customers. A more secure approach is always to keep logs encrypted (ciphertext). This paper 6

presents "SigML++," an extension of the "SigML" for supervised log anomaly detection on encrypted 7

data. SigML++ uses Fully Homomorphic Encryption (FHE) by the Cheon-Kim-Kim-Song (CKKS) 8

scheme to encrypt the logs and then uses an Artificial Neural Network (ANN) to approximate the 9

sigmoid (σ(x)) activation function probabilistically for the intervals [−10, 10] and [−50, 50]. This 10

allows SigML++ to perform log anomaly detection without decrypting the logs. Experiments show 11

that SigML++ can achieve better low-order polynomial approximations for Logistic Regression (LR) 12

and Support Vector Machines (SVM) than existing methods. This makes SigML++ a promising new 13

approach for secure log anomaly detection. 14

Keywords: sigmoid function approximation; private machine learning; fully homomorphic encryp- 15

tion; log anomaly detection; supervised machine learning; probabilistic polynomial approximation 16

1. Introduction 17

Information security tools like Intrusion Detection Systems (IDS), Intrusion Prevention 18

Systems (IPS), and Security Information and Event Management (SIEM) are designed to 19

help organizations defend against cyberattacks. A Security Operations Center (SOC) uses 20

these security tools to analyze logs collected from endpoints, such as computers, servers, 21

and mobile devices. The logs can contain information about system events, user activity, 22

and security incidents. The SOC uses this information to identify anomalies and potential 23

threats. The SOC may generate an alert to notify the appropriate personnel if an anomaly 24

is detected. The logs collected from endpoints are typically unstructured textual data. This 25

data can be challenging to analyze manually. SIEM tools can help automate the analysis 26

of these logs and identify potential threats. SIEM tools collect logs from various sources, 27

known as Security Analytics Sources (SAS). SAS can be a mobile or stationary host or an 28

information and data security tool such as an IDS. SIEM tools use this data to monitor for 29

security threats in near real-time. If a threat is detected, the SIEM tool can generate an alert 30

and take appropriate action, such as blocking traffic or isolating an infected system. 31

As shown in Figure 1, a typical corporate network is connected to the Internet behind 32

a firewall, which is divided into a Local Area Network (LAN), Wide Area Network (WAN), 33

and Demilitarized zone (DMZ). A SAS client is typically a LAN or WAN endpoint that 34

transmits security or audit logs to a SIEM. A SIEM could be placed in the network along 35

Version September 28, 2023 submitted to Cryptography https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-6374-7249
https://orcid.org/0000-0001-6717-8848
https://www.mdpi.com/journal/cryptography

Version September 28, 2023 submitted to Cryptography 2 of 19

DMZ

Internet

Router

Firewall

Switch

WLAN
LAN

Email
Server

App / Web
Server

Database
Server

Stationary Clients Mobile Clients

IPS

IDS

Figure 1. A typical corporate network architecture.

IDS / IPS

Routers

Firewalls

Switches

Email
Servers

Web
Servers

Database
Servers

Domain
Controllers Application

Servers

ERP
Servers

Active
Directories

Business
Locations

Network
Maps

Configurations &
Asset Information

Business
Processes

Software
Inventories

Access
Points

End-user Systems

Business
Units

SIEM

Figure 2. Security Analytics Sources (SAS) of a SIEM.

with IDS/IPS or placed externally out of the network and connected via the Internet. 36

There are three types of endpoints in any organization based on the isolation from the 37

Internet: (i) Edge nodes or gateways or machines with public IP, (ii) Machines on LAN or 38

WAN like high-power consumption devices like Servers and Laptops, mid-power devices 39

like Smartphones, and low-power Internet of Things (IoT) or embedded devices and (iii) 40

Machines on a Demilitarized zone (DMZ) like Email or FTP servers. 41

A Firewall is typically the first line of defense in a network, and an IDS or IPS can 42

accompany it. IPS is placed between the firewall and switch to detect and prevent threats, 43

while IDS is connected to the switch to monitor network activity passively to detect 44

attacks. Additionally, we can have antivirus software running on endpoints. An Advanced 45

Persistent Threat (APT) attacker is assumed to be outside the network and compromises 46

and gains unauthorized access to one of the endpoints. Log anomaly detection aims to 47

trace the trail left behind by the APT attacker while gaining unauthorized access. This 48

trail is called IoC and is identified from the device logs. Logs from different devices are 49

collected and fed to a central SIEM server outside the corporate network for storage and 50

anomaly detection. These logs are collected, parsed, and correlated to generate alerts if 51

anomalies are detected. An example of correlation in logs is to detect new DHCP servers 52

that use UDP protocols on specific ports. 53

Besides the logs collected from network devices, application servers, and end-user 54

systems, SIEM may collect other confidential organization information (Figure 2), such as 55

business locations, active directory information, and ERP server data. These SAS inputs 56

contain a lot of sensitive data, so protecting the security and privacy of data collected for 57

anomaly detection is imperative. 58

As shown in Figure 3, a typical log anomaly (or intrusion) detection scheme consists 59

of the following components: 60

1. A "Log Collector" to collect logs from diverse applications operating on an SAS. 61

2. A "Transmitter" to send logs to SIEM, which is usually encrypted to safeguard against 62

eavesdropping in the communication channel. 63

3. A "Receiver" to amass, store, decrypt, and ascertain the transmitted logs’ integrity. 64

4. A "Parser" to convert the data in a structured form used by the SIEM vendor to process 65

the decrypted logs for storage and analysis. 66

Version September 28, 2023 submitted to Cryptography 3 of 19

Collect
Log

Parse
Log

Encrypt
Log

Decrypt
Log

SIEM
Storage

Alert

SAS inputs

Analyze
Log

Anomaly?

SK

Cloud Service Consumer (CSC) Cloud Service Provider (CSP)

Figure 3. Log anomaly detection with contemporary encryption schemes.

5. An "Anomaly Detector" uses proprietary algorithms to render parsed logs and trans- 67

mit alerts for anomalies. 68

SOCs use a variety of storage options for their SIEM databases, depending on their 69

specific needs and requirements, including (i) servers located on-premises, (ii) Storage Area 70

Network (SAN) or Network Attached Storage (NAS), or (iii) cloud-based storage service, 71

such as Amazon S3 [1] or Azure Blob Storage [2]. 72

In a SOC, the relative jitter for the Log Collector (LC), Transmitter (TX), Receiver 73

(RX), Parser (PA), and Anomaly Detector (AD) is the variation in the time it takes for each 74

component to process a log event. Various factors, such as network latency, hardware 75

performance, and software complexity, can cause this jitter. The AD has the highest relative 76

jitter, followed by the PA, RX, TX, and LC. The AD is the most complex component, 77

requiring more time to analyze each log event. The relative jitter of each component can 78

significantly impact the overall performance of the SOC. For example, if the AD has a 79

high relative jitter, detecting anomalies in the log data may take longer. This can lead to 80

increased security risks. The relative jitter of each component can be reduced by (i) using 81

high-performance hardware, (ii) optimizing the software, (iii) reducing network latency, 82

and (iv) using load-balancing techniques in a SOC to improve overall performance and 83

reduce security risks. 84

Enterprises frequently employ a third-party cloud vendor for SOC. Third-party cloud 85

services lessen complexity and deliver flexibility for organizations. Nonetheless, Cloud 86

Service Consumers (CSCs) must commission their data - and their customer’s data - to 87

Cloud Service Providers (CSPs), who are often incentivized to monetize these data. Mean- 88

while, ordinances such as the US Consumer Online Privacy Rights Act (COPRA) [3], the US 89

State of California Consumer Privacy Act (CCPA) [4], and the EU General Data Protection 90

Regulation (GDPR) [5] strive to safeguard consumers’ privacy. Non-compliant institutions 91

are subjected to stringent fines and deteriorated reputations. This outcome is a tradeoff 92

between data utility and privacy. 93

Exporting log data to an SIEM deployed on a third-party CSP is perilous, as the CSP 94

requires access to plaintext (unencrypted) log data for alert generation. Moreover, the 95

CSP may have adequate incentives to accumulate user data. These data are stored in the 96

CSP’s servers and thus encounter diverse privacy and security threats like data leakage 97

and misuse of information [6–11]. Thus, shielding these logs’ privacy and confidentiality 98

is crucial. We present the use of Fully Homomorphic Encryption (FHE) to permit CSC to 99

ensure privacy without sabotaging their capability to attain insights from their data. 100

Traditional cloud storage and computation approaches using contemporaneous cryp- 101

tography mandate that customer data be decrypted before operating on it. Thus, security 102

policies are deployed to avert unauthorized admission to decrypted data. CSCs must en- 103

trust the Access Control Policies (ACP) incorporated by their CSPs for data privacy (Figure 104

4). With FHE, data privacy is accomplished by the CSC via cryptography, leveraging rigid 105

mathematical proofs. Consequently, the CSP will not be admitted to unencrypted customer 106

data for computation and storage without a valid Secret Key (SK). 107

Version September 28, 2023 submitted to Cryptography 4 of 19

Privacy Barrier Privacy Barrier

Figure 4. Traditional cloud model (left) v/s FHE cloud model (right).

FHE allows calculations to be performed on encrypted data without decrypting it first. 108

The results of these computations are stored in an encrypted form. Still, when decrypted, 109

they are equivalent to the results that would have been obtained if the computations had 110

been performed on the unencrypted data. Plaintexts are unencrypted data, while cipher- 111

texts are encrypted data. FHE can enable privacy-preserving storage and computation and 112

process encrypted data in commercial cloud environments. It is a promising technology 113

with a wide range of potential applications. 114

For privacy-preserving log anomaly detection, we can use a hardware-based solution 115

(e.g., Trusted Execution Environment (TEE)) or a software-based approach (e.g., FHE). 116

SGX-Log [12] and Custos [13] showed private log anomaly detection using TEE with Intel 117

SGX. However, TEEs have limitations on how much data can be stored. For example, Intel 118

SGX has a limit of 128 MB. Hence, bit-wise FHE schemes like TFHE [14] or word-wise 119

FHE schemes like BFV [15,16] and CKKS [17] are better for larger data. Concrete-ML from 120

Zama [18] uses TFHE, which is efficient for smaller arithmetic. Still, it is inefficient for 121

larger arithmetic operations (while amortized performance in CKKS can be improved 122

with batching). For word-wise FHE schemes, we have BFV for integers and CKKS for 123

approximate arithmetic. Hence, for Machine Learning (ML) tasks, CKKS is a better choice. 124

Aymen et al. [19] used BFV for SVM with linear kernel. They experimentally calculate 125

the best scaling factor value to convert floats to integers for better accuracy, which is not 126

required in CKKS. SigML [20] used CKKS for LR and SVM. 127

1.1. Contributions 128

Our contributions can be summarized as follows: 129

• First, we formulate a supervised binary classification problem for log anomaly detec- 130

tion and implement it with the CKKS cryptosystem (in section §4). 131

• Second, we propose novel ANN-based third-degree Sigmoid approximations in the 132

intervals [−10, 10] and [−50, 50] (in section §5). 133

• Third, we evaluate the performance of various Sigmoid approximations in the en- 134

crypted domain, and our results show better accuracy and sum ratio (in section §6). 135

1.2. Organization 136

This paper is organized as follows: 137

• First, we describe the building blocks of our protocols in section §2, where we review 138

FHE in section §2.1 and present polynomial approximations for the Sigmoid(σ(x)) 139

activation function in section §5. 140

• Next, we review the previous work in section §3. 141

• Then, we describe our methodology in section §4. 142

• Finally, we discuss our experimental results in section §6. 143

Version September 28, 2023 submitted to Cryptography 5 of 19

2. Background 144

This section details CKKS, a Fully Homomorphic Encryption scheme, and determinis- 145

tic and probabilistic polynomial approximation schemes. 146

2.1. Fully Homomorphic Encryption 147

This work utilizes the CKKS [17] as a fully homomorphic encryption scheme. CKKS 148

varies from other FHE schemes (such as BFV [15,16], BGV [21], and TFHE [14]) in the 149

way that it interprets encryption noise. Indeed, CKKS treats encryption noise as part of 150

the message, similar to how floating-point arithmetic approximates real numbers. This 151

means the encryption noise does not eliminate the Most Significant Bits (MSB) of the 152

plaintext m as long as it stays small enough. CKKS decrypts the encryption of message m 153

as an approximated value m + e, where e is a slight noise. The authors of CKKS suggest 154

multiplying plaintexts by a scaling factor ∆ prior to encryption to lessen precision loss 155

after adding noise during encryption. CKKS also sustains batching, a process for encoding 156

many plaintexts within a single ciphertext in a Single Instruction Multiple Data (SIMD) 157

fashion. We describe CKKS as a set of probabilistic polynomial-time algorithms regarding 158

the security parameter k. 159

The algorithms are: 160

• CKKS.Keygen: Generates a key pair. 161

• CKKS.Enc: Encrypts a plaintext. 162

• CKKS.Dec: Decrypts a ciphertext. 163

• CKKS.Eval: Evaluates an arithmetic operation on ciphertexts. 164

The level of a ciphertext is l if it is sampled from Zql [X]/(XN + 1). Let L, q0 and ∆ be 165

integers. We set ql = ∆l · q0 for any l integer in J0, LK. 166

• (evk, pk, sk)← CKKS.Keygen(1k, L): generates a secret key (sk) for decryption, a public 167

key (pk) for encryption, and a publicly available evaluation key (evk). The secret key 168

(sk) is a sample from a random distribution over Z3[X]/(XN + 1). The public key (pk) 169

is computed as: 170

pk = ([−a · sk + e]qL , a) = (p0, p1)

where a is sampled from a uniform distribution over ZqL [X]/(XN + 1), and e is sam- 171

pled from an error distribution over ZqL [X]/(XN + 1). evk is utilized for relinearisation 172

after the multiplication of two ciphertexts. 173

• c ← CKKS.Encpk(m): encrypts a message m into a ciphertext c utilizing the public 174

key (pk). Let v be sampled from a distribution over Z3[X]/(XN + 1). Let e0 and e1 be 175

small errors. Then the message m is encrypted as: 176

c = [(v · pk0, v · pk1) + (m + e0, e1)]qL = (c0, c1).

• m← CKKS.Decsk(c): decrypts a message c into a plaintext m utilizing the secret key 177

(sk). The message m can be recovered from a level l ciphertext thanks to the function 178

m = [c0 + c1 · sk]ql . Note that with CKKS, the capacity of a ciphertext reduces each 179

time a multiplication is computed. 180

• c f ← CKKS.Evalevk(f , c1, . . . , ck): estimates the function f on the encrypted inputs 181

(c1, . . . , ck) using the evaluation key evk. 182

2.2. Polynomial Approximations 183

This section describes commonly used function interpolation techniques like (i) Taylor, 184

(ii) Fourier, (iii) Pade, (iv) Chebyshev, (v) Remez, and (vi) probabilistic ANN scheme. 185

2.2.1. Taylor 186

The Taylor series (Eq. (1)) is a mathematical expression approximating a function as 187

an infinite sum of terms expressed in terms of the function’s derivatives at a single point 188

a, called the center of the Taylor series. The Maclaurin series is a particular case of the 189

Version September 28, 2023 submitted to Cryptography 6 of 19

Taylor series where the center of the series is a = 0. In other words, a Maclaurin series 190

is a Taylor series centered at zero. It is a power series that permits the calculation of an 191

approximation of a function f (x) for input values near zero, given that the values of the 192

successive derivatives of the function at zero are known. The Maclaurin series can be used 193

to find the antiderivative of a complicated function, approximate a function, or compute an 194

uncomputable sum. In addition, the partial sums of a Maclaurin series provide polynomial 195

approximations for the function. 196

∞

∑
n=0

f (n)(a)
(x− a)n

n!
= f (a) + f ′(a)(x− a) +

f ′′(a)
2!

(x− a)2 + . . . +
f (k)(a)

k!
(x− a)n + . . .

(1)

2.2.2. Fourier 197

The Fourier series can be represented in sine-cosine, exponential, and amplitude-phase
forms. For a sine-cosine form, coefficients are

A0 =
1
P

∫ P/2

−P/2
f (x)dx

An =
2
P

∫ P/2

−P/2
f (x) cos

(
2πnx

P

)
dx (2)

Bn =
2
P

∫ P/2

−P/2
f (x) sin

(
2πnx

P

)
dx

With these coefficients, the Fourier series is 198

f (x) ∼ A0 +
∞

∑
n=1

An cos
(

2πnx
P

)
+ Bn sin

(
2πnx

P

)
(3)

For an exponential form, coefficients are

c0 = A0

cn = (An − iBn)/2, for n > 0 (4)

cn = (A−n + iB−n)/2, for n < 0

By substituting Eq. 2 into Eq. 4 199

cn =
1
P

∫ P/2

−P/2
f (x)e−

2πinx
P dx (5)

With these definitions, we can write Fourier series in exponential form 200

f (x) =
∞

∑
n=−∞

cn · e
2πinx

P (6)

2.2.3. Pade 201

Given a function f and two integers m ≥ 0 and n ≥ 1, the Pade approximant of order 202

[m/n] is the rational function 203

R(x) =
Σm

j=0ajxj

1 + Σn
k=1bkxk =

a0 + a1x + a2x2 + . . . + amxm

1 + b1x + b2x2 + . . . + bnxn (7)

Version September 28, 2023 submitted to Cryptography 7 of 19

which agrees with f (x) to the highest possible order, which amounts to

f (0) = R(0),

f ′(0) = R′(0),

f ′′(0) = R′′(0), (8)
...

f (m+n)(0) = R(m+n)(0)

Equivalently, if R(x) is expanded in a Taylor series at 0, its first m + n terms would 204

cancel the first m + n terms of f (x), and as such 205

f (x)− R(x) = cm+n+1xm+n+1 + cm+n+2xm+n+2 + . . . (9)

2.2.4. Chebyshev 206

The Chebyshev polynomial of degree n is denoted Tn(x), and is given by the formula 207

Tn(x) = cos (n arccos x) (10)

The first few Chebyshev polynomials of the kind are

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1 (11)

. . .

Tn+1(x) = 2xTn(x)− Tn−1(x)

If f (x) is an arbitrary function in the interval [−1, 1], and if N coefficients cj, j = 208

0, . . . , N − 1, are defined by 209

cj =
2
N

N

∑
k=1

f (xk)Tj(xk) =
2
N

N

∑
k=1

f

[
cos

(
π(k− 1

2)

N

)]
cos

(
π j(k− 1

2)

N

)
(12)

Then, we get the approximation formula 210

f (x) ≈
[

N−1

∑
k=0

ckTk(x)

]
− 1

2
co (13)

2.2.5. Remez 211

Given a function f (x) to be approximated and a set X of n+ 2 points x1, x2, . . . , xn+2 in 212

the approximation interval, usually the extrema of Chebyshev polynomial linearly mapped 213

to the interval. The Remez algorithm is the following: 214

1. Solve the system of linear equations 215

b0 + b1xi + . . . + bnxn
i + (−1)iE = f (xi); i = 1, 2, . . . , n + 2 (14)

for the unknowns b0, b1, . . . , bn and E. 216

2. Use the bi as coefficients to form a polynomial Pn. 217

3. Find the set M of points of local maximum error |Pn(x)− f (x)|. 218

4. If the errors at every m ∈ M are alternate in sign (+/-) and of equal magnitude, then 219

Pn is the minimax approximation polynomial. If not, replace X with M and repeat the 220

abovementioned steps. 221

Version September 28, 2023 submitted to Cryptography 8 of 19

x1

x2

xd

bh bout

w1

w2

wd

wout yout

Linear
Activation

Linear
Activation

Back-propogation
Loss minimization

Input
Layer

Hidden
Layer

Output
Layer

x

Figure 5. Polynomial approximation using ANN.

2.2.6. ANN 222

While Artificial Neural Networks (ANNs) are known for their universal function 223

approximation properties, they are often treated as black boxes and used to calculate the 224

output value. We propose to use a basic 3-layer Perceptron (Figure 5) consisting of an 225

input layer, a hidden layer, and an output layer; both hidden and output layers having 226

linear activations to generate the coefficients for an approximation polynomial of a given 227

order. In this architecture, the input layer is dynamic, with the input nodes corresponding 228

to the desired polynomial degrees. While having a variable number of hidden layers is 229

possible, we fix it to a single layer with a single node to minimize the computation. We 230

show coefficient calculations for a third-order polynomial (d = 3) for a univariate function 231

f (x) = y for an input x, actual output y, and predicted output yout. Input layer weights are 232

{w1, w2, . . . , wd} = {w1, w2, w3} = {x, x2, x3}

and biases are {b1, b2, b3} = bh. Thus, the output of the hidden layer is 233

yh = w1x + w2x2 + w3x3 + bh

The predicted output is calculated by 234

yout = wout · yh + bout = w1woutx + w2woutx2 + w3woutx3 + (bhwout + bout) (15)

where the layer weights {w1wout, w2wout, w3wout} are the coefficients for the approxi- 235

mating polynomial of order-3 and the constant term is bhwout + bout. 236

Since the predicted output (yout) is probabilistic, it must be fine-tuned with hyperpa- 237

rameter tuning, as incorrect results lead to erroneous (inefficient) approximations. 238

3. Related Work 239

This section discusses previous research on privacy-preserving log management ar- 240

chitectures. Zhao et al. [22] proposed a system called Zoo to minimize latency in data 241

processing and reduce the amount of raw data exposed to the Cloud Service Provider 242

(CSP). Zoo is deployed on Customer-owned Edge Devices (CEDs) rather than on the cloud, 243

and it supports the composition, construction, and easy deployment of Machine Learning 244

(ML) models on CEDs and local devices. Zoo is implemented in the OCaml language on 245

top of the open-source numerical computing system Owl [23]. In addition to CEDs, Zoo 246

can be deployed on cloud servers or a hybrid of both. This can further reduce the data 247

Version September 28, 2023 submitted to Cryptography 9 of 19

exposed to the CSP and its communication costs. Repositioning ML-based data analytics to 248

edge devices from the cloud poses hurdles such as resource limitations, scarcity of usable 249

models, and difficulty deploying user services. Additionally, deploying services on a CED 250

environment introduces problems for the CSP, as the privacy of ML models (weights) must 251

be shielded from the CED. 252

Ray et al. [24] proposed a set of protocols for anonymous upload, retrieval, and 253

deletion of log records in the cloud using the Tor [25] network. Their scheme addresses 254

integrity and security issues throughout the log management, including log collection, 255

transmission, retrieval, and storage. However, their logging client is operating system- 256

specific, and privacy is not guaranteed because logs can be identified by their tag values. 257

Zawoad et al. [26,27] presented Secure Logging as a Service (SecLaaS), which stores 258

and provides access to logs generated by Virtual Machines (VMs) running in the cloud. 259

SecLaaS ensures the confidentiality and integrity of these logs, which the CSCs own. 260

SecLaaS encrypts some of the Log Entry (LE) information utilizing a shared public key of 261

the security agents to ensure confidentiality. The private key to decrypt the log is shared 262

among the security agents. An auditor can verify the integrity of the logs utilizing the Proof 263

of Past Log (PPL) and the Log Chain (LC). However, SecLaaS cannot encrypt all the fields 264

of the LE, as the CSP needs to be able to search the storage by some fields. Additionally, 265

using a shared public key violates the CSC’s data privacy. 266

Rane and Dixit [28] presented BlockSLaaS, a Blockchain-assisted Secure Logging- 267

as-a-Service system for cloud environments. BlockSLaaS aims to make the cloud more 268

auditable and forensic-friendly by securely storing and processing logs while tackling multi- 269

stakeholder collusion problems and ensuring integrity and confidentiality. The integrity 270

of logs is assured by utilizing the immutable property of blockchain technology. Cloud 271

Forensic Investigators (CFIs) can only access the logs for forensic investigation through 272

BlockSLaaS, which preserves the confidentiality of logs. To ensure the privacy of the CSC, 273

the Node Controller (NC) encrypts each log entry utilizing the CFI’s public key, CFIPK. The 274

CFI can then utilize its secret key, CFISK, to decrypt the logs, preserving the confidentiality 275

of the CSC’s logs. However, this scheme utilizes the CFI’s public key, which violates the 276

data privacy of the CSC. A more privacy-preserving scheme would use a different keying 277

mechanism, such as a private blockchain or a Trusted Execution Environment (TEE). 278

Bittau et al. [29] presented a principled systems architecture called Encode, Shuffle, 279

Analyze (ESA) for performing large-scale monitoring with high utility while safeguarding 280

user privacy. ESA guarantees the privacy of monitored users’ data by processing it in a 281

three-step pipeline: 282

1. Encode: The data is encoded to control its scope, granularity, and randomness. 283

2. Shuffle: The encoded data is shuffled to break its linkability and guarantee that 284

individual data items get "lost in the crowd" of the batch. 285

3. Analyze: The anonymous, shuffled data is analyzed by a specific analysis engine that 286

averts statistical inference attacks on analysis results. 287

The authors implemented ESA as a system called PROCHLO, which develops new tech- 288

niques to harden the three steps of the pipeline. For example, PROCHLO uses the Stash 289

Shuffle, a novel, efficient, and scalable oblivious-shuffling algorithm based on Intel’s SGX, a 290

TEE. TEEs provide isolated execution environments where code and data can be protected 291

from the host system. However, using a TEE like Intel SGX may only be practical for some 292

devices and infeasible for legacy and low-resourced systems. Additionally, TEEs limit the 293

amount of data that can be secured. 294

Paul et al. [30] presented a Collective Learning protocol, a secure protocol for sharing 295

classified time-series data within entities to partially train the parameters of a binary classi- 296

fier model. They approximated the Sigmoid activation function (σ(x)) to a polynomial of 297

degree 7. They presented a Collective Learning protocol to apply Homomorphic Encryption 298

(HE) to fine-tune the last layer of a Deep Neural Network (DNN) securely. However, the 299

degree-7 approximation using an HE method is counterproductive for resource-constrained 300

machines, such as wireless sensors or Internet-of-Things (IoT) devices. 301

Version September 28, 2023 submitted to Cryptography 10 of 19

The most comparative work to ours on log confidentiality during transmission and 302

analysis using FHE techniques is presented by Boudguiga et al. [19]. In their scheme, 303

the authors examine the feasibility of using FHE to furnish a privacy-preserving log 304

management architecture. They utilize Support Vector Machines (SVMs) with a linear 305

kernel to assess the FHE classification of Intrusion Detection System (IDS) alerts from 306

the NSL-KDD dataset. In their scheme, they encrypt the input data from SAS using the 307

BFV scheme and perform FHE calculations on the encrypted data using the SIEM weights 308

in plaintext. The encrypted results for each log entry are then sent back to the SAS for 309

decryption. However, this approach can be vulnerable to inference attacks by malicious 310

SAS, such as attribute inference, membership inference, and model inversion attacks. Our 311

"Aggregate" scheme helps prevent most of these attacks, as it only sends a total anomaly 312

score (sum) per block instead of predictions or labels per input, thus minimizing the data 313

inferred by the attacker. 314

SigML, proposed by Trivedi et al. [20], uses the CKKS scheme and presents: 315

1. Ubiquitous configuration: This is similar to other works and sends an encrypted result 316

for every log entry. 317

2. Aggregate configuration: This reduces communication and computation requirements 318

by sending a single result for a block of log entries. 319

SigML compares three approximations of the sigmoid function: σ1(x), σ3(x), σ5(x) . 320

These approximations are used for a Logistic Regression (LR) and Support Vector Machine 321

(SVM) model. The authors observed that the LR and SVM models trained from scikit-learn 322

[31] did not perform well with the sigmoid activation for the "Aggregate" configuration. 323

Therefore, they designed Sigmoid-LR (σLR) to improve performance. Sigmoid-LR uses a 324

kernel A = X ·W + b to reduce the errors of Sigmoid(a) with the learning rate rlearn and 325

the number of iterations riter. The inputs and labels are X, Y ∈ [0, 1]. This paper presents 326

"SigML++," an extension of SigML [20]. SigML++ improves the results of SigML with LR 327

and SVM models using a novel ANN approximation. SigML++ also evaluates third-order 328

polynomials in the [−10, 10] and [−50, 50]. 329

4. Proposed Solution 330

Our threat model considers SAS (CSC) and SIEM (CSP) for simplicity. SAS is the client 331

that wants to generate anomaly alerts from logs while preserving its privacy. Consequently, 332

the SIEM server should be oblivious to the data received and refrain from comprehending 333

the log information. On the other hand, SIEM also desires to shield the weights and 334

coefficients of the ML model used to detect intrusion anomalies and generate alerts. Thus, 335

SAS should not learn about the model information. For log analysis using FHE, log parsing 336

shifts from SIEM to SAS. Instead of SIEM decrypting and parsing the logs, SAS collects and 337

parses unstructured logs to a structured form and normalizes the data. Data normalization 338

helps to enhance ML model prediction. 339

SAS uses FHE to generate an encryption key (pk/sk), a decryption key (sk), and an 340

evaluation key (evk). The parsed log inputs are encrypted using the public key (pk) or 341

secret key (sk). We use the CKKS scheme for FHE, which is better suited for floating-point 342

value calculations. CKKS is more suited for arithmetic on real numbers, where we can have 343

approximate but close results, while BFV is more suited for arithmetic on integers. The 344

SIEM performs homomorphic computations on the encrypted inputs and the ML model’s 345

coefficients in plaintext, using the evaluation key (evk) generated by SAS. The encrypted 346

result(s) are then passed to SAS. SAS decrypts the result(s) with the secret key (sk), infers 347

whether there was an anomaly, and generates an alert accordingly. 348

We present (i) "Ubiquitous" and (ii) "Aggregate" configurations similar to SigML. While 349

the "Ubiquitous" configuration is similar to prevalent research works, the "Aggregate" 350

configuration reduces the computation and communication requirements of the SAS. 351

Both configurations differ in how SIEM results are generated and processed at SAS: 352

1. Ubiquitous - SIEM sends one encrypted result per encrypted user input. 353

Version September 28, 2023 submitted to Cryptography 11 of 19

Collect
Log

Parse
Log

Encrypt
Log

FHE
x and +

SIEM
Storage

Alert
SAS inputs

Decrypt
Result(s)

Score/
Anomaly?

EVK

Cloud Service Consumer (CSC) Cloud Service Provider (CSP)

FHE

Σ

Figure 6. Encrypted log anomaly detection in Ubiquitous and Aggregate configurations.
(The dashed block is an extra component in Aggregate mode for encrypted additions.)

2. Aggregate - Only one result is sent in the encrypted domain for all inputs. This 354

technique helps reduce communication costs and uses much fewer resources on SAS 355

to decrypt a single encrypted result than one encrypted result per encrypted input. 356

In the "Ubiquitous" configuration (Figure 6), SAS sends encrypted parsed inputs to 357

SIEM for analysis, and SIEM performs homomorphic calculations on encrypted inputs and 358

unencrypted weights. SIEM sends one encrypted result for every encrypted log entry in 359

the received block to SAS. SAS decrypts all the results and evaluates the labels for all the 360

individual log entries. In this configuration, the disadvantage is leaking the data used for 361

training or the model weights, as a dishonest client can perform inference attacks. 362

In the "Aggregate" configuration (Figure 6), SAS sends a block of encrypted parsed in- 363

puts as before. SIEM performs homomorphic computation with plaintext model weights for 364

each input in the received block, applies Sigmoid approximation on individual encrypted 365

results, and sums (homomorphic additions) all encrypted results. 366

The sigmoid activation is a mathematical function that approximates the outputs 367

of a machine learning model in the [0, 1] range. In log anomaly detection, a label of 0 368

corresponds to a "normal" class, and a 1 corresponds to an "anomalous" class. In the 369

proposed procedure, the SAS receives only one result per block of messages. This saves 370

network bandwidth, as the SAS does not need to receive individual ciphers (encrypted 371

labels) for each message. Additionally, the SAS only needs to decrypt one cipher (encrypted 372

total) per block, which saves storage and computation overhead. The SAS decrypts the 373

result and assesses the sum for the block of messages. If there are no abnormalities in the 374

block, the totality should be 0. Otherwise, it should be the count of anomalous inputs. 375

Another advantage of this configuration is that it utilizes an anomaly score per block 376

of log entries and functions as a litmus test for log anomalies. For example, a SOC engineer 377

may prefer to examine the block of logs with a higher anomaly score than a block with 378

a much lower score. Furthermore, if there are successive blocks with higher than usual 379

anomaly scores, it may function as an IoC. The drawback of this configuration is that SAS 380

can not pinpoint which entry in the block is anomalous. 381

As shown in Table 1, n is the number of logs, TE(p) is the time taken to encrypt a 382

single message, SE(p) is bytes occupied by a single ciphertext, TD(c) is the time taken to 383

Table 1. Comparing "Ubiquitous" and "Aggregate" configurations.

Configuration Encryption Decryption
Time Size Time Size

Ubiquitous n · TE(p) n · SE(p) n · TD(c) n · SD(c)
Aggregate TD(c) SD(c)

Version September 28, 2023 submitted to Cryptography 12 of 19

decrypt a single ciphertext, and SD(c) is bytes occupied by a single (decrypted) message. 384

We first train the ML models using LR and SVM in plaintext and perform inference on 385

encrypted data as the inputs to the model are encrypted. The calculations are performed 386

on plaintext weights of the model, yielding the encrypted results. This also helps to create 387

a baseline to compare the performance of various approximations in encrypted domains. 388

5. Sigmoid Approximation 389

Barring message expansion and noise growth, implementing the Sigmoid activation 390

function is a substantial challenge in implementing ML with FHE. Sigmoid is used in LR 391

and SVM during classification, so we determined to make it homomorphic. We further 392

describe techniques to approximate this activation function with a polynomial for word- 393

wise FHE and compare various polynomial approximations in terms of Accuracy, Precision, 394

Recall, F1-Score, and the Σ-Ratio of the predicted sum from Sigmoid values to the sum of 395

all actual binary labels for the test dataset. We denote Md
i , where M is an approximation 396

method like Taylor (T), Remez (R), Chebyshev (C), or ANN (A). d is degree and i is 397

the interval [−i, i] of the polynomial. We approximate the class C[a, b] of continuous 398

functions on the interval [a, b] by order-n polynomials in Pn using the L∞-norm to measure 399

fit. This is directed to as minimax polynomial approximation since the best (or minimax) 400

approximation solves: 401

p∗n = arg min
pn∈Pn

max
a≤x≤b

| f (x)− pn(x)| (16)

A minimax approximation is a technique to discover the polynomial p in Eq. (16), i.e., 402

the Remez algorithm [32] is an iterative minimax approximation and outputs the following 403

results [33] for the interval [-5,5] and order 3: 404

R3
5(x) = 0.5 + 0.197x− 0.004x3 (17)

Taylor series (around point 0) of degree 3 is given by 405

T3(x) = 0.5 + 0.25x− 0.0208333x3 (18)

Chebyshev series of degree 3 for the interval [−10, 10] is 406

0.5 + 0.139787x + (3.03084e− 26)x2 − 0.00100377x3

We omit the term for x2 to get 407

C3
10(x) = 0.5 + 0.139787x− 0.00100377x3 (19)

Similarly, we obtain the Chebyshev series of degree 3 for the interval [−50, 50] 408

C3
50(x) = 0.5 + 0.0293015x− (8.65914e− 6)x3 (20)

We derive the ANN polynomials of degree 3 for [−10, 10] 409

A3
10(x) = 0.49961343 + 0.12675145x− 0.00087002286x3 (21)

and for the interval [−50, 50] 410

A3
50(x) = 0.49714848 + 0.026882438x− (7.728304e− 06)x3 (22)

We compared Chebyshev and ANN approximations for the Sigmoid functions as 411

shown in Table 2. We calculate Mean Absolute Error (MAE), Mean Squared Log Er- 412

ror (MSLE), Huber, Hinge, and Logcosh losses [34,35] for Chebyshev polynomials described 413

in equations 19, 20 and ANN polynomials from equations 21, 22. E.g., A3
10 recorded a 414

MAE loss of 0.0691 compared to 0.0793 for C3
10. The lower losses (closer to 0) reflect 415

Version September 28, 2023 submitted to Cryptography 13 of 19

Table 2. Polynomial approximation losses for the intervals [−10, 10] and [−50, 50].

Interval Method MAE MSLE Huber Hinge Logcosh
[−10, 10] C3

10 0.0793 0.0020 0.0039 0.5593 0.0039
A3

10 0.0691 0.0024 0.0031 0.5646 0.0031
[−50, 50] C3

50 0.1363 0.0115 0.0138 0.5475 0.0136
A3

50 0.1255 0.0124 0.0132 0.5534 0.0131

fewer errors and show a better approximation using our approach. Comparing their ratios 416

0.0691
0.0793 = 0.8712, we observe ≈ 14% improvement (Figure 7). 417

6. Experimental Analysis 418

The experiments were conducted on a 2.4 GHz Quad-Core MacBook Pro with an Intel 419

Core i5 processor and 2133 MHz 8 GB LPDDR3 memory. We used the SEAL-Python [36] 420

library for Python3 to furnish CKKS encryption. Moreover, we have used sklearn [37] APIs 421

for binary classifiers. 422

6.1. Evaluation Criteria 423

We compared the performance of the models using the following metrics: Precision, 424

Recall, Accuracy, and F1-score for the "Ubiquitous" configuration and Σ-Ratio for the 425

"Aggregate" configuration. We repeated the experiments on both the NSL-KDD and the 426

balanced HDFS datasets. 427

• Precision is the proportion of correctly predicted positive results (True Positives, TP) 428

to the total predicted positive results (TP + False Positives, FP). It is also known as 429

positive predictive value. 430

• Recall is the proportion of correctly predicted positive results (TP) to the total actual 431

positive results (TP + False Negatives, FN). It is also known as sensitivity or specificity. 432

• Accuracy is the proportion of all correct predictions (TP + TN) to the total number of 433

predictions made (TP + FP + TN + FN). It can be calculated as "Precision" divided by 434

"Recall" or 1− FalseNegativeRate(FNR)
FalsePositiveRate(FPR) . 435

• F1-Score is a measure that considers both "Precision" and "Recall." It is calculated as 436

the harmonic mean of "Precision" and "Recall." 437

• Sum ratio is a measure used for the Sigmoid activation function with binary outcomes. 438

It is calculated as the sum of all predicted labels to the sum of all actual labels. 439

0.0000

0.2500

0.5000

0.7500

1.0000

1.2500

MAE MSLE Huber Hinge Logcosh

[-10, 10] [-50, 50]

Figure 7. ANN losses relative to Chebyshev for the intervals [−10, 10] and [−50, 50].

Version September 28, 2023 submitted to Cryptography 14 of 19

Table 3. Return-1 model performance for NSL-KDD and HDFS.

Dataset Type Accuracy Precision Recall F1-Score Σ-Ratio
NSL-KDD Full (100%) 0.4811 0.4811 1.0000 0.6497 2.0782

Test (20%) 0.4832 0.4832 1.0000 0.6515 2.0695
HDFS Full (100%) 0.4999 0.4999 1.0000 0.6666 2.0000

Test (20%) 0.5016 0.5016 1.0000 0.6681 1.9934

Precision =
TP

TP + FP
(23)

440

Recall =
TP

TP + FN
(24)

441

Accuracy =
TP + TN

TP + FP + TN + FN
(25)

442

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(26)

443

Σ− Ratio =
∑n

i=1 Predicted yi

∑n
i=1 Actual yi

, where yi ∈ {0, 1} (27)

6.2. Datasets 444

Log datasets are often imbalanced, with most samples belonging to one class. This can 445

lead to overfitting and a "pseudo-high" accuracy for the trained model. To avoid this, we 446

propose to use balanced datasets. We first used a "Return-1 Model" to verify the balance of 447

classes in our log anomaly datasets. This model always classifies samples as "anomalous." 448

We achieved an Accuracy of 48.11% and a Σ-ratio of 2.07 for the NSL-KDD dataset and an 449

Accuracy of 49.99%, and a Σ-ratio of 2.00 for the HDFS dataset. We also achieved a Recall 450

of 100% for both datasets, as the model always outputs 1 for "anomaly." The NSL-KDD [38] 451

dataset is a modified version of the KDD’99 [39] dataset that solves some of its intrinsic 452

problems. It contains 148,517 inputs with 41 features and two observations for Score and 453

Label. We modified the labels to make it a binary classification problem, with all attack 454

categories consolidated into label-1. This resulted in 77,054 inputs with label-0 ("normal") 455

and 71,463 inputs classified to label-1 ("anomalous"). The testing set comprised 29,704 456

inputs, with 14,353 of label-1 and 15,351 of label-0. The HDFS_1 [40] labeled dataset from 457

Logpai is 1.47 GB of HDFS logs forged by running Hadoop-based map-reduce jobs on 458

over 200 Amazon EC2 nodes for 38.7 hours. Hadoop domain experts labeled it. Of the 459

11,175,629 log entries accumulated, 288,250 (∼ 2.58%) data are anomalous. We used Drain 460

[41], a log parser, to convert our unstructured log data into a structured format. For brevity, 461

we skip the details of textual log data parsing. We created a more undersized, balanced 462

dataset of 576,500 inputs with seven observations equally distributed among the "normal" 463

and "anomaly" classes. We used 20% of the total dataset as testing data, with 115,300 inputs, 464

out of which 57,838 inputs belonged to label-1 and 57,462 belonged to label-0. 465

6.3. Test Results 466

Foremost, we constructed baselines with plain (unencrypted) data, and the results 467

are exhibited in Table 4. For the NSL-KDD dataset, we accomplished 93.52% Accuracy, 468

95.02% Precision, and 0.99 Σ-Ratio with LR and 93.30% Accuracy, 95.50% Precision, and 469

1.06 Σ-Ratio with SVM. Likewise, for the HDFS (balanced) dataset, we accomplished 470

96.83% Accuracy, 94.12% Precision, and 1.00 Σ-Ratio with LR and 96.81% Accuracy, 94.02% 471

Precision, and 0.86 Σ-Ratio with SVM. 472

Version September 28, 2023 submitted to Cryptography 15 of 19

Table 4. Comparing performance metrics for sigmoid approximations.

Dataset Model Scale Method Accuracy Precision Recall F1-Score Σ-Ratio
NSL-KDD LR Plain 0.9352 0.9502 0.9138 0.9317 0.9966

R3
5 0.7923 0.9272 0.6186 0.7421 0.6336

230 T3 0.3865 0.3083 0.2167 0.2545 -2.1720
C3

10 0.9330 0.9486 0.9108 0.9293 1.0633
C3

50 0.9351 0.9498 0.9139 0.9315 1.0753
A3

10 0.9342 0.9502 0.9116 0.9305 1.0667
A3

50 0.9120 0.9213 0.8942 0.9076 1.0666
240 T3 0.3870 0.3087 0.2169 0.2548 -2.1649

C3
10 0.9341 0.9501 0.9115 0.9304 1.0634

C3
50 0.9352 0.9502 0.9138 0.9317 1.0752

A3
10 0.9341 0.9501 0.9115 0.9304 1.0668

A3
50 0.9350 0.9537 0.9096 0.9311 1.0660

SVM Plain 0.9330 0.9550 0.9039 0.9287 1.0614
R3

5 0.9326 0.9550 0.9031 0.9283 1.0993
230 T3 0.7743 0.9262 0.5790 0.7126 0.7872

C3
10 0.9312 0.9522 0.9029 0.9269 1.1190

C3
50 0.8426 0.8194 0.8649 0.8649 1.0569

A3
10 0.9239 0.9407 0.8993 0.9195 1.1110

A3
50 0.9311 0.9574 0.8974 0.9264 1.0489

240 T3 0.7762 0.9302 0.5804 0.7148 0.7876
C3

10 0.9330 0.9550 0.9039 0.9287 1.1189
C3

50 0.9330 0.9550 0.9039 0.9287 1.0566
A3

10 0.9329 0.9551 0.9036 0.9287 1.1111
A3

50 0.9318 0.9604 0.8958 0.9270 1.0489
HDFS LR Plain 0.9683 0.9412 0.9992 0.9693 1.0001

R3
5 0.5308 0.5167 0.9992 0.6812 292.6803

230 T3 0.3616 0.4178 0.6928 0.5213 1545.6206
C3

10 0.5561 0.5306 0.9993 0.6931 71.6765
C3

50 0.8899 0.8203 0.9995 0.9011 0.7862
A3

10 0.5560 0.5305 0.9994 0.6931 62.0974
A3

50 0.8932 0.8249 0.9992 0.9037 0.7784
240 T3 0.3616 0.4178 0.6927 0.5212 1542.8804

C3
10 0.5564 0.5307 0.9992 0.6932 71.5496

C3
50 0.8908 0.8216 0.9992 0.9018 0.7835

A3
10 0.5565 0.5308 0.9992 0.6933 61.9845

A3
50 0.8930 0.8247 0.9992 0.9036 0.7794

SVM Plain 0.9681 0.9402 1.0000 0.9692 0.8649
R3

5 0.5605 0.5330 1.0000 0.6953 36.6039
230 T3 0.5513 0.5278 1.0000 0.6910 198.8704

C3
10 0.6356 0.5793 0.9988 0.7333 8.5442

C3
50 0.9263 0.9385 0.9130 0.9256 0.6254

A3
10 0.6397 0.5820 1.0000 0.7358 7.4514

A3
50 0.9682 0.9406 0.9998 0.9693 0.6478

240 T3 0.5518 0.5281 1.0000 0.6912 198.5042
C3

10 0.6357 0.5793 1.0000 0.7336 8.5288
C3

50 0.9681 0.9402 1.0000 0.9692 0.6253
A3

10 0.6399 0.5821 1.0000 0.7359 7.4376
A3

50 0.9682 0.9404 1.0000 0.9693 0.6482

Version September 28, 2023 submitted to Cryptography 16 of 19

Table 5. Time taken in seconds for sigmoid approximations.

Dataset Model Scale Method Average Total (CPU)
Encryption Decryption Sigmoid User System

NSL-KDD LR 230 T3 15.9451 1.2736 25.0283 21229.5304 31.1183
C3

10 15.8492 1.2750 24.8478 14151.9965 21.6079
C3

50 16.3591 1.3128 25.6645 57907.9974 192.8575
A3

10 15.9845 1.2882 25.1456 7098.8882 12.2847
A3

50 16.4581 1.3294 25.8525 50652.5642 173.5452
240 T3 16.5453 1.3044 26.1130 21864.5342 86.9118

C3
10 16.3382 1.2872 25.6880 14527.2336 63.9331

C3
50 16.2095 1.2866 25.3791 72326.0694 229.5827

A3
10 16.4056 1.2930 25.8025 7249.1064 44.1778

A3
50 16.2132 1.2683 25.5183 65122.4439 209.3589

SVM 230 T3 15.9461 1.2854 25.1386 21342.9889 37.2623
C3

10 16.0024 1.2769 25.1158 14240.9221 27.7670
C3

50 16.3930 1.3225 25.7013 34780.6294 69.3801
A3

10 16.1102 1.2971 25.3295 7138.4435 17.5237
A3

50 16.0584 1.2954 25.1713 79472.3131 241.1018
240 T3 16.0374 1.2567 25.0808 43369.0540 144.5788

C3
10 15.9906 1.2657 25.0830 36270.2810 133.6592

C3
50 16.1845 1.2751 25.3623 41969.1462 86.2903

A3
10 16.4235 1.3000 25.8985 29143.3392 110.3346

A3
50 15.9473 1.2531 25.1184 93679.2789 260.7503

HDFS LR 230 T3 16.3908 1.2578 25.4707 28191.8944 96.0272
C3

10 16.4117 1.2704 25.3694 56176.0993 249.5097
C3

50 16.2385 1.3113 25.1131 83989.0793 355.9741
A3

10 16.1082 1.2582 24.9673 27724.1933 75.9279
A3

50 15.9611 1.2891 24.7696 55177.6614 119.2686
240 T3 16.0785 1.1416 24.8503 27533.3271 43.9969

C3
10 16.1325 1.1467 24.6902 28002.8715 42.0600

C3
50 16.1544 1.1475 24.7477 55939.1609 88.9075

A3
10 16.0655 1.1504 25.0016 82767.8606 171.9368

A3
50 16.4731 1.1875 25.5487 110748.7027 309.8314

SVM 230 T3 16.3642 1.2677 25.4733 82902.0987 212.2604
C3

10 16.0238 1.2588 24.7493 27494.7062 61.8813
C3

50 15.9412 1.2864 24.7108 54953.8687 107.4183
A3

10 16.1825 1.2757 25.0942 138438.5341 379.7756
A3

50 16.3706 1.3089 25.4166 35159.2336 121.3245
240 T3 16.6737 1.1933 25.8361 83201.7236 274.1485

C3
10 15.9010 1.1333 24.5346 27335.2857 46.0062

C3
50 16.0024 1.1422 24.6981 54971.1042 97.4169

A3
10 15.9279 1.1375 24.6168 27384.4133 46.0062

A3
50 15.9141 1.1383 24.5868 27388.0323 43.6415

Version September 28, 2023 submitted to Cryptography 17 of 19

Next, we compare third-order sigmoid approximations as shown in Equations 17, 18, 473

19, 20, 21, and 22 in terms of performance metrics and execution time. We empirically show 474

that our ANN-based polynomials performed better in most instances. For the NSL-KDD 475

dataset and LR model with a CKKS scaling factor of 230, the Chebyshev polynomial C3
10 476

in the range [−10, 10] (Eq. 19) yielded 93.30% Accuracy, 94.86% Precision, 91.08% recall, 477

92.93% f1-score and 1.06 Σ-ratio. While ANN approximation A3
10 in the same range (Eq. 478

21) had 93.42% accuracy, 95.02% precision, 91.16% recall, 93.05% f1-score and 1.06 Σ-ratio. 479

Thus, A3
10 resulted in 0.13% improvement in accuracy and 0.17% in precision over C3

10. 480

We also experimented with different scaling factors of 230 and 240. While it did not 481

significantly impact the NSL-KDD dataset, we observed improvements for HDFS. For C3
50 482

with the SVM model, Accuracy improved from 92.63% to 96.81%, Precision from 93.85% 483

to 94.02%, Recall from 91.30% to 100%, and f1-score also improved from 92.56% to 96.92% 484

when increasing scaling factor. We also observed improvements for Σ-ratio, for A3
10 it 485

reduced from 7.45 to 7.43 (ideal value is close to 1). 486

We also improve the results reported in SigML. For instance, A3
10 performed much 487

better than R3
5. For NSL-KDD, with LR, Accuracy was improved from 79.23% to 93.42%, 488

precision from 92.72% to 95.02%, recall from 61.86% to 91.16%, f1-score from 74.21% to 489

93.05% and Σ-ratio from 0.63 to 1.06. However, like SigML, our approximations did not 490

yield good results for HDFS datasets, specifically for Σ-ratio. It would be interesting to 491

approximate sigmoid in the [−20, 20] and [−30, 30] to get better results. 492

We also measured the average time taken for encryption, decryption, and sigmoid 493

operations, as shown in Table 5. We did not see any significant impact of different datasets, 494

models, scales, or methods on average time taken in seconds. We also measured the total 495

User CPU and System CPU time for different configurations for completeness. A3
10 was 496

observed to be faster than other methods. 497

7. Discussion 498

This section briefly compares the proposed solution and the most closely related 499

supervised machine learning technique for regression and classification tasks. While 500

Support Vector Machines (SVM) ensures classification by identifying a hyperplane that 501

maximizes the margin between data points of different classes, Gaussian Process Regression 502

(GPR) adopts a generative approach using a Gaussian process to model data distributions, 503

enabling predictions and uncertainty estimations. 504

In the context of (encrypted) anomaly detection, SVM is often preferred over GPR for 505

two main reasons. First, GPR tends to be computationally intensive, mainly when dealing 506

with high-dimensional data. In contrast, SVM is known for its efficiency in training and 507

evaluation, making it highly suitable for handling large datasets. Second, GPR requires 508

careful selection of kernel functions and other hyperparameters, which can be challenging. 509

SVM is less sensitive to these choices, which makes it easier to use. 510

8. Conclusions 511

We implemented an FHE-based solution for supervised binary classification for log 512

anomaly detection. FHE is a cryptographic technique that allows computations on en- 513

crypted data without decrypting it. This makes it a promising approach for privacy- 514

preserving machine learning applications, such as log anomaly detection. 515

In our solution, we used the CKKS algorithm, which is a popular FHE scheme. We 516

also approximated the Sigmoid activation function, a commonly used function in machine 517

learning, with novel low-order polynomials. This allowed us to reduce the communication 518

and computation requirements of our solution, making it more suitable for wireless sensors 519

and IoT devices. Chebyshev approximations of low order for FHE are widely used in many 520

privacy-preserving tasks. We compared our ANN-based polynomials with Chebyshev 521

regarding performance metrics and timings. We empirically show that our polynomials 522

performed better in most cases for the same amount of computation and multiplication 523

depth. However, comparing our approximations with composite (iterative) polynomials 524

Version September 28, 2023 submitted to Cryptography 18 of 19

[42,43] would make an interesting study. Iterative polynomials have the advantage of 525

generating optimal approximations for the same multiplicative depth, with the drawback 526

of extra noise and processing due to more multiplications. 527

Our evaluation of FHE for supervised binary classification was limited to linearly 528

separable problems. In future work, we plan to implement FHE with other ML models, 529

such as Recurrent Neural Networks (RNN) and Random Forests (RF). We also plan to use 530

Chimera [44] and combine TFHE/BFV for assessing the Sigmoid activation function by 531

approximating it by the Signum(Sign) operation furnished by the TFHE bootstrapping. 532

Author Contributions: All authors contributed to this study’s conceptualization and methodology. 533

D.T. contributed to writing—original draft preparation. All authors contributed to writing—review 534

and editing. D.T. contributed to visualization. A.B. contributed to supervision. All authors have read 535

and agreed to the published version of the manuscript. 536

Funding: This research received no external funding. 537

Data Availability Statement: No new data were created or analyzed in this study. Data sharing does 538

not apply to this article. 539

Conflicts of Interest: The authors declare no conflict of interest. 540

References 541

1. Cloud Object Storage – Amazon S3 – Amazon Web Services. https://aws.amazon.com/s3/. 542

2. Azure Blob Storage | Microsoft Azure. https://azure.microsoft.com/en-us/products/storage/blobs/. 543

3. S.3195 - Consumer Online Privacy Rights Act, 2021. https://www.congress.gov/bill/117th-congress/senate-bill/3195. 544

4. TITLE 1.81.5. California Consumer Privacy Act of 2018 [1798.100 - 1798.199.100], 2018. https://leginfo.legislature.ca.gov/faces/ 545

codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5. 546

5. EUR-Lex - 02016R0679-20160504 - EN - EUR-Lex, 2016. https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04. 547

6. Durumeric, Z.; Ma, Z.; Springall, D.; Barnes, R.; Sullivan, N.; Bursztein, E.; Bailey, M.; Halderman, J.A.; Paxson, V. The Security 548

Impact of HTTPS Interception. In Proceedings of the NDSS, 2017. 549

7. Principles for the processing of user data by Kaspersky security solutions and technologies | Kaspersky. https://usa.kaspersky. 550

com/about/data-protection. 551

8. Nakashima, E. Israel hacked Kaspersky, then tipped the NSA that its tools had been breached, 2017. https://www.washingtonpost. 552

com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10 553

/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html. 554

9. Perlroth, N.; Shane, S. How Israel Caught Russian Hackers Scouring the World for U.S. Secrets, 2017. https://www.nytimes. 555

com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html. 556

10. Temperton, J. AVG can sell your browsing and search history to advertisers, 2015. https://www.wired.co.uk/article/avg- 557

privacy-policy-browser-search-data. 558

11. Taylor, S. Is Your Antivirus Software Spying On You? | Restore Privacy, 2021. https://restoreprivacy.com/antivirus-privacy/. 559

12. Karande, V.; Bauman, E.; Lin, Z.; Khan, L. SGX-Log: Securing system logs with SGX. In Proceedings of the Proceedings of the 560

2017 ACM on Asia Conference on Computer and Communications Security, 2017, pp. 19–30. 561

13. Paccagnella, R.; Datta, P.; Hassan, W.U.; Bates, A.; Fletcher, C.; Miller, A.; Tian, D. Custos: Practical tamper-evident auditing of 562

operating systems using trusted execution. In Proceedings of the Network and distributed system security symposium, 2020. 563

14. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 564

Seconds. In Proceedings of the Advances in Cryptology – ASIACRYPT 2016; Cheon, J.H.; Takagi, T., Eds.; Springer Berlin 565

Heidelberg: Berlin, Heidelberg, 2016; pp. 3–33. 566

15. Brakerski, Z. Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP. In Proceedings of the 567

Proceedings of the 32Nd Annual Cryptology Conference on Advances in Cryptology — CRYPTO 2012 - Volume 7417; Springer- 568

Verlag New York, Inc.: New York, NY, USA, 2012; pp. 868–886. http://dx.doi.org/10.1007/978-3-642-32009-5_50, https: 569

//doi.org/10.1007/978-3-642-32009-5_50. 570

16. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144, 2012. 571

https://eprint.iacr.org/2012/144. 572

17. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. Cryptology ePrint 573

Archive, Report 2016/421, 2016. https://eprint.iacr.org/2016/421. 574

18. Frery, J.; Stoian, A.; Bredehoft, R.; Montero, L.; Kherfallah, C.; Chevallier-Mames, B.; Meyre, A. Privacy-Preserving Tree-Based 575

Inference with Fully Homomorphic Encryption. arXiv preprint arXiv:2303.01254 2023. 576

19. Boudguiga, A.; Stan, O.; Sedjelmaci, H.; Carpov, S. Homomorphic Encryption at Work for Private Analysis of Security Logs. In 577

Proceedings of the ICISSP, 2020, pp. 515–523. 578

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://www.congress.gov/bill/117th-congress/senate-bill/3195
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3. &part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3. &part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3. &part=4.&lawCode=CIV&title=1.81.5
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://usa.kaspersky.com/about/data-protection
https://usa.kaspersky.com/about/data-protection
https://usa.kaspersky.com/about/data-protection
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.washingtonpost.com/world/national-security/israel-hacked-kaspersky-then-tipped-the-nsa-that-its-tools-had-been-breached/2017/10/10/d48ce774-aa95-11e7-850e-2bdd1236be5d_story.html
https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html
https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html
https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html
https://www.wired.co.uk/article/avg-privacy-policy-browser-search-data
https://www.wired.co.uk/article/avg-privacy-policy-browser-search-data
https://www.wired.co.uk/article/avg-privacy-policy-browser-search-data
https://restoreprivacy.com/antivirus-privacy/
http://dx.doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2016/421

Version September 28, 2023 submitted to Cryptography 19 of 19

20. Trivedi, D.; Boudguiga, A.; Triandopoulos, N. SigML: Supervised Log Anomaly with Fully Homomorphic Encryption. In 579

Proceedings of the International Symposium on Cyber Security, Cryptology, and Machine Learning. Springer, 2023, pp. 372–388. 580

21. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. Fully Homomorphic Encryption without Bootstrapping. Cryptology ePrint Archive, 581

Paper 2011/277, 2011. https://eprint.iacr.org/2011/277. 582

22. Zhao, J.; Mortier, R.; Crowcroft, J.; Wang, L. Privacy-preserving machine learning based data analytics on edge devices. In 583

Proceedings of the Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 341–346. 584

23. Wang, L. Owl: A General-Purpose Numerical Library in OCaml, 2017, [arXiv:cs.MS/1707.09616]. 585

24. Ray, I.; Belyaev, K.; Strizhov, M.; Mulamba, D.; Rajaram, M. Secure logging as a service—delegating log management to the cloud. 586

IEEE systems journal 2013, 7, 323–334. 587

25. The Tor Project | Privacy & Freedom Online. https://www.torproject.org/. 588

26. Zawoad, S.; Dutta, A.K.; Hasan, R. SecLaaS: secure logging-as-a-service for cloud forensics. In Proceedings of the Proceedings of 589

the 8th ACM SIGSAC symposium on Information, computer and communications security, 2013, pp. 219–230. 590

27. Zawoad, S.; Dutta, A.K.; Hasan, R. Towards building forensics enabled cloud through secure logging-as-a-service. IEEE 591

Transactions on Dependable and Secure Computing 2015, 13, 148–162. 592

28. Rane, S.; Dixit, A. BlockSLaaS: Blockchain assisted secure logging-as-a-service for cloud forensics. In Proceedings of the 593

International Conference on Security & Privacy. Springer, 2019, pp. 77–88. 594

29. Bittau, A.; Erlingsson, Ú.; Maniatis, P.; Mironov, I.; Raghunathan, A.; Lie, D.; Rudominer, M.; Kode, U.; Tinnes, J.; Seefeld, B. 595

Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the Proceedings of the 26th symposium on operating 596

systems principles, 2017, pp. 441–459. 597

30. Paul, J.; Annamalai, M.S.M.S.; Ming, W.; Al Badawi, A.; Veeravalli, B.; Aung, K.M.M. Privacy-Preserving Collective Learning 598

With Homomorphic Encryption. IEEE Access 2021, 9, 132084–132096. 599

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; 600

et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825–2830. 601

32. Remez, E.Y. Sur le calcul effectif des polynomes d’approximation de Tschebyscheff. CR Acad. Sci. Paris 1934, 199, 337–340. 602

33. Chen, H.; Gilad-Bachrach, R.; Han, K.; Huang, Z.; Jalali, A.; Laine, K.; Lauter, K. Logistic regression over encrypted data from 603

fully homomorphic encryption. BMC medical genomics 2018, 11, 3–12. 604

34. Module: tf.keras.losses | TensorFlow v2.13.0. https://www.tensorflow.org/api_docs/python/tf/keras/losses. 605

35. API Reference. https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics. 606

36. Huelse. Huelse/Seal-Python: Microsoft seal 4.x for Python. https://github.com/Huelse/SEAL-Python, 2022. [Released: May 9, 607

2022]. 608

37. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; 609

et al. API design for machine learning software: experiences from the scikit-learn project. In Proceedings of the ECML PKDD 610

Workshop: Languages for Data Mining and Machine Learning, 2013, pp. 108–122. 611

38. for Cybersecurity, C.I. NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity. https://www.unb.ca/cic/ 612

datasets/nsl.html, 2019. 613

39. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 614

IEEE symposium on computational intelligence for security and defense applications. Ieee, 2009, pp. 1–6. 615

40. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A Large Collection of System Log Datasets towards Automated Log Analytics, 2020. 616

https://arxiv.org/abs/2008.06448, https://doi.org/10.48550/ARXIV.2008.06448. 617

41. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the 2017 IEEE 618

international conference on web services (ICWS). IEEE, 2017, pp. 33–40. 619

42. Cheon, J.H.; Kim, D.; Kim, D.; Lee, H.H.; Lee, K. Numerical method for comparison on homomorphically encrypted numbers. In 620

Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security. Springer, 621

2019, pp. 415–445. 622

43. Lee, E.; Lee, J.W.; No, J.S.; Kim, Y.S. Minimax approximation of sign function by composite polynomial for homomorphic 623

comparison. IEEE Transactions on Dependable and Secure Computing 2021, 19, 3711–3727. 624

44. Boura, C.; Gama, N.; Georgieva, M.; Jetchev, D. CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption 625

Schemes. Cryptology ePrint Archive, Report 2018/758, 2018. https://eprint.iacr.org/2018/758. 626

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 627

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 628

people or property resulting from any ideas, methods, instructions or products referred to in the content. 629

https://eprint.iacr.org/2011/277
http://xxx.lanl.gov/abs/1707.09616
https://www.torproject.org/
https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://github.com/Huelse/SEAL-Python
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://arxiv.org/abs/2008.06448
https://doi.org/10.48550/ARXIV.2008.06448
https://eprint.iacr.org/2018/758

	Introduction
	Contributions
	Organization

	Background
	Fully Homomorphic Encryption
	Polynomial Approximations
	Taylor
	Fourier
	Pade
	Chebyshev
	Remez
	ANN

	Related Work
	Proposed Solution
	Sigmoid Approximation
	Experimental Analysis
	Evaluation Criteria
	Datasets
	Test Results

	Discussion
	Conclusions
	References

