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A B S T R A C T
Protection systems are usually implemented in mountains aiming to resist natural dangerous
phenomena. As any other critical infrastructure, protection systems should always withstand
and operate efficiently as they guarantee the safety of people and protect socio-economic assets.
However, the efficacy of these systems decreases with the increase of the deterioration level of
the interdependent components, which constitute them. To provide desirable operation over their
lifetime, the management of protection systems is of paramount importance. A major key issue
in such critical infrastructure management is to optimize the cost effectiveness of maintenance
actions while maintaining a sufficient protection efficacy. This study proposes a decision-aiding
model to assess different maintenance strategies applied to a protection system against debris
flows. The model is constructed using physics-based stochastic Petri nets. It incorporates (1) a
stochastic deterioration model, which is a surrogate model of a physics-based model developed
for building deterioration trajectories of the system and (2) maintenance model that permits
assessing the cost and efficiency of maintenance strategies. This study addresses the case of
a debris retention system, in which the progressive filling of its basin by debris materials is
modeled. This is followed by assessing several maintenance strategies concerning the cleaning
of the basin. A simple sensitivity analysis is also carried out in order to check the effect of the
uncertainty that invades the model’s inputs on maintenance decisions. A numerical analysis is
performed using real data of the retention system located in the Claret torrent in France and
subjected to debris flows over a period of 50 years.

1. Introduction
1.1. Infrastructure Asset Management & Decision Support Systems

Reliable, operational and durable infrastructure assets are essential for economic prosperity in the modern society
(Biondini and Frangopol, 2016). Foremost, asset management aims to maintain infrastructures in acceptable conditions
that permit them to fulfill their desired functional objectives (Asghari and Hsu, 2021). Indeed, the aging, loading
and environmental factors in addition to natural and man-made hazards continuously influence the condition of these
infrastructure systems. The process of infrastructure asset management starts by condition monitoring, data collection,
information analysis and ends with decision-making concerning maintenance plans.

Efficacy assessment depends on dynamic and reliable monitoring and evaluation of deterioration indicators.
Otherwise, poor assessment, misjudgments and bad decisions will be made. Nonetheless, recent advances make it
possible to integrate information technology such as artificial intelligence (AI) techniques (Russell and Norvig, 2020)
and decision support systems (DSS) (Bonczek et al., 1981) to enhance and enrich decision-making processes. Through
gathering real-time data, analyzing data trends, providing forecasts and quantifying uncertainty, an intelligent decision
support system can provide reliable insights that support decision-makers to make optimal management decisions.

Definitely, the use of AI and DSS methods in infrastructure management is not new. They have been and are still
being used in different disciplines as a crucial part of the decision-making process. The novelty lies in the challenge of
developing such techniques in order to support a more holistic approach toward dynamic and compelling management
decisions. For structural engineering applications (e.g., highways, bridges, dams), AI and DSS methods have been
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adopted for deterioration modeling and maintenance optimization (Šelih et al., 2008; Callow et al., 2012; Guler, 2013;
Pan and Zhang, 2021; Yang et al., 2022; Wang et al., 2021).
1.2. Management of Torrent Protection Systems

Torrential watersheds are located in mountains and are usually exposed to different types of natural phenomena
such as torrential floods and debris flows carrying not only water but also huge volumes of debris (Coussot and Meunier,
1996). These phenomena induce risk in downstream areas where vulnerable assets are located (people, houses, roads,
etc.). They trigger casualties, injuries, destruction and economic damages (Hilker et al., 2009; Badoux et al., 2014).
Since the 19𝑡ℎ century, engineers started implementing different types of protection systems (check dams, debris
retention systems, dykes) along watersheds seeking to reduce the risk level generated by torrential phenomena. These
systems aim in fulfilling essential functions that provide protection either by reducing the causes of the phenomena,
e.g., erosion at source areas, or by reducing its consequences, e.g., deposition, overflows (Piton et al., 2017). However,
during their lifetime, they are exposed to high intensity phenomena and damaging events that trigger their deterioration.

Visual inspection remains the most common technique used to identify the level of deterioration of protection
systems and to assign accordingly a maintenance operation. While it does offer the advantage of seeing the damages
in real, visual inspection depends on inspectors (experts, engineers, or technicians) who capture photographs, interpret
them and write reports. The latter then becomes the main source of information used by the managers of these systems
to optimize their maintenance strategies. Nevertheless, field inspections are difficult due to the particular constraints
in mountain regions (remote structures, isolation, extreme weather, high altitudes and rough terrain). In addition,
in France, limited budgets are provided by the State for the management of protection systems. This highlights the
importance to develop decision support models that use, merge and analyze available information in order to prioritize
inspection and maintenance plans to be carried out on systems that require rehabilitation.

The present study focuses on the management of debris retention systems as they exist in most French torrents and
their deterioration could lead to dramatic consequences on vulnerable issues exposed to torrential phenomena.
1.3. Debris Retention Systems: Design & Maintenance Experience

Debris retention systems are among the most adopted torrent protection systems in Europe (e.g., Alps) and Asia
(e.g., Japan) in torrents highly exposed to debris flows (Zollinger, 1985; Ikeya, 1989). Roughly speaking, these
structures seek to trap debris before they reach areas where their deposition may aggravate the damage. These systems
are usually composed of separate components (fig. 1), each having its own functions but all working collaboratively
on increasing the efficacy of the overall system in providing a high level of protection. The basic components that
must at least be present are a debris basin, a retention dam and a maintenance access track. The access track allows
trucks to access the debris basin to carry out maintenance operations on the different components. The debris basin
is a deposition area where solid materials (boulders, sediments and woody debris) are stored. It is characterized by its
storage capacity defined. In addition, at the outlet of the basin, a retention dam regulates torrential flows leaving the
basin by filtering and trapping solid materials. The type, shape and size of the system’s components may differ from
one torrent to another depending on its characteristics and on the desired functional requirements (Hübl and Suda,
2008).

From an operational point of view, debris retention systems usually aim to fulfill the following functions (Zollinger,
1985; Armanini et al., 1991; Hübl et al., 2005):
Filtering the flow: sorting and storing solid materials based on their size and severity (e.g., large boulders). This

function is used on sites where large transported elements could jam the channel (e.g., at bridges or culverts).
Buffering the flow: regulating the flow by storing temporally a specific volume of the flow and then self-cleaning by

releasing this volume with a lower discharge to downstream areas. This function is used on sites where channel
overflowing occurs for excess peak discharge.

Debris deposition: trapping of a given volume of sediment that will not be released naturally and must be removed
with excavators to recover the structure capacity. This function is used on sites where channel overflowing occurs
because of chronic deposition when too much sediment is supplied by the catchment.

Most debris basins are used to target the latter function but the progress in debris flow hazard assessments enables
to identify catchments where the two first functions are more suitable: more effective, less costly and with fewer
side effects (Hübl, 2018). Understanding the structural design of debris retention systems in addition to the desired
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Figure 1: Multi-component retention system: (1) retention dam; (2) debris basin; (3) access track; (4) lateral dykes; (5)
downstream counter dam. Claret retention system, France. © ONF-RTM/S. Carladous May, 23𝑟𝑑 2018.

functional objectives that must be fulfilled facilitates identifying possible failure modes that lead to the partial or
total destruction or malfunctioning of the entire system. A recent study reviewed the French experience with debris
retention systems, thus providing a thorough review concerning their malfunctions and maintenance issues (Carladous
et al., 2022). The failure modes observed or expected to occur were reported on 115 existing debris retention systems
implemented in French massifs. One of the most frequently observed types of failures is the excess of trapping in the
basin (reported in about one-third of the structures). It is mostly triggered by the jamming of the dam’s openings by
boulders and large woody debris. This excess of sediment trapping is fixed at high costs by regular cleaning operations.
In a few cases, the structures were adapted to be more rarely obstructed but this option may change the protection
efficacy (Carladous et al., 2022).

In French torrents, the monitoring of debris retention systems is currently largely based either on field inspection or
on expert appraisal processes during which technicians imagine the evolution of a deterioration indicator (e.g., trapped
volume in the debris basin) in the short, medium and long term by combining several scenarios related to physical
phenomena. On these bases, maintenance decisions are made. Indeed, managers have adopted specific maintenance
policies based on the torrent. Particularly, for some torrents, each time a debris flow occurs, they ask for scheduling
maintenance where all the stored volume in the debris basin should be cleaned. In other torrents, cleaning operations
are scheduled depending on the stored volume of solid materials in the basin. This depends on the activity of the torrent,
on the vulnerability of the assets to be protected in downstream and on available budgets.
1.4. Objectives and Main Scientific Contributions

Excessive maintenance costs can also be seen as a malfunction. Therefore, a properly defined and implemented
maintenance policy can improve the resilience of complex infrastructure systems. Indeed, it is important to carefully
address the inspection frequency and to differentiate between different maintenance strategies. This in turn necessitates
acquiring a comprehensive knowledge on the dynamic behavior of the deteriorating system as well as on the protection
efficacy in its various states of deterioration (i.e., filling in the case of debris basins). In industrial and technological
systems, monitoring is common. However, as mentioned in section 1.2, protection systems in mountains are not
well instrumented and are not easily reached. Therefore, there is a lack of sufficient deterioration data to build time-
dependent deterioration trajectories.

Physical models that study the deterioration mechanisms of a system when subjected to undesirable events over time
provide essential information for building deterioration trajectories. However, such models couple several sub-models
that represent the complex interdependent physical phenomena related to the field of study (e.g., sediment transport,
hydraulics, structural behavior). This issue makes the physical model too complicated to be used directly in a decision-
making process. On the other hand, reliability-maintenance tools such as stochastic Petri nets (SPNs) (Signoret, 2009;
Aubry et al., 2016) implementing condition-based maintenance policy (CBM) (Alaswad and Xiang, 2017) offer a
flexible and efficient model to support decision-making. Such a model represents the stochastic deterioration of the
system relying only on probability laws associated with transitions from one deteriorated state to another. However, it
does not reflect the physics behind this deterioration process.
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In essence, the main contribution behind this research work is to optimize maintenance decisions of deteriorating
protection systems by leveraging and coupling two domains: (1) scenario-driven physics-based modeling, which
provides valuable information concerning the physical process behind the deterioration mechanisms of the system as
well as its protection efficacy and (2) reliability-based modeling using SPNs, which provides a simpler representation
of the physical deterioration process and makes it possible to easily implement a CBM policy in it. In other words, the
objective is to develop a reliability-based model as a surrogate model of the scenario-driven physics-based model by
using the information provided by the latter.

A very recent model-based decision support system was developed in order to optimize maintenance strategies
of deteriorating check dams subjected to torrential floods (Chahrour et al., 2021). The developed approach physically
models the deterioration of a check dam only from a structural point of view (loss in external stability) and uses
SPN tools in order to support maintenance decision-making considering only economic aspects. In this paper, we
extend this previous work to support maintenance decision-making of debris retention systems. In comparison to the
work performed in Chahrour et al. (2021), the present study aims to support maintenance decision-making of debris
retention systems, which are completely different than check dams in terms of functional and structural characteristics.
The novelty of this work lies in: (1) developing a scenario-driven physics-based model that studies the deterioration
of a debris retention system from a functional, rather than structural, point of view; (2) developing a SPN model
that makes it possible to assess maintenance strategies considering economic aspects but also the efficiency of the
strategies in increasing the protection efficacy provided by the system; and (3) exploring different assumptions (e.g.,
different inspection frequency, maintenance duration, maintenance cost) in order to check whether the results regarding
maintenance decisions would be the same or not in different situations.

The research carried out in this paper is multidisciplinary and develops contributions in different domains. In
the context of natural risks and protection systems, the time-dependent behavior of a system is a recent field of study.
Chahrour et al. (2021) was the first who deal with this issue starting with the case of check dams. Meanwhile, Piton et al.
(2022) recently developed a comprehensive way to model the routing of debris flows through debris retention systems.
However, the model was applied to only two debris flow events resulting in a static view of the system’s state. In this
study, the model is developed further so that it considers series of debris flow events and it models the dynamic evolution
of the physical model’s output parameters (e.g., jamming rate of the dam’s openings, stored volume in the basin) when
subjected to those events. The principle is to analyze failure scenarios through physics-based modeling, in which
available information acquired from different sources is merged and used. Besides, in the context of protection system
management, the developed scenario-driven physics-based model contributes in providing unavailable knowledge
about deterioration trajectories of debris retention systems. Regarding maintenance management of complex systems,
the developed SPN model contributes in supporting the managers of these systems to better anticipate and make optimal
decisions. Last but not least, the overall surrogate model-based decision support system developed in this study is a
totally generic approach that can be used to manage the operation and maintenance of any engineering system/structure
thus contributing to improved resilience of constructed systems and/or to improved designs of future constructions,
relying on automation instead of human intervention.

The paper is structured as follows: Section 2 presents the overall developed methodological approach. It starts
by building deterioration trajectories corresponding to the filling of a debris basin over time through scenario-driven
physics-based modeling and then using these trajectories in the developed SPN model for supporting maintenance
decision-making. Section 3 describes a real case study: the debris retention system located in the Claret torrent in
France. Section 4 provides the numerical outputs resulting after modeling the considered case study using the developed
approach. Conclusion and perspectives are presented in section 5.

2. Developed Methodological Approach
This section represents the methodological contribution. It provides a detailed description of the integrated

approach used to tackle the identified scientific and technical obstacles.
2.1. Global Framework Description

The objective of this work is to analyze the dynamic behavior of a debris retention system when subjected to
debris flows over its lifetime. The analysis concerns the failure of the system due to the excess storage in its debris
basin. This type of failure is so common for retention systems and it usually requires regular maintenance operations.
It is a functional failure, which deprives the system from achieving its function in buffering the flow (releasing the
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stored volume with low discharge). Indeed, as the volume stored in the basin increases, the efficacy of the system
in providing protection by trapping material decreases. In order to model the filling of a debris basin over time, an
integrated approach is developed. The overall modeling approach (fig. 2) can be summarized by the following steps,
which are detailed in the next subsections.
1. Retention system and debris flow features’ definition (fig. 2a): describing the dam, its openings and the basin’s
storage capacity in addition to defining the features of the debris flow events that occur (e.g., hydrographs, transported
boulders).
2. Debris flow scenarios generation (fig. 2b): creating virtual series of debris flow events with defined dates of
occurrence and volumes over a specified period of time (calibrated with observed time series if available).
3. Events’ consequences and resulting failure analysis (fig. 2c): modeling the evolution of the debris volume stored in
the basin 𝑉𝑏 (𝑚3) after each debris flow event. The model should explicitly take into consideration the jamming of the
retention dam’s openings by transported boulders over time. This is due to the fact that as the jamming rate increases,
the discharge capacity of the dam decreases and thus 𝑉𝑏 increases.
4. Stochastic deterioration and maintenance modeling (fig. 2d): proposing 𝑉𝑏 as a deterioration indicator, defining
deterioration states corresponding to the state of filling of the debris basin, estimating empirical non-parametric
probability laws corresponding to transition times between those states using the obtained deterioration trajectories
of 𝑉𝑏 and modeling the stochastic behavior of the system when subjected to deterioration mechanisms (progressive or
rapid filling of the basin) and to maintenance operations (cleaning of the basin).

2.2. Scenario-Driven Physics-Based Model: Debris Flows Routing through Retention Systems
Debris retention systems are designed to mitigate natural risk by storing a specific volume of a debris flow in

the debris basin and then releasing it to downstream areas with an acceptable discharge. On one hand, storing low
magnitude events increases the stored volume in the basin thus reducing its capacity. On the other hand, the passage
of high magnitude events through the retention dam may pose a threat to downstream exposed issues. Consequently, a
sufficiently fine understanding of the physical process corresponding to the routing of debris flows through a retention
system is essential to optimize the efficacy of the system in providing protection and to avoid unnecessary costs of
cleaning operation. For this purpose, a scenario-driven physics-based model is developed. The end purpose of the
model is to build deterioration trajectories corresponding to the evolution of the stored volume in a debris basin over
time. The model consists of several sequential stages, presented in the following subsections.
2.2.1. Step 0: Data Acquisition and Generation of Random Debris Flows Scenarios

Several input data should be acquired for launching simulations. Indeed, the model requires knowledge concerning
the (i) geometry of the retention dam (shape, dimensions, openings), (ii) characteristics of the debris basin (storage
capacity, deposition slope, stage-volume capacity curve) and (iii) debris flows characteristics (return periods, inlet
hydrographs, size and number of transported boulders). Some of these data can be extracted from the historical database
and topographical surveys while others could be missing and have to be assumed or obtained by modeling.

In debris basins, deposition does not occur horizontally. The deposition slope depends on the sediment concen-
tration and on the type of sediment transport. The stage-volume capacity curve depends on the deposition slope and
provides an estimate of the volume of debris stored in the basin below a specific level at the dam (fig. 2a). In addition,
the inlet hydrograph represents the inlet discharge of the debris flow event as a function of time. In case available data
are limited, triangular hydrographs can be assumed. In this case, the hydrograph can be described by four parameters:
the debris flow volume 𝑉𝑒𝑣𝑒𝑛𝑡, peak discharge 𝑄𝑝𝑒𝑎𝑘, time to peak 𝑡𝑝𝑒𝑎𝑘 and time to end 𝑡𝑒𝑛𝑑 = 2 ⋅𝑉𝑒𝑣𝑒𝑛𝑡∕𝑄𝑝𝑒𝑎𝑘 (fig. 2a).

Usually, the volume of the debris flow event 𝑉𝑒𝑣𝑒𝑛𝑡 is defined from frequency – magnitude analyses and 𝑄𝑝𝑒𝑎𝑘 is
estimated based on empirical equations as Eq. (1) proposed by Mizuyama et al. (1992).

𝑄𝑝𝑒𝑎𝑘 = 0.0188 ⋅ 𝑉 0.79
𝑒𝑣𝑒𝑛𝑡 (1)

Debris flow scenarios, i.e., series of debris flow events characterized by their date 𝐷𝑒𝑣𝑒𝑛𝑡 and volumes 𝑉𝑒𝑣𝑒𝑛𝑡 should
be generated to feed the physics-based model. These random variables can be randomly sampled based on historical
archives concerning the magnitude (volume) and the frequency (probability) of debris flow events that have already
occurred in the studied torrent. The generated scenarios will be fed separately to the model and the events involved in
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Figure 2: Key steps of the modeling process of a debris retention system: (a) system’s geometry and debris flows features;
(b) debris flow scenarios; (c) resulting failures and flow routing analysis and (d) stochastic deterioration and maintenance
modeling.
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Figure 3: Hydraulic and geometric parameters describing the different openings of a retention dam with different jamming
configurations.

each scenario will be modeled one after another. For each event, hydrographs are computed based on the event’s volume
(fig. 2b). In addition, the date of occurrence 𝐷𝑒𝑣𝑒𝑛𝑡 is used in order to build deterioration trajectories corresponding
to the filling of the debris basin over 50 years. Indeed, the routing of each scenario through the retention system will
result in one deterioration trajectory. However, the end purpose of the scenario-driven physics-based is to have a set
of these trajectories in order to attain a stochastic vision of the system’s dynamic behavior. Therefore, a satisfactory
number of scenarios that provide a good vision of the stochastic deterioration process should be generated and routed
through the model.
2.2.2. Step 1: Hydraulic control of debris flows by a Retention dam

Retention dams control the flow by their openings, whose capacity and progressive jamming by boulders allow a
specific volume of the flow to be transferred to downstream. Analysis concerning debris flows has not yet been covered
thoroughly in the literature (Piton and Recking, 2015). Consequently, equations dedicated to pure water hydraulics are
adopted and applied to debris flows. This section provides the stage ℎ -discharge 𝑄 equations used in order to estimate
the discharge capacity through the openings of a retention dam. Below are the equations corresponding to the discharge
capacity through the dam’s spillway (Deymier et al., 1995) and slot (Zollinger, 1983) whose parameters are illustrated
in fig. 3:

𝑄𝑠𝑝𝑖𝑙𝑙𝑤𝑎𝑦
𝑖 (𝑡) = 0.385 ⋅𝑤𝑖(𝑡) ⋅

√

2𝑔
(

ℎ(𝑡) − 𝑦𝑖(𝑡)
)3∕2

+ 0.308

√

2𝑔
(

ℎ(𝑡) − 𝑦𝑖(𝑡)
)5∕2

𝑡𝑎𝑛(Φ)

(2)

𝑄𝑠𝑙𝑜𝑡
𝑖 (𝑡) = 𝜇 ⋅𝑤𝑖(𝑡) ⋅

2
3
√

2𝑔
[

(

ℎ(𝑡) − 𝑦𝑖(𝑡)
)3∕2 −

(

ℎ(𝑡) − 𝑦𝑖(𝑡) − 𝑎𝑖
)3∕2

]

(3)
where 𝑄𝑖 (𝑚3∕𝑠) is the discharge capacity through the opening of index𝑖, 𝑡 (𝑠) is the time, 𝑤𝑖(𝑡) (𝑚) is the opening free
width (full width of the opening if it is not jammed by boulders), 𝑔 (≈ 9.81 𝑚∕𝑠2) is the gravitational acceleration, ℎ(𝑡)
(𝑚) is the flow depth over the dam’s base level, 𝑦𝑖(𝑡) (𝑚) is the base level of the flow (base level of the opening if it
is not jammed by boulders), Φ (◦) is the angle between the spillway’s wing and the horizontal, 𝜇 is a dimensionless
opening coefficient usually assumed as 0.65 (Zollinger, 1983) and 𝑎𝑖 (𝑚) is the slot’s height. In order to estimate 𝑤𝑖(𝑡)and 𝑦𝑖(𝑡), the progressive jamming of the dam’s openings should be analyzed at different time steps during a debris
flow event (see section 2.2.3).
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The total outlet discharge 𝑄𝑜𝑢𝑡𝑙𝑒𝑡 released through the openings of a retention dam is equal to the sum of the
discharge capacities through the 𝐼 openings of the dam.

𝑄𝑜𝑢𝑡𝑙𝑒𝑡(𝑡) =
𝐼
∑

𝑖=1
𝑄𝑖(𝑡) (4)

2.2.3. Step 2: Jamming Conditions and Stochastic Arrival of Boulders
In order to assess possible interactions between transported boulders and the retention dam’s openings, simple

hydraulic approaches that provide the spatio-temporal distribution of boulders approaching the dam and predict whether
or not the boulders jam the dam’s openings should be developed. A very recent model that analyzes the (i) conditions
of jamming based on granular dynamics and (ii) the stochastic arrival of boulders to the dam was proposed by Piton
et al. (2022). This model is used as a sub-model in the overall approach developed in this paper. To conduct this study,
we made a specific adjustment compared to the original model. We changed only the initial state of the basin’s filling
when a new event occur, with this initial state being set based on the filling level at the end of the previous event (empty
basin for the first event). It is worth noting that the original model was primarily designed for analyzing isolated events,
whereas our current work focuses on a series of events. Apart from this distinction, the two models are similar. A brief
description of this sub-model is presented below.

The jamming process of a retention dam’s openings is governed by the size of boulders relative to the size of the
openings. The dam’s openings can be jammed based on three different arrangements:
- Lateral jamming occurs when the following condition is satisfied (e.g., middle slot in fig. 3):

𝐷𝐴 +𝐷𝐵 > 𝑤𝑖(𝑡) (5)

where 𝐷𝐴 and 𝐷𝐵 are the diameters of the two largest boulders passing together at time 𝑡 through the opening number
𝑖 and 𝑤𝑖(𝑡) is the free width of opening 𝑖 at time 𝑡.
- Vertical jamming occurs only when the diameter of a boulder is greater than the height of the opening. (e.g., bottom
slot in fig. 3):

𝐷 > 𝑎𝑖 − 𝑦𝑖(𝑡) (6)
where 𝐷 is the boulder’s diameter, 𝑎𝑖 is the height of opening number 𝑖 and 𝑦𝑖(𝑡) is the level of a lateral boulder jam at
the base.
- Combined jamming occurs after sequential phases of lateral and/or vertical jamming (e.g., middle slot in fig. 3).

In order to numerically implement these jamming conditions, information about the number and size of boulders
transported by a debris flow event and passing, at the same time, through a retention dam’s openings should be
computed. The first step is to define 𝐽 classes of boulders assumed to be spherical on average. Each class 𝑗 corresponds
to a range of boulders’ diameters [𝐷𝑗,𝑚𝑖𝑛, 𝐷𝑗,𝑚𝑎𝑥] and is characterized by an average diameter 𝐷𝑗 and a volume 𝑉𝑗estimated as follows:

𝐷𝑗 =
1
2
(𝐷𝑗,𝑚𝑖𝑛 +𝐷𝑗,𝑚𝑎𝑥) (7)

𝑉𝑗 = 𝜋𝐷3
𝑗∕6 (8)

Moreover, in a given debris flow event of reference whose total volume is 𝑉𝑟𝑒𝑓 , one can count the actual number
𝑛𝑗 of transported boulders of each class. 𝑉𝑟𝑒𝑓 should be large enough to be statistically representative, i.e., to assume
that it provides a representative number of boulders of each class 𝑗. For each class 𝑗, the same volume 𝑉𝑟𝑒𝑓 can be
split in 𝑁𝑗 packets of elementary volumes 𝑉𝑗 as represented in fig. 4. However, each of the obtained packets of debris
can be either a boulder of class 𝑗 or a boulder of another class or mud. Consequently, Piton et al. (2022) proposes to
use a binomial law providing the number of successes 𝑛𝑗 (i.e., actual boulder) in a sequence of 𝑁𝑗 independent runs
(i.e., number of packets) each of which yields success with probability 𝑝𝑗 . The counting of the number of boulders per
number of packets is used to calibrate 𝑝𝑗 to later randomly compute which of the packets passing through an opening
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Figure 4: Conceptual schematic of boulder analysis used to calibrate the binomial distribution: (a) an idealized cross-section
of a debris flow deposit with a given volume 𝑉𝑟𝑒𝑓 and a certain number of boulders belonging to two different size classes
in a debris basin; (b) a more idealized version of the same deposit, where only the boulders of class 1 are represented: true
boulders (red polygons) and false boulders (white polygons); (c) same concept but for boulders of class 2. Adapted from
(Piton et al., 2022).

are actual boulders (success of the binomial law) and which are mud or boulders of other classes (failure of the binomial
law). The success probability 𝑝𝑗 of each class used in the binomial law is estimated using Eq. 9.

𝑝𝑗 =
𝑛𝑗
𝑁𝑗

=
𝑛𝑗

𝑉𝑟𝑒𝑓∕𝑉𝑗
(9)

Assuming that the frequencies of boulder classes are homogeneous on average across the entire flow, 𝑝𝑗 can be
adopted for any volume of a debris flow, interacting with an opening. Therefore, the number of boulders of each class
𝑛𝑗 involved in a volume of debris flow 𝑉𝑖(𝑡) = 𝑄𝑖(𝑡) ⋅Δ𝑡 at a specific time can be obtained by simulating 𝑁𝑗 = 𝑉𝑖(𝑡)∕𝑉𝑗trials using a binomial distribution of parameter 𝑝𝑗 . The time step Δ𝑡 has been defined as 2 𝑠 in our case, with the
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aim of both capturing the peak discharge and reducing computational time. The probability mass function 𝑃 of the
probability that 𝑛𝑗 is exactly equal to a given value 𝑘 is:

𝑃 (𝑛𝑗 = 𝑘) =
(

𝑁𝑗

𝑘

)

⋅ 𝑝𝑘 ⋅ (1 − 𝑝)𝑁𝑗−𝑘 (10)

2.2.4. Step 3: Buffering Capacity of a Debris Basin
Debris materials are stored in the debris basins and can be expected to escape gradually through the retention

dam. The jamming of the dam’s openings by boulders reduces their discharge capacities and thus the volume stored
in the basin will significantly increase, which in turn reduces the buffering capacity of the basin during the event and
subsequent ones. In such cases, the dam will no longer be able to self-clean a filled basin, which will have to be cleaned
manually by carrying out maintenance operations.

Knowing the characteristics of the debris basin (storage capacity, deposition slope, stage-volume capacity curve)
in addition to input hydrographs of debris flow events, the buffering of input flows in the basin can be estimated using
the following mass conservation equation:

(

𝑄𝑖𝑛𝑙𝑒𝑡(𝑡) −𝑄𝑜𝑢𝑡𝑙𝑒𝑡(ℎ(𝑡))
)

⋅ Δ𝑡 = Δ𝑉𝑏(ℎ(𝑡)) (11)
where 𝑄𝑖𝑛𝑙𝑒𝑡 (𝑚3∕𝑠) is the inlet discharge provided by the input hydrograph (fig. 2a), 𝑄𝑜𝑢𝑡𝑙𝑒𝑡 (𝑚3∕𝑠) is the outlet
discharge (Eq. 4), Δ𝑡 (𝑠) is the time step, ℎ (𝑚) is the flow level at the dam and Δ𝑉𝑏 (𝑚3) is the variation of the
volume stored in the basin. The stored volume in the basin 𝑉𝑏 for a specific flow level ℎ can be extracted from the
stage-volume capacity curve corresponding to the deposition slope (fig. 2a).
2.2.5. Overall Computational Analysis

A code for solving all previous steps was written in R to model the time-dependent evolution of the volume stored
in the debris basin. For a given structure, it first loads the structure features (fig. 2a): (i) retention dam geometry and (ii)
debris basin stage-volume curve. It secondly loads the boulder counting for the reference volume (fig. 4) and computes
the associated probability 𝑝𝑗 . It then takes as an input the volumes of the debris flow events involved in a scenario. For
each event, it goes through the following main steps:
- Step 1 Defining an input vector that involves the volume of the debris flow event 𝑉𝑒𝑣𝑒𝑛𝑡, peak inlet discharge 𝑄𝑝𝑒𝑎𝑘based on Eq. (1), time to peak 𝑡𝑝𝑒𝑎𝑘, deposition slope, initial volume stored in the basin 𝑉𝑖𝑛𝑖𝑡 and initial lateral and
vertical jamming rates of the dam’s openings.
- Step 2: Building the inlet hydrograph of the event, which provides the inlet discharge 𝑄𝑖𝑛𝑙𝑒𝑡(t).
- Step 3: Estimating the initial level 𝑍 (𝑚) of deposit depending on the initial volume stored in the basin 𝑉𝑖𝑛𝑖𝑡 (𝑚3)
using the stage ℎ (𝑚) - volume 𝑉𝑏 (𝑚3) capacity curve.
- Step 4: Computing the outlet discharge 𝑄𝑜𝑢𝑡𝑙𝑒𝑡 𝑚3∕𝑠 through the retention dam using Eq. (4) taking into account only
the initial lateral and vertical jamming rates of the dam’s openings.
- Step 5: Randomly sampling the number of boulders of each class that approaches the openings of the dam using the
binomial distribution approach presented in section 2.2.3.
- Step 6: Estimating the lateral and vertical jamming rates of the dam’s openings based on jamming conditions (Eqs.
5 and 6) and updating the dimensions of the dam’s openings.
- Step 7: Estimating the volume stored in the basin 𝑉𝑏 𝑚3 using Eq. 11.

In order to model the evolution of indicators over time, steps 4 – 7 are performed at each time step over the whole
duration of a debris flow event. The main outputs obtained after running the code are the time series of the inlet
discharge 𝑄𝑖𝑛𝑙𝑒𝑡(𝑡) (𝑚3∕𝑠), outlet discharge 𝑄𝑜𝑢𝑡𝑙𝑒𝑡(𝑡) (𝑚3∕𝑠), lateral and horizontal jamming rates (%) of the dam’s
openings, flow level at the dam 𝑍(𝑡) (𝑚.𝑎.𝑠.𝑙 - meters above sea level) and the cumulative volume stored in the basin
𝑉𝑏(𝑡) (𝑚3). Since the objective of the approach is to analyze the behavior of the retention dam over 50 years, the
generated debris flow events involved within a scenario should be modeled one after another. In other words, the
outputs provided after running event 𝑛 in terms of filling state and jamming rates will be the initial inputs provided for
analyzing event 𝑛 + 1. This results in deterioration trajectories corresponding to the evolution of the indicators to be
studied over time (e.g., volume stored in the basin).
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2.3. Surrogate Stochastic Deterioration Model Implementing a CBM policy using SPNs
The developed scenario-driven physics-based model represents the physical process behind the filling of a

debris basin over time. However, such a model is not really adapted for studying and assessing the performance of
different possible maintenance policies (e.g., CBM) as it is a combination of several sub-models handled in sequence.
Consequently, a surrogate stochastic deterioration model, which provides a simpler but comprehensive representation
of the physical deterioration process capturing all its variability and uncertainty, should be developed in order to easily
implement a CBM policy.

Several decision-support modeling tools exist and are widely used for modeling event-driven dynamic systems
while combining deterioration, inspection and maintenance processes. Stochastic Petri nets SPNs (Signoret, 2009),
stochastic activity networks SANs, (Sanders and Meyer, 2001), colored stochastic Petri nets CSPNs, (Zimmermann,
2008) and many other decision support tools could be used for this purpose. SPNs have already been adopted to model
the deterioration and maintenance processes of complex structures and systems (Le et al., 2017; Yianni et al., 2017;
Ferreira et al., 2018). It has also been recently adopted in the context of protection structures for optimizing maintenance
strategies of torrent check dams (Chahrour et al., 2021). The latter revealed that SPN is an adequate tool that adapts to
the current study’s needs. Accordingly, a SPN model implementing a CBM policy is developed in this study in order to
support maintenance decision-making of a debris basin subject to loss in capacity due to its filling by debris materials
over time. All the processes involved in the SPN model are described in the following subsection.
2.3.1. Physics-Informed Deterioration Process

The deterioration process of a SPN model is composed of four main elements: places, tokens, transitions and arcs
(Petri, 1962). Places represent the states of the studied deteriorating system. These states correspond to different levels
of deterioration of the system. The presence of a token in one of the places reveals that the system is residing in the
state corresponding to this place. Stochastic transitions are responsible for moving the token from one place to another
based on the probability laws assigned to the transitions. Arcs show the possible paths between the states of the system
by linking between places and transitions. Consequently, in order to build a stochastic deterioration process of a debris
basin using SPNs, two major steps should be achieved: (1) defining deterioration states of the basin and (2) learning
probability laws corresponding to the transitions between the defined states.

The stochastic transitions are the key elements responsible for the functioning of the deterioration process. In
most studies dedicated to complex system analysis, the probability laws associated with these transitions are either
assumed based on expert assessment to follow probability distributions that are revealed to be adequate for modeling
the deterioration process (e.g., Weibull, Poisson, Gamma) or are estimated based on real data concerning time to failure
(Le et al., 2017; Yang and Frangopol, 2019; Tao et al., 2021). Such kind of assumptions could only be a limitation when
real data about undesirable events, failure modes and failure rates are missing, which is the case for protection systems in
mountains. For this purpose, scenario-driven physics-based models are first developed in order to describe the physical
mechanisms underlying the deterioration process, also accounting for the associated variability and uncertainty. The
outputs of these physics-based models are then used to learn the stochastic transition laws between the states of the
system.

As previously mentioned, the volume stored in the debris basin is chosen as the major deterioration indicator in
this study. However, the physical modeling of this indicator already incorporates other deterioration indicators such
as the jamming rate of the retention dam’s openings. Using the framework presented in section 2.2.5, the modeler can
start the modeling considering an empty basin and then assess how the retention system moderates (buffer) debris flow
events over time. Indeed, the stored volume in a basin 𝑉𝑏 can evolve progressively or rapidly from an initial state (e.g.,
empty basin) to deteriorated states (e.g., partially filled basin) until reaching a completely failed state (e.g., completely
filled basin). In the present study, four different states of filling that reflect the condition of the debris basin are defined:
good, poor, very poor and failed conditions. The thresholds corresponding to the intervals that define these states are
determined based on expert judgment and could, of course, be discussed and modified. The states and their associated
intervals are described below:
State 1: good condition with 0 ≤ 𝑉𝑏 < 𝑉𝑃1
State 2: poor condition with 𝑉𝑃1 ≤ 𝑉𝑏 < 𝑉𝑃 2
State 3: very poor condition with 𝑉𝑃2 ≤ 𝑉𝑏 < 𝑉𝑃3
State 4: failed condition with 𝑉𝑃3 ≤ 𝑉𝑏 ≤ 𝐶𝑏
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Figure 5: Example showing the evolution of the debris volume stored in the basin 𝑉𝑏 over time.

where 0 corresponds to an empty basin. 𝑉𝑃 1, 𝑉𝑃2, and 𝑉𝑃3 are the states’ indicator thresholds. 𝐶𝑏 is the maximum
storage capacity of the basin.

The physical modeling presented in section 2.2 provides observations of a debris basin’s stochastic deterioration
trajectories. The number of observations depends on the number of considered debris flow scenarios. Based on these
trajectories, several realizations of the random transition times between the defined states can be obtained, based on
which it is possible to learn the transition laws by estimating a non-parametric cumulative distribution function for
each transition (Kaplan and Meier, 1958). Fig. 5 provides an example of one random deterioration trajectory showing
how 𝑉𝑏 evolves from one state to another over time in the case where no maintenance operations are carried out. It
is important to differentiate between the maximum volume stored in the basin attained during each event and that
attained at the end of the event. In fact, the maximum stored volume is usually higher than the final stored volume due
to self-cleaning. However, the volume stored at the end is the most important for the maintenance aspect.

The deterioration process involved in the overall SPN model is represented in fig. 6a. The four states of the debris
basin are represented by places 𝑃1 - 𝑃4 corresponding respectively to the good, poor, very poor and failed conditions.
The model is executed assuming that the basin is initially in good condition. This explains the presence of a token
(small solid circle) in 𝑃1 at 𝑡 = 0. The stochastic transitions responsible for the movement of the token from one place
to another are represented as 𝑇𝑥−𝑦, where 𝑥 and 𝑦 are the states at time 𝑡 and 𝑡 + 1 respectively. Therefore, they reflect
the evolution of the basin from one state to another. For example, 𝑇1−2 links between states 1 and 2 and 𝑇2−4 links
between states 2 and 4. It is therefore important to note that the deterioration is not necessarily gradual. For example,
the system can move from state 1 to either state 2, 3 or 4 depending on which of the transitions 𝑇1−2, 𝑇1−3 and 𝑇1−4fires first. Usually, the transitions function based on a firing delay time associated with each transition. In other words,
once all the transition conditions are verified, a transition is fired when its firing delay time is reached. Upon its firing,
the token moves from the input place of the transition to its output place. For stochastic transitions, the firing delay
times are drawn from probability distributions learned from the physics-based model as explained above.

The next step consists in modeling the evolution of the debris basin from one state to another when subjected to a
CBM policy through a stochastic inspection and maintenance processes using SPNs.
2.3.2. Inspection and Maintenance Processes

Field visits should be carried out regularly in order to detect the state of the debris basin at a specific time.
Several scenarios could be adopted concerning inspection times. For example, one scenario could be that each time an
event happens, inspectors should go to the field, identify the level of deterioration and decide whether a maintenance
operation is necessary or not. Another scenario could be that regardless of the level of deterioration attained during the
year, a maintenance operation should be performed once a year. However, because of the yearly budget, harsh weather
and difficulty in accessing the field, another scenario could be that inspectors are supposed to visit the field one time
per year, consider the state of the basin and then to decide whether or not to apply maintenance. In other words, it is
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Figure 6: SPN model developed for modeling stochastic deterioration and maintenance processes of a capacity deteriorating
debris basin. (a) Deterioration process; (b) inspection process and (c) maintenance process.

not necessary that they will take the decision to do maintenance upon inspection. The latter scenario is the one adopted
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in this study, in which inspection is scheduled once per year and thus decision whether to apply maintenance or not is
only made once per year.

Fig. 6b represents the inspection process of the developed SPN model. Initially, a token is present in place 𝑃5,
which is linked to the periodic inspection transition 𝑇5. Consequently, after one year 𝑇5 is fired and the token in 𝑃5moves to 𝑃6 at which inspection takes place. Depending on the state of the basin detected upon inspection, one of the
immediate transitions 𝑇6, 𝑇7 or 𝑇8 will immediately fire and a token will be present respectively either in place 𝑃7, 𝑃8or 𝑃9. The bi-directional arcs connecting 𝑇6, 𝑇7 and 𝑇8 with 𝑃6 make 𝑃6 both an input and an output place for these
transitions. Therefore, when any of these transitions fires, it retrieves tokens from its input places while depositing one
token into its output place, which is 𝑃6. Thus, even after the firing of 𝑇6, 𝑇7 or 𝑇8, a token remains in 𝑃6. In order
for an inspection to be scheduled again, 𝑇4 also fires immediately so that the token in 𝑃6 returns to 𝑃5 waiting for the
next inspection after one year. To prevent conflicts between the firing of 𝑇4 and 𝑇6, 𝑇7 or 𝑇8, it’s necessary to assign
priorities to these transitions. Consequently, a lower priority is assigned to 𝑇4 to ensure that 𝑇6, 𝑇7 or 𝑇8 fires first.

Each year the state of the basin is monitored once. Following this monitoring inspection, a specific maintenance
plan depending on the level of deterioration should be scheduled. This corresponds to a CBM policy associated with
a discrete deterioration process. Several CBM policies can be adopted for the developed deterioration process. In this
study, the chosen policy is represented by fig. 6c. After inspection, if there is no token in 𝑃7 nor in 𝑃8 nor in 𝑃9, the
basin is revealed to be residing in state 1 and no maintenance operation is scheduled. If a token is present in 𝑃7, 𝑃8 or
in 𝑃9, a minor, major or corrective maintenance operation should be applied respectively. Each maintenance operation
has a constant firing time corresponding to the time needed for the operation to be carried out. After this time, transition
𝑇9, 𝑇10 or 𝑇11 fires and a token is placed again in place 𝑃1 which corresponds to state 1 in the deterioration process.
This reveals that the maintenance operations are assumed to be perfect, in which they restore the basin back to its initial
state.

It is necessary to highlight here the fact that it is possible for the basin to deteriorate from one state to another prior
to inspection. This means that the basin is not necessarily maintained when it reaches a state where a maintenance
operation is required. For example, if the basin is in state 2, there exist three possible pathways: (1) if transition 𝑇6 fires
first, meaning that inspection took place, the token present in 𝑃2 moves to 𝑃7 and a minor maintenance operation will
be carried out; (2) if transition 𝑇2−3 fires first, the token in 𝑃2 moves to 𝑃3 meaning that the system has deteriorated
to state 3 before applying maintenance and (e.g., another debris flow events occurred and partially filled the basin) (3)
if transition 𝑇2−4 fires first the token in 𝑃2 moves to 𝑃4 revealing that the system has deteriorated directly to state 4
before any inspection (e.g., another debris flow events occurred and rapidly filled the basin).
2.3.3. SPNs as Model-Based Decision Support Systems

The flexibility of SPNs makes it possible to use the same structure presented in fig. 6 but assign different
functionalities. Because the end purpose of this study is to support maintenance decision-making of a debris basin
in a retention system, four different maintenance strategies can be considered for comparison within the SPN model:
Strategy 1: all maintenance operations are allowed. The basin can be maintained when it reaches states 2, 3 or 4.
Strategy 2: minor maintenance operations are inhibited. The basin is allowed to deteriorate further than state 2 without

any maintenance operation.
Strategy 3: Major maintenance operations are inhibited. When the basin reaches state 3, it is allowed to deteriorate

further to state 4 without any maintenance operation.
Strategy 4: only corrective maintenance operations are allowed. The basin is only maintained when it reaches a

completely failed state.
In order to compare the proposed maintenance strategies, each strategy is simulated separately. Indeed, after Monte-

Carlo simulations, the SPN model provides for each maintenance strategy two major outputs: (1) the mean time spent by
the basin in each of the defined states and (2) the mean number of maintenance operations performed over the specified
period of simulation. These outputs make it possible to sort maintenance strategies in terms of cost (depending on the
cost of each operation) and maximum availability (time spent in a non-failed state). This in turn supports risk managers
to make suitable maintenance decisions depending on the efficiency of the maintenance strategy in increasing the level
of protection provided by the retention system and on available budgetary resources.
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3. Case Study: Claret’s Retention System
This section presents a brief description of the case study to be considered in this paper. It starts by introducing

the Claret torrent, the features (type, frequency) of the torrential events that occurred in the torrent in addition to the
retention system implemented in this torrent. The section also presents the acquired, estimated and generated data
necessary for the deterioration modeling and maintenance optimization that will be tackled in the next section.
3.1. General Description of the Claret Torrent and its Debris Retention System

The Claret torrent is a tributary on the right bank of the Arc River whose confluence is in the town of Saint Julien
Montdenis in the Maurienne valley (Savoie) in France. It is a very active torrent characterized by a steep slope and
high sediment potential. According to the event’s history, this torrent has a frequent tendency to produce muddy debris
flows. These events can contain a significant volume of materials and can carry large boulders sometimes up to its
confluence with the Arc. Historical archives of torrential events show that floods occur with a very high frequency
during intense summer storms (up to three events per year), with an average frequency of five significant debris flow
events per decade (Hugerot, 2015). All recorded damaging events have almost caused the same damages such as bridge
collapsing, roads and railways blockage by large boulders and alluvial fan incision. Protection structures such as check
dams were built in 1957 in order to stop torrential floods, reduce their intensities and stabilize the longitudinal profile.
Nonetheless, a violent debris flow event occurred on July 2, 1987 and caused severe damage to exposed issues located
in downstream due to the transfer of very large boulders. This debris flow is considered as a reference event that urged
risk managers to implement a debris retention system to protect downstream exposed assets (EDF channel, roads,
railway) from the very large boulders that contribute to the geomorphic activity of the torrent.

Indeed, in 1991, a debris retention system was built in the Claret torrent. The objective was to store large boulders
transported by debris flow events in the debris basin and to moderate the passage of the flow through the openings of
the dam. The debris basin is 120 𝑚 long with a capacity of 22, 000 𝑚3. It is closed by a 9.2 𝑚 high reinforced concrete
retention dam. The dam has three openings: two separate rectangular slots and a trapezoidal spillway as shown in
fig. 1. The main objectives of the bottom slot are to allow low-magnitude events to pass through the dam towards the
downstream and to stop boulders with diameters greater than 1 𝑚. The middle slot is only activated when the deposit
level upstream of the dam reaches 4 𝑚 of debris. Moreover, the trapezoidal spillway directs extreme flows over the
dam when the deposit is more than 7 𝑚 high. Since its construction, the dam has stored excessive volumes of debris
even those carried by low-magnitude debris flows, which could have passed smoothly to downstream. Consequently, the
dam’s lower opening is not sufficient in relation to the maximum diameter of the boulders, which are transported during
frequent debris flows. This issue necessitates regular cleaning operations in order to remove the stored materials in the
debris basin and thus ensure the functional efficacy of the retention system. This in turn has requested high monetary
budgets.

Managers of the Claret used to adopt a specific maintenance policy. Each time a debris flow occurs, they ask for
scheduling maintenance where all the stored volume should be cleaned. In this study, the aim is to explore alternative
maintenance policies. Instead of event-based maintenance, condition-based maintenance is adopted in which cleaning
maintenance decision depends on the state of the basin detected after inspection. This is achieved by modeling the
progressive filling of the Claret’s debris basin considering the jamming rate of the dam’s openings when subjected to
debris flows over a period of 50 years.
3.2. Numerical Modeling Inputs and Data Sources

Prior to modeling and analysis, several numerical inputs should be acquired. This section presents the data
necessary for executing simulations using the approach developed in section 2.
3.2.1. Random Debris Flow Scenarios

Data concerning the average number of torrential floods that occur during every month of the year is extracted
from the database of the system’s managers (ONF-RTM, i.e., French torrent control service). Fig. 7 shows the monthly
distribution of all recorded floods in the Claret and the corresponding cumulative distribution function CDF (ONF-
RTM, 2013). It can be noticed that almost all of the events (87 %) occur between June and September due to summer
rainstorms, which are often very intense.

Morel et al. (2022) gathered data concerning the volumes of past events recorded from 1992 until 2019, which
enabled to fit a generalized Pareto distribution (GPD) to build a “Frequency - Magnitude” curve of the Claret catchment
on an observation period of barely 27 years (fig. 8). The GPD adjustment is characterized by a shape parameter
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Figure 7: Histogram and CDF corresponding to the monthly distribution of recorded torrential floods in the Claret. Data
extracted from (ONF-RTM, 2013).

Figure 8: Claret’s Frequency - Magnitude curve resulted after the adjustment of real observations of debris flow events
using GPD distribution. Adapted from (Morel et al., 2022).

(𝜉 = −0.49) and a scale parameter (𝛽 = 27, 172.8). This probabilistic law will be used to randomly sample debris flow
event scenarios based on real observations. It also makes it possible to compute the volume of debris flows with given
return periods. For example, the volumes corresponding to return periods of 10, 20, 50 and 100 years are respectively
35, 500, 41, 000, 46, 000 and 49, 000 𝑚3.

In order to achieve the desired objective of this study, 100 debris flow scenarios that involve debris flows occurring
over a period of 50 years are generated. For each scenario, based on archives, it is considered that three storms
sufficiently intense to eventually trigger a debris flow occur per year. However, not all of these storms lead to debris
flows, often due to a lack of available transportable materials. This implies that a total of 𝑁 = 150 storms are
randomly sampled over the studied period. To figure out whether each of the three events triggers a debris flow, a
binomial distribution is again adopted. Since on average, one debris flow occurs every two years, it is expected to have
one debris flow event every six storms on average. Therefore, the success probability used in the binomial law is 𝑝 = 1

6 .
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Figure 9: Time series of torrential floods and triggered debris flow events over a period of 50 years - Scenario 1.

Figure 10: Claret’s retention dam’s detailed geometry and dimensions (in 𝑚) - Front view.

In the case when a debris flow is triggered, a random volume is picked up from the GPD fitting of fig. 8. Otherwise,
the debris flow volume is set to 0 𝑚3.

With regards to the dates of occurrences of the 150 storm events involved in each scenario, 150 dates are randomly
sampled from the CDF that belongs to the real empirical data presented in fig. 7. All generated dates are then sorted in
ascending order and associated with the 150 generated volumes. Fig. 9 shows the time series of events corresponding to
the first generated scenario (scenario 1). The hydrographs are assumed to have a triangular shape with a peak discharge
attained after 5 𝑠 of the event’s starting time based on the monitoring observations of Piton et al. (2018).
3.2.2. Initial Configuration of the Retention System

Fig. 10 provides a detailed illustration of the geometry of Claret’s retention dam. All related information concerning
the dam’s openings is provided in table 1. Both, the two rectangular slots and the trapezoidal spillway are assumed
to be initially empty from boulders (jamming rate = 0%). In order to estimate the number of boulders that could be
transported by a given debris flow volume and could interact with the dam’s openings, data concerning the class and
the number of boulders observed in a reference volume of 𝑉𝑟𝑒𝑓 = 30, 000𝑚3 were predicted by expert judgement and
presented in table 2.

One more necessary piece of information concerns the deposition slope in the debris basin. The actual deposition
slope was measured as 𝑆𝑑𝑒𝑝 = 6.1 % on the topographic data collected after the 2017 debris flow (Piton et al., 2018).
Another topographic survey of the basin state before its filling made it possible to build for the estimated 𝑆𝑑𝑒𝑝, the
stage ℎ (𝑚.𝑎.𝑠.𝑙) - volume 𝑉𝑏 (𝑚3) capacity curve using 3D analysis. Initially, before the first event involved in each
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Table 1
Characteristics of the Clarte’s retention dam’s openings.

Number Type Width (m) Base level
(m.a.s.l)

Top level
(m.a.s.l)

Inclination angle with
horizontal (°)

1 Bottom slot 5 690 691 -
2 Middle slot 3 694 695.5 -
3 Spillway 5 697 - 45

Table 2
Number of boulders with different diameters that can be found in a reference volume of 30, 000 𝑚3.

Diameter (m) Number

3 2
2 10
1 200

scenario, the debris basin is considered to be empty of materials (𝑉𝑏(𝑡 = 0) = 0 𝑚3) and the initial level of deposits
at the retention dam is 𝑍(𝑡 = 0) = 690 𝑚.𝑎.𝑠.𝑙.

The volume stored in the basin 𝑉𝑏 evolves during each debris flow event. As mentioned in section 2.3.1, the basin
can reside in four different states defined depending on the value of 𝑉𝑏. Based on experts’ judgment, the thresholds of
these states are chosen as follows:
State 1: until 10% of the basin’s capacity

0 𝑚3 ≤ 𝑉𝑏 < 2, 200 𝑚3

State 2: before reaching about half the basin’s capacity
2, 200 𝑚3 ≤ 𝑉𝑏 < 10, 000 𝑚3

State 3: before reaching 90% of the basin’s capacity
10, 000 𝑚3 ≤ 𝑉𝑏 < 20, 000 𝑚3

State 4: until the basin is 90% filled
20, 000 𝑚3 ≤ 𝑉𝑏 ≤ 22, 000 𝑚3

3.2.3. SPN Model Inputs and Economic Data
The SPN model presented in fig. 6 will be used to study the stochastic evolution of the debris volume stored

in Claret’s debris basin while carrying out CBM operations. Minor, major and corrective maintenance operations
corresponding respectively to states 2, 3, and 4 are defined. Usually, for the case of maintaining debris basins, the
same maintenance policy is carried out whatever the state of the basin is. In other words, after inspection, whatever
the state of the filling is, the decision is to clean all the volume stored in the basin. The difference in minor, major and
corrective operations lies only in the amount of materials to be cleaned and therefore the duration required to carry out
each operation.

The deterministic transition times of fig. 6, corresponding to the inspection frequency (𝑇5) in addition to the time
required to schedule and achieve each maintenance operation (𝑇9, 𝑇10 and 𝑇11), are assessed by experts and presented in
table 3. The time required for carrying out cleaning operations ranges between 3 to 12 months (Paulhe et al., 2018). In
June 14𝑡ℎ 2017, a debris flow with 𝑉𝑏 ≈ 8000 𝑚3 (a typical State 2 maintenance) occurred. The cleaning maintenance
operation took about one month (Sept. 3𝑟𝑑 - Oct. 11𝑡ℎ) but it was launched 2.5 months after the event (scheduling time).
Consequently, it is assumed that the launching time is fixed to 2.5 months and the cleaning period is proportional to the
volume to be cleaned. The constant firing times corresponding to transitions 𝑇9, 𝑇10 and 𝑇11 are therefore estimated as
follows:
- Minor operations: 2.5 months + 1 month for state 2
- Major operations: 2.5 months + 2 months for state 3
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Table 3
Deterministic transition times involved in the inspection and maintenance processes involved in the SPN model.

Process Transition Constant firing time
(years)

Inspection 𝑇5 1
𝑇4 𝑇6 𝑇7 𝑇8 0

Maintenance
𝑇9 0.291
𝑇10 0.375
𝑇11 0.458

Table 4
Costs of maintenance operations carried out for cleaning Claret’s debris basin.

Operation Mean cleaned volume (𝑚3) Cost (€)

1 6,100 17,000
2 15,000 42,000
3 21,000 59,000

- Corrective operation: 2.5 months + 3 months for state 4

Since the implementation of Claret’s retention system, the average cost of cleaning operations has been 2.83 €/𝑚3

(Paulhe et al., 2018). It is assumed that the average volume of the interval defining the states at which the maintenance
operations are required is considered for estimating the cost of each operation. These costs are presented in table 4 and
are consistent with the variation of cleaning costs presented in the literature (Carladous et al., 2022).

4. Results and Discussions
This section presents the results provided after modeling the deterioration and maintenance processes of the Claret

retention system when subjected to the 100 generated debris flow scenarios over a period of 50 years.
4.1. Deterioration Trajectories of the Claret’s Debris Basin

The 100 generated debris flow scenarios are simulated using the scenario-driven physics-based model developed
in section 2.2. Fig. 11 exemplifies its results with the first two consecutive debris flow events involved in scenario 1
(event 1: 𝑉𝑒𝑣𝑒𝑛𝑡 = 19, 422 𝑚3, 𝐷𝑒𝑣𝑒𝑛𝑡: 14/08/2021 ; event 2: 𝑉𝑒𝑣𝑒𝑛𝑡 = 24, 873 𝑚3, 𝐷𝑒𝑣𝑒𝑛𝑡: 07/08/2022 ). During the first
event, the retention system trapped 9, 300 𝑚3, i.e., decreased the volume of the debris flow by 52% and released the
un-trapped material with a peak discharge of 27 𝑚3∕𝑠, i.e., buffered the peak discharge by 42%. During the second
event, the higher jamming of the dam’s slots (totally black lines in second and third panels of fig. 11b) lead to higher
trapping of 12600 𝑚3, i.e., 49% of the supply, as well as a higher buffering of 70%, releasing a maximum discharge of
17 𝑚3∕𝑠 against 55.8 𝑚3∕𝑠 at the inlet of the basin. It can also be noticed that during the second event, the flow level at
the dam exceeded the spillway’s level (dotted line in the fourth panel of fig. 11b). The final volume stored in the basin
attained after the second event is 𝑉𝑏 = 21, 900 𝑚3, which is approximately equal to the maximum storage capacity
of the basin 𝐶𝑏 = 22, 000 𝑚3. Both debris flows have reached their maximum deposition in less than 12 minutes and
then have progressively self-cleaned a specific volume through the middle slot. At the end of event 2, the bottom and
the middle slots of the dam were totally horizontally and vertically jammed by boulders (totally black first and second
lines in the second and the third panels of fig. 11b).

Similar outcomes are obtained for other events and scenarios. Note that in addition to the stochastic model
developed for generating random events, stochasticity is also present in another stage of the physics-based model,
in which the presence and transport of boulders in a given debris flow volume are modeled using the binomial law
(recall section 2.2.3). Consequently, results obtained after the simulation of a specific event differ when simulating
again the same event due to the randomness in the number of boulders passing and jamming the dam’s openings.

These outputs enable the modeling of the evolution of the volume stored in the debris basin 𝑉𝑏 (deterioration
indicator) taking into account dependencies with the jamming rate of the dam’s openings (sub deterioration indicator).
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Figure 11: Results obtained from the buffering model involved within the physics-based model showing the variation of
several physical parameters: (a) event 1 in scenario 1 and (b) event 2 in scenario 1. Q (𝑚3∕𝑠) is the discharge, Z (𝑚.𝑎.𝑠.𝑙)
is the flow level at the dam and 𝑉𝑏 (∗ 103 𝑚3) is the volume stored in the basin.

Figure 12: Time-dependent evolution of the state indicator 𝑉𝑏 for the 100 generated scenarios. Blue curve: indicator
evolution over time; red dashed lines: indicator thresholds (0 𝑚3, 𝑉𝑃1 = 2, 200 𝑚3, 𝑉𝑃2 = 10, 000 𝑚3, 𝑉𝑃 3 = 20, 000 𝑚3 and
𝐶𝑏 = 22, 000 𝑚3).

Fig. 12, shows the time-dependent evolution of 𝑉𝑏 for all of the 100 generated scenarios. The scattering seen in the
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Figure 13: Cumulative distribution functions of the stochastic transitions involved in the deterioration process of the SPN
model (logarithmic scale).

figure reveals that the evolution of 𝑉𝑏 varies depending on the generated scenario. The variation is mainly controlled by
the magnitude of the events involved in each scenario, and at the second order by the numbers and classes of boulders
interacting with the dam’s openings. This, again, proves the necessity of stochastic modeling in order to integrate
possible behaviors of the system in the analysis. The basin is completely filled within 5 years in most scenarios and
within 20 years in all scenarios. Therefore, maintenance is required at very early stages.

Estimating the time spent in each of the defined states for all the simulated scenarios provides a data set for each
of the stochastic transitions that link between the states of the basin. From the obtained results, it is revealed that all
transitions have a considerable number of observations, in which 𝑇1−2, 𝑇1−3, 𝑇1−4, 𝑇2−3, 𝑇2−4 and 𝑇3−4 have attained,
respectively, 46, 29, 25, 21, 25 and 50 values out of 100 values. An empirical cumulative distribution function (CDF)
is estimated for each transition using Kaplan-Meier estimator (fig. 13).
4.2. Maintenance Decision-Making

In order to support decision-making concerning cleaning maintenance operations, the obtained CDFs are used
as an input to the deterioration process involved in the SPN model developed in section 2.3. Each CDF is assigned
to its corresponding stochastic transition in fig. 6. The CDFs are represented by a two-dimensional matrix (delay,
cumulative probability) so that the firing delay time of each transition can be estimated. In addition, in order to avoid
conflict between transitions that have a common input place (e.g., 𝑇1−2, 𝑇1−3 and 𝑇1−4), a firing probability is assigned
to each transition based on its attained number of observations.

Since the SPN model follows a stochastic process, the number of simulations to be held is considered to be sufficient
when the results stabilize and converge, signifying consistency in the outcomes. In this particular study, a total of 1000
Monte-Carlo simulations were executed and convergence in results consistently occurred after just 200 simulations for
all predefined maintenance strategies. Tables 5 and 6 summarize the results obtained for each maintenance strategy
modeled over a period of 50 years.

Table 5 reveals the influence of each maintenance strategy on the mean sojourn time of the Claret’s debris basin
in the four defined states. In strategies 1 and 3, the basin resides in state 1 for a longer period of time when compared
to strategies 2 and 4. This is due to the fact that in strategies 1 and 3, maintenance is applied as soon as the basin is no
more in good condition using minor operations. On the other hand, for strategies 2 and 4, where minor maintenance
is prevented, the basin remains in a poor condition (state 2) for a longer time. In strategy 3, since major maintenance
is inhibited, the basin resides in a very poor condition (state 3) for a long time in comparison to the strategies where
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Table 5
Mean sojourn time (years) of the Claret’s debris basin in each of the defined states depending on the adopted maintenance
strategy.

Strategy State 1 State 2 State 3 State 4
1 40.49 3.36 2.67 3.48
2 31.05 10.94 3.19 4.82
3 33.55 2.93 7.77 5.74
4 25.32 9.42 8.19 7.07

Table 6
Statistics on the number of cleaning maintenance operations performed over a period of 50 years depending on the adopted
maintenance strategy. 𝜇: average; 𝜎: standard deviation.

Strategy Minor Major Corrective
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

1 4.84 2.15 3.66 1.87 4.14 1.64
2 0.00 0.00 4.09 1.75 5.29 1.65
3 4.09 2.16 0.00 0.00 6.44 1.71
4 0.00 0.00 0.00 0.00 7.48 1.70

major operations are allowed (strategies 1 and 2). Concerning strategy 4 where only corrective operations are allowed,
the basin spends more time in the deteriorated states 2 and 3 compared to other strategies. The reason behind this is
that the basin continues to deteriorate without being cleaned until it completely fails by reaching almost its maximum
storage capacity.

Table 6 shows that almost in all the proposed maintenance strategies, corrective maintenance operations, which
are applied when the volume stored in the basin exceeds 90% of the basin’s capacity are the most performed. This
reveals that the basin reaches almost its storage maximum capacity within a short duration compared to the time at
which the inspection is carried out. This issue can also be noticed in fig. 12, at which it is clear that the deterioration
rate corresponding to the filling of the basin is very high in most of the scenarios (e.g., scenario 1).
4.2.1. Optimization of Maintenance Costs

The statistics on the number of applied maintenance operations provided in table 6 make it possible to compute the
total average cost of each of the proposed maintenance strategies. Indeed, the results provided in fig. 14 make it easy
to sort, compare and choose the most cost-effective maintenance strategy. The cost represented in the figure is equal to
the average of the 200 costs obtained from the 200 Monte-Carlo simulations of the SPN model. The figure also shows
error bars, which represent the variability of the data provided by the 200 simulations. These error bars are edged lines
that extend from the center of the plotted data (mean 𝜇) according to the obtained standard deviation 𝜎. In other words,
the upper and the lower edges of the error bars correspond respectively to 𝜇+ 𝜎 and 𝜇− 𝜎. It can be noticed that all of
the defined maintenance strategies have more or less the same total average cost. This can also be seen from the error
bars which almost overlap, revealing that the difference between the four strategies is not statistically significant.

Regardless that the costs of all strategies are not so different, strategy 4 is revealed to be slightly cheaper than the
other. In other words, waiting until the basin is more than 90% filled (𝑉𝑏 ≥ 20, 000 𝑚3) and cleaning the whole
volume of deposits seems to be the most cost-effective strategy when considering only the cleaning of the basin
(see next section). Strategy 2, where cleaning operations are applied when the basin is filled by more than 50% is
the most expensive. Firstly, strategy 2 prevents minor cleaning operations that are typically performed during the
early stages of basin filling, when it’s less than 50% filled. This leads to an accumulation of debris materials without
periodic maintenance, contributing to a higher cost compared to strategies 1 and 3 where minor operations are allowed.
Secondly, strategy 2 requires cleaning operations when the basin reaches approximately 50% of its capacity, which
results in significantly more material to remove during each cleaning operation. This increase in volume demands
more workers, machinery and resources, ultimately driving up the cost. Compared to strategy 4, where cleaning occurs
only at state 4, strategy 2 adopts a more proactive approach by cleaning at state 3 or 4. However, it’s important to
note that it takes the basin longer to reach state 4 than state 3. Consequently, strategy 4 involves fewer maintenance
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Figure 14: Average total cost of the four proposed maintenance strategies. The error bars (in red) reveal the uncertainty
around the average total cost (lower edge: 𝜇 − 𝜎 and upper edge: 𝜇 + 𝜎).

operations (≈ 7 corrective operations), while strategy 2 necessitates more frequent cleaning (≈ 4 major and 5 corrective
operations). As a result, the implementation of strategy 2 results in more frequent cleaning operations, driving up the
associated costs.

The scenario-driven physics-based model reinforces these interpretations, demonstrating that the debris basin
is rapidly filled by debris materials, especially when the bottom outlet is jammed. Interestingly, and quite counter-
intuitively, it is slightly cheaper to come more often, each time a deposit occurs. This is because any deposit is associated
to the jamming of the bottom opening. Thus, waiting until half of the basin is filled to clean the latter enable series of
low-magnitude events to fill it. Coming more often permits the bottom opening to be cleaned, thus allowing subsequent
low-magnitude event to pass through. Overall, the simulations are very consistent with the field observations that this
debris basin is rapidly filled and cleaning operations have to be carried out often.
4.2.2. Optimization of Maintenance Efficiency

The previous maintenance optimization takes into consideration only the cost of the maintenance strategy. However,
decisions are not only made based on economic constraints but also on the efficiency of the maintenance strategy to
increase the efficacy of the retention system in providing protection. In order to carry out such analysis, a comparison
between the volumes released out of the retention dam depending on the adopted maintenance strategy should be
performed. For this purpose, seven debris flow events of different input volumes corresponding to different return
periods are extracted from the “Frequency - Magnitude” curve of fig. 8 and modeled separately using the physics-
based model in order to obtain the output volume 𝑉𝑜𝑢𝑡 of each. The input volumes 𝑉𝑒𝑣𝑒𝑛𝑡 of the chosen events are 200,
11, 000, 27, 000, 35, 000, 41, 000, 46, 000 and 49, 000 𝑚3 corresponding to return periods of 1.1, 2, 5, 10, 20, 50 and
100 years, respectively. Each event is modeled in four different situations corresponding to four different initial stored
volumes in the basin. These initial stored volumes 𝑉𝑖𝑛𝑖𝑡 in each situation are assumed to be equal to the threshold
volumes corresponding to the transition between the different defined states of the debris basin as follows:
Situation 1: 𝑉𝑖𝑛𝑖𝑡 = 0 𝑚3 (empty basin ⟶ state 1)
Situation 2: 𝑉𝑖𝑛𝑖𝑡 = 2, 200 𝑚3 (state 1 ⟶ state 2)
Situation 3: 𝑉𝑖𝑛𝑖𝑡 = 10, 000 𝑚3 (state 2 ⟶ state 3)
Situation 4: 𝑉𝑖𝑛𝑖𝑡 = 20, 000 𝑚3 (state 3 ⟶ state 4)

Furthermore, since the physics-based model involves a stochastic sub-model concerning the number of boulders
jamming the openings of the dam (binomial law), 100 simulations were performed with each event and each initial
filling to record an average value of the debris flow volume released downstream of the basin 𝑉𝑜𝑢𝑡.
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Figure 15: (a) Conceptual visualization of the protection efficacy across a wide range of events: Frequency - Magnitude of
debris flow volumes supplied by the catchment (top line) and released downstream of the basin (bottom line). The difference
between both line is a proxy of the protection efficacy for the associated return period; (b) Frequency - Magnitude curves
presenting the output volumes of different debris flow events depending on the initial volume stored in the Claret’s debris
basin. The upper curve (in blue) is Claret’s Frequency - Magnitude curve, which provides the volumes of debris flow events.

Fig. 15 represents the “Frequency - Magnitude” curve of the Claret torrent where the magnitudes in this case
correspond to the output volumes 𝑉𝑜𝑢𝑡. The curve in blue is the one represented in fig. 8, which is fitted on the observed
volumes (red squares). In the absence of the debris basin, it would correspond to the input volumes 𝑉𝑒𝑣𝑒𝑛𝑡 that would
be delivered to the downstream elements at risk. The four green curves in fig. 15 provide 𝑉𝑜𝑢𝑡 for the considered debris
flow events when considering the four situations of filling (initial volume stored in the basin 𝑉𝑖𝑛𝑖𝑡, the darker the green,
the higher 𝑉𝑖𝑛𝑖𝑡). In other words, in a given filling state, the debris basin on average transforms the process from the
blue curve toward the associated green curve. It’s important to highlight that the blue curve and the green curves
have distinct starting points. The blue curve forms a continuous representation (GPD fitting) derived from historical
databases, capturing the input volumes of debris flow events. In contrast, the green curves are constructed from seven
discrete data points, each representing the output volume of a specific event generated by the developed model. These
discrete points were then connected to create a smooth curve using a linear model implemented in R. From the obtained
results, it is revealed that the higher 𝑉𝑒𝑣𝑒𝑛𝑡 is, the higher 𝑉𝑜𝑢𝑡 is (all curves are increasing to the right, i.e., toward higher
return period). In addition, the higher 𝑉𝑖𝑛𝑖𝑡 is, the higher 𝑉𝑜𝑢𝑡 is (curves are sorted by green shading). Since 𝑉𝑜𝑢𝑡 is the
volume escaping the retention dam and transported to the downstream where vulnerable exposed issues are located,
fig. 15 reveals the protection efficacy provided by Claret’s retention system in different situations.
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Figure 16: Maintenance efficiency revealed by the mean sojourn time (ratio) of the Claret’s debris basin in each state based
on the adopted strategy.

Table 7
Mean sojourn time (%) of the Claret’s debris basin in each state depending on the adopted maintenance strategy.

Strategy State 1 State 2 State 3 State 4
(𝛼 ∗ 100) (𝛽 ∗ 100) (𝛾 ∗ 100) (𝜃 ∗ 100)

1 81 7 5 7

2 62 22 6 10

3 67 6 16 11

4 51 16 19 14

This representation of protection efficacy showing the frequency – magnitude curves upstream and downstream
of the protection system was originally proposed by Hübl (2018). However, the latter did not consider the effect of
maintenance strategies on increasing (or decreasing) the protection efficacy of the studied system. Fig. 15 provides
transition curves that separate between the filling states of the debris basin. In order to analyze the efficiency of each
maintenance strategy, the SPN model results concerning the mean sojourn time of the debris basin in each of the
defined states under the adopted maintenance strategy should be considered, see table 5. They can be used to estimate
the percentage of time spent by the basin in each filling state for each maintenance strategy, which corresponds at
steady state to the probability (sojourn time in percentage) to have the corresponding initial filling level at the onset of
an event. Since the efficacy of the basin is directly linked to its initial filling, it is thus possible to estimate the probability
of being in a given level of efficacy over time. The sojourn time ratios 𝛼, 𝛽, 𝛾 and 𝜃, representing the portion of time the
system spends in specific states relative to the total simulation duration (50 years), are provided in Table 7. These ratios
make it possible to characterize the efficacy of the system under the adopted maintenance strategy. Fig. 16 incorporates
the curves obtained in fig. 15 and provides a graphical representation of the initial filling state probability (or sojourn
times ratios) given in table 7. A color scale is used in order to differentiate between the times spent by the basin in
each state, in which the darker the color is, the more probable the basin is in a given state. The lower domain of state 1
(almost empty basin) is darker for strategy 1, i.e., the basin is more often in this state than in the other strategies, while,
at the other end of the spectrum, strategy 4 leads to a more frequently partially filled basin (darker intermediate states)
and thus a more infrequently empty basin (clearer bottom domain). The efficacy of the four maintenance strategies can
then be visually interpreted, through this potential transformation of an incoming event into a buffered outlet volume
related to the more or less frequent initial state of filling when comes the event.

The protection efficacy of a debris retention system is mainly a matter of how much debris volume is released to the
downstream 𝑉𝑜𝑢𝑡. This depends on the volume of the debris flow event 𝑉𝑒𝑣𝑒𝑛𝑡 and on the initial state of filling of the basin
𝑉𝑖𝑛𝑖𝑡 before the occurrence of the event. In order to reduce maintenance costs, the main challenge is to maximize 𝑉𝑜𝑢𝑡and to minimize the volume stored in the basin 𝑉𝑏 while considering downstream protection needs. On the other hand,
in order to increase the protection efficacy of the retention system, the challenge is to minimize 𝑉𝑜𝑢𝑡 above the threshold
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Table 8
Average total cost (k€) of each of the defined maintenance strategies for 𝑇5 = 0.5 years and 𝑇5 = 2 years. The given
percentages correspond to the differences with the values provided when considering 𝑇5 = 1 year.

Maintenance strategy
1 2 3 4

𝑇5 = 1 480 484 449 441

𝑇5 = 0.5 482 499 458 450
+0.3% +3% +2% +2%

𝑇5 = 2 435 441 401 396
-9% -9% -11% -10%

of dangerous events (below this threshold, no flooding occurs and debris flows should, if possible, be transferred to the
downstream without interfering). The issue consists then in deciding whether it is acceptable to take risk and to keep
the basin residing for more time at a lower level of efficacy (i.e., higher on the curves of fig. 15) or to pay more while
guaranteeing a high level of protection efficacy. These two objectives are obviously in conflict, and the managers of
the system have to find a trade-off between maintenance costs and protection efficacy. The information provided by
the proposed model, as shown in Figs. 14 and 16, is relevant to identify a desired balance between maintenance costs
and protection efficacy and can be leveraged to support the managers’ maintenance decision-making. For example,
when two strategies have similar costs (e.g., strategies 1 and 4) but they provide highly different levels of protection,
managers can choose to invest the cost difference and select the one that provides a higher level of protection (strategy
1).
4.3. Sensitivity Analysis: Uncertainties Affecting Maintenance Decisions

Although the modeling and analysis of the Claret retention system are based on real data, the data used could still be
imperfect, invaded by uncertainties or based on expert assessments. Therefore, it is worth exploring different situations
under a given set of assumptions. In this section, a simple sensitivity analysis is performed considering different
parameters that could affect maintenance decisions. The objective is not only to test the robustness of our analysis but
also to improve decision-making in case something changes in the future (e.g., easier maintenance operations, more
expensive operations). Three different parameters are chosen for this purpose: frequency of inspection, maintenance
duration and maintenance costs.
4.3.1. Inspection Frequency

In the previous modeling, it was assumed that inspection takes place once per year (𝑇5 = 1 year). In other
words, the state of the basin is considered only one time per year whatever the number of events that have already
occurred within the year. Therefore, a decision concerning maintenance is only taken once per year. Simulations using
the SPN model are carried out again considering two other inspection times (𝑇5 = 0.5 𝑦𝑒𝑎𝑟𝑠 and 𝑇5 = 2 years).
Results concerning the mean sojourn time of the basin in each state and the average number of maintenance operations
performed over a period of 50 years are obtained. It is revealed that for 𝑇5 = 0.5 years, the times spent by the basin in
the different states did not differ much than those corresponding to 𝑇5 = 1 year (< 14 % difference). Similarly for the
number of maintenance operations carried out over a duration of 50 years (< 8 % difference). However, for 𝑇5 = 2
years, the percentage difference was higher for both the mean sojourn time (up to 70 %) and for the applied maintenance
operations (up to 25 %). This can be justified by the fact that in the Claret, debris flows are triggered maximum once
per year and more probably once every 2 years. Hence, inspecting every 0.5 years has quite the same efficiency as
inspecting once per year. On the other hand, inspecting once every 2 years may not be as efficient as inspecting once
per year since one triggered debris flow may be missed and thus the basin will spend more time in the same state or
will evolve into a more deteriorated state without doing any preventive maintenance.

The total average costs of the defined maintenance strategies, for each inspection time, are provided in table 8.
Note that the table involves also the percentage difference with the resulting values corresponding to the initial case
where the inspection time is 𝑇5 = 1 year. Although results regarding the mean sojourn time and the average number
of applied maintenance operations for 𝑇5 = 1 years show a slight difference with 𝑇5 = 0.5 years and a considerable
difference with 𝑇5 = 2 years, the total costs of the maintenance strategies have not shown a big difference (up to
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3 % for 𝑇5 = 0.5 years and up to 10 % for 𝑇5 = 2 years). Nonetheless, for all the considered times of inspection,
maintenance strategy 4 remains the most cost-effective regardless that the costs of all strategies show a very slight
difference.
4.3.2. Maintenance Duration

As mentioned in section 3.2.3, the scheduling duration of maintenance is assumed to be 2.5 months for all the
considered operations and the time to clean the basin depends on the debris volume to be cleaned: 1 month for minor
operations, 2 months for major operations and 3 months for corrective operations. The chosen duration may vary
depending on different situations. For example, in the case where enough funds are available, maintenance contracts
can be made with companies in concern with these systems. In such a case, the scheduling time of maintenance will be
much less than the one considered since there is no need to search, ask and wait for funding to apply the maintenance
operation. Instead, maintenance is applied as soon as it is requested. In addition, in the case where large boulders are
deposited in the basin, the time to carry out maintenance may vary depending on the capacity of the engines and on
the distance traveled to reach the location where the deposits are evacuated. Therefore, the duration needed to perform
the maintenance operation is not only dependent on the volume to be cleaned.

In the case of having a maintenance contract (case 1), the duration of maintenance is assumed to be faster by about
two and a half months as follows:
- Minor operations: 1 week + 1 month
- Major operations: 1 week + 2 months
- Corrective operations: 1 week + 3 months

On the other hand, in the case when large boulders are present and the distance to evacuation is quite long (case
2), the duration of maintenance is assumed to increase by one month as follows:
- Minor operations: 2.5 months + 2 months
- Major operations: 2.5 months + 3 months
- Corrective operations: 2.5 months + 4 months

In both cases, the first duration corresponds to the scheduling time of the operation and the other corresponds to
the time needed to carry out the maintenance (cleaning) operation. Note that these constant delay times are assigned
to the deterministic transitions involved in the maintenance process of the SPN model (𝑇9, 𝑇10 and 𝑇11). The 200
simulations of the SPN model provide results concerning the mean sojourn time of the basin in each state and the
average number of maintenance operations performed over a period of 50 years. For each case, the obtained results are
compared with those corresponding to the initial analyzed case (noted "case 0"). In case 1, the time spent by the basin
in each state shows a significant difference (up to 30 % difference) when compared to those corresponding to the initial
case. Concerning the number of maintenance operations, the difference between the results is low (< 8 % difference).
In case 2, the percentage difference was also high for the mean sojourn time (up to 20 %) but less than those attained in
case 1. This can be justified by the fact that, in the initial case, maintenance operations need about 1.5 𝑚𝑜𝑛𝑡ℎ𝑠 more
time than in case 1 to be carried out but only 1 month less time than in case 2. Consequently, results corresponding
to case 2 will be closer to those of the initial case than those of case 1. Moreover, it is also noticed that in case 1, the
time spent by the basin in state 1 is higher than that when applying case 2 or the initial case in all strategies. This is
due to the fast-performed maintenance operations that return the basin back to its initial good state. For the number of
applied maintenance operations, case 2 did not result in a big difference when compared to the initial case (up to 8 %).

The total costs of the different maintenance strategies, given in table 9, did not differ much in both cases as they
are proportional to the number of performed operations. Still, maintenance strategy 4 remains the most cost-effective.
4.3.3. Maintenance Costs

The costs of maintenance operations previously used in the model are estimated depending on the debris volume
to be cleaned (2.83 €/𝑚3). The debris volume corresponding to each state of the basin is assumed to be equal to the
average of the two threshold volumes defining the state. As given in table 4, the average costs of minor, major and
corrective operations are, respectively, 17 k€, 42 k€ and 59 k€. In order to check the influence of varying the costs
of maintenance operations on the total cost of the defined maintenance strategies, a simple example that accounts for
this variation is considered in this study. Instead of considering only the average volumes of the intervals defining the
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Table 9
Average total cost (k€) of each of the defined maintenance strategies for case 1 and case 2 maintenance duration. The
given percentages correspond to the differences with the values provided when considering the initial maintenance duration.

Maintenance strategy
1 2 3 4

Case 0 480 484 449 441

Case 1 498 505 463 456
+4% +4% +3% +3%

Case 2 462 470 430 427
-4% -3% -4% -3%

states, three different volumes (minimum, average and maximum values) are considered. Below are the equations used
to estimate the costs of the minor, major and corrective operations depending on the volume to be cleaned.
Minor operation: 𝑉𝑏 ∈ [2200, 10000[

- 𝑉2200: 𝐶2200 = 2200 𝑚3 * 2.83 €∕𝑚3 ≈ 6 k€
- 𝑉6100: 𝐶6100 = 6100 𝑚3 * 2.83 €∕𝑚3 ≈ 17 k€

Major operations: 𝑉𝑏 ∈ [10000, 20000[

𝑉10000: 𝐶10000 = 10000 𝑚3 * 2.83 €∕𝑚3 ≈ 28 k€
𝑉15000: 𝐶15000 = 15000 𝑚3 * 2.83 €∕𝑚3 ≈ 42 k€

Corrective operations: 𝑉𝑏 ∈ [20000, 22000]

𝑉20000: 𝐶20000 = 20000 𝑚3 * 2.83 €∕𝑚3 ≈ 57 k€
𝑉21000: 𝐶21000 = 21000 𝑚3 * 2.83 €∕𝑚3 ≈ 59 k€
𝑉22000: 𝐶22000 = 220000 𝑚3 * 2.83 €∕𝑚3 ≈ 62 k€

The main objective is to create several configurations and to check the total costs of the defined maintenance
strategies based on the number of applied maintenance operations carried out over a period of 50 years. The results
of the SPN model presented in table 6 are used for this purpose. For simplicity, only four different configurations are
chosen:
Configuration 1: minor, major and corrective operations are applied, respectively, for 𝑉𝑏 = 𝑉2200, 𝑉𝑏 = 𝑉10000 and

𝑉𝑏 = 𝑉20000.
Configuration 2: minor, major and corrective operations are applied, respectively, for 𝑉𝑏 = 𝑉2200, 𝑉𝑏 = 𝑉10000 and

𝑉𝑏 = 𝑉22000.
Configuration 3: minor, major and corrective operations are applied, respectively, for 𝑉𝑏 = 𝑉6100, 𝑉𝑏 = 𝑉10000 and

𝑉𝑏 = 𝑉21000.
Configuration 4: minor, major and corrective operations are applied, respectively, for 𝑉𝑏 = 𝑉2200, 𝑉𝑏 = 𝑉15000 and

𝑉𝑏 = 𝑉22000.
For each configuration, multiplying the cost of each operation with the number of performed operations (table 6),

provides the total cost of each maintenance strategy. Results are provided in table 10.
From the obtained results, it can be realized that the total costs of maintenance strategies significantly differ

depending on the adopted configuration. This variation arises because, in each configuration, the volume to be cleaned
in each state varies, subsequently influencing the cost associated with each maintenance operation performed. Indeed,
the resulting difference affects the sorting of the maintenance strategies and thus the maintenance decision. For
configurations 1 and 2, strategy 1 is the most cost-effective and strategy 4 is the most expensive. In the contrary, for
configuration 3, strategy 2 is the most cost-effective and strategy 3 is the most expensive. With regards to configuration
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Table 10
Average total cost (k€) of each of the defined maintenance strategies for the four proposed configurations. The given
percentages correspond to the differences with the values provided when considering the reference configuration considered
in section 3.2.3 (noted "0").

Maintenance strategy
1 2 3 4

Configuration 0 480 484 449 441

Configuration 1 367 416 391 426
-23% -14% -13% -3%

Configuration 2 388 443 423 463
-19% -9% -6% +5%

Configuration 3 429 427 449 441
-11% -12% - -

Configuration 4 439 450 424 463
-8% -3% -2% +5%

4, strategy 3 is the most cost-effective and strategy 2 is the most expensive. However, for the initial considered
configuration, strategy 4 is the most cost-effective and strategy 2 is the most expensive. The variability in the results
highlights the importance of considering the costs of cleaning operations depending on the actual volume stored in the
basin instead of considering an average volume. Indeed, the overall decision-making model seems to be very sensitive
to the costs of maintenance operations relative to the volume stored in the basin. Consequently, deep attention should
be given when collecting information about the debris volume stored in the basin. This will apparently better support
decision-makers to undertake optimal maintenance decisions.

5. Concluding remarks
In this study, a scenario-driven physics-based model is developed to model the evolution of the debris volume

stored in a basin over time. The end purpose of this model is to provide deterioration trajectories that make it possible
to learn probability laws corresponding to the transition times between the defined states of the basin. A surrogate
capacity deterioration model that uses the information provided by the physics-based model is then developed using
SPNs. The model facilitates implementing a CBM policy concerning cleaning operations of the basin and assessing
its performance. The outputs of the SPN model support the managers of retention systems to optimize different
maintenance strategies in terms of cost and efficiency. The overall developed modeling approach is used to analyze the
performance of the retention system located in the Claret torrent in France. The complete framework is particularly
interesting because it enables fast explorations of the various maintenance policies and facilitates performing sensitivity
analyses without requiring to run many times a sophisticated physics-based model: computations on the physics-
based model are done considering no maintenance, and a surrogate model is then learned and complemented by
integrating maintenance operations making it possible to explore the effect of maintenance. Optimizing maintenance
while ensuring satisfying protection efficacy is the dual objective of the managers of these structures. In this paper,
we suggest in fig. 16 a new way to visualize the effect of a maintenance strategy on the protection efficacy of debris
basins.
5.1. Main Findings

The achieved results make it possible to analyze the contributions behind this work according to different points of
view. From a thematic point of view related to debris retention systems, the developed approach provides a new dynamic
vision of their management over time. It models the discharge buffering and debris trapping effects of the system
over time, the probability that the dam will trap boulders and how much it will cost to perform cleaning operations
depending on the debris volume stored in the basin. From a research point of view, the developed approach reflects
the real behavior of a deteriorating retention system by coupling physics-based modeling of the deterioration process
and reliability-based modeling for maintenance assessment based on a SPN model integrating CBM operations. It
proposes a global methodology for implementing SPNs with an original contribution that aims at determining and
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justifying the probability laws corresponding to the transition times between different states of the debris basin. From
an operational/technical point of view, the developed approach contributes to a better and more resilient management:
knowing what can happen and being somehow better prepared to unavoidable evolution of the retention system, risk
managers can better anticipate and take optimal decisions.

Note that the developed approach can end up by making different maintenance decisions depending on the
configuration of the site under study.
5.2. Perspectives and Future Work

Regardless of the originality and the contributions of the present work, more research is required in order to cover
some limitations. For example, the thresholds corresponding to the defined deterioration states are crucial elements
and should be carefully selected. In this study, these thresholds are chosen based on expert assessment but still require
verification. Moreover, the consequences identified after a debris flow do not take into account the risk imposed on the
downstream exposed issues (elements at risk). Besides, the inflation rate of prices is not accounted for in this study, in
which maintenance costs are assumed to be constant over time (2.83 €∕𝑚3). To sum up, the cost model adopted in this
research work is not sophisticated enough. Accordingly, future work can involve:
- Carrying out more research and technical analysis in order to better choose the deterioration states’ thresholds.
- Estimating the risk imposed on downstream elements by collecting data concerning the type of exposed elements
and assessing their vulnerability.
- Taking into account the monetary evolution over time instead of constant maintenance costs. This can be done by
incorporating in the cost model either an inflation rate or a discount rate.
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