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Fast camera imaging is used to study ion acoustic waves propagating azimuthally in a magnetized plasma column. The
high speed image sequences are analyzed using Proper Orthogonal Decomposition and 2D Fourier Transform, allowing
to evaluate the assets and differences of both decomposition techniques. The spatio-temporal features of the waves are
extracted from the high speed images, and highlight energy exchanges between modes. Growth rates of the modes are
extracted from the reconstructed temporal evolution of the modes, revealing the influence of ion-neutral collisions as
pressure increases. Finally, the nonlinear interactions between modes are extracted using bicoherence computations,
and show the importance of interactions between modes with azimuthal wave numbers m, m− 1 and −1, with m an
integer.

I. INTRODUCTION

The propagation of ion sound waves or ion acoustic waves
is ubiquitous in plasmas and their non-linear interactions, pos-
sibly leading to ion acoustic turbulence, is a widespread en-
ergizing process in plasma physics. The nonlinear evolution
of ion acoustic waves (IAW) generically leads to instabilities
and the development of non-linear structures. For instance,
IAW have long been observed in the solar wind, and related
to the anisotropy of the electron distribution function1. In this
context, IAW are driven unstable when the ratio of the elec-
tron to ion temperature is larger than unity, as observed by
the Helios spacecraft2, and very recently for oblique IAW by
Parker Solar Probe3. Heating of energetic particles from ion
acoustic turbulence was also proposed in the context of po-
lar aurorae4. The non-linear evolution of ion acoustic waves
into strongly non-linear structures such as solitons5 or double
layers has been reported in electro-positive plasmas6 or elec-
tronegative plasmas7, for which two branches of ion acoustic
waves exist8. In the context of bounded plasmas, IAW ex-
cited in sheaths may affect particle transport at low pressure9

or lead to strong ion heating10 when the ratio of the electron
to ion temperature is larger than unity. IAW may also be use-
ful tools to probe sheath criteria in multiple ion plasmas11–13.
Technological plasmas may also trigger IAW, that, in return,
affect their operation, as reported for Hollow Cathodes14,15,
Hall thrusters16 and diverging magnetic nozzle thrusters17.

In this article, we report on the observation of localized ion
acoustic waves in a magnetized plasma column using high
speed camera imaging. Our observations thus shed new light
on the ion acoustic activity that has been previously reported
in similar configurations18–24. We do not investigate the ori-
gin of the IAW from parametric instability or waves interac-
tions here, as was done in these previous investigations, but
we analyse the spatio-temporal characteristics of the IAW us-
ing mode decomposition from high-speed imaging. The IAW
nonlinear interactions are quantitatively highlighted by means
of bicoherence computations.

The article is organized as follows. The experimental set-
up is introduced in Sec. II, the analysis of fast camera mea-

surements by mode decomposition techniques is presented in
Sec. III. In particular, we highlight the differences and com-
plementarities of two different mode decompositions, namely
Proper Orthogonal Decomposition and 2D Fourier Transform.
In section IV the waves observed by camera imaging are iden-
tified to be IAW from the waves phase velocities. Finally
the non-linear modes interactions are characterized and their
nonlinear aspect is exhibited in section V and conclusions are
drawn in section VI.

II. EXPERIMENTAL SET-UP AND DIAGNOSTICS

A. Experimental set-up

The experimental set-up25 consists in a 20 cm diameter,
1 m long stainless steel cylindrical chamber containing an ar-
gon plasma generated by a 1 kW, 13.56 MHz radio frequency
source. The coordinates will be referenced using a cartesian
coordinate system, where z denotes the axial direction (see
Fig. 1). A cylindrical coordinate system (r,θ ,z) will be used
for the reconstruction of rotating modes. The plasma base
pressure p0 in the chamber is regulated at a fixed value, be-
tween 0.8 mTorr and 2 mTorr by steps of 0.1 mTorr. The
plasma is created by an inductive source around a 11 cm diam-
eter borosilicate tube connected at one end of the chamber (at
z= 0 cm). Three coils placed along the steel cylinder generate
an axial magnetic field that confines the plasma (see Fig. 1).
This magnetic field is not perfectly homogeneous along z. For
a current in the coils set here at 100 A, it has an averaged
amplitude along the z-axis of B = 170 G.

Radial profiles of the plasma density n, the electron tem-
perature Te and the plasma potential Φp are performed using
a 5-tips probe26,27 and an emissive probe respectively. The
probes were inserted radially at z = 49 cm (see blue dashed
line in Fig. 1). To keep the whole apparatus in a steady ther-
mal state, the operation of the plasma is pulsed: the plasma
is sustained over typically 5 seconds, during which data are
acquired, with a repetition period of typically 30 s. The ex-
periment is fully automated to allow high repeatability and
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FIG. 1. Left: sketch of the experimental set-up. The dashed blue
line indicates where probe profiles are measured. Right: mean im-
age of the light intensity collected by the camera (up), and standard
deviation of the fluctuations around this average value (bottom), for
p0 = 1 mTorr.

reproducibility of the plasma. The level of shot to shot repro-
ducibility was±0.6% for the ion saturation current of a Lang-
muir probe, with a standard deviation of 0.2% (estimated from
a series of 40 shots at the plasma column center). Radial scans
of the plasma parameters were performed sequentially: each
spatial point has been acquired during one plasma-pulse, and
the probe is translated between two pulses, from the center of
the plasma column (r = 0 cm) to its edge (r = 10 cm).

The results presented in this article mainly rely on high-
speed imaging of the plasma emitted light, performed through
a DN 200 borosilicate window closing the chamber at z =
80 cm (opposite to the source tube). A Phantom v2511 cam-
era is placed along the z-axis, 3.5 m away from this window,
and the light intensity naturally radiated by the plasma Icam is
captured at 200 kfps with a resolution of 256×256 px. A fil-
ter around 750±5 nm is used in order to restrict the collected
light to a single ArI spectral line. Examples of the mean inten-
sity 〈Icam〉 and fluctuation standard deviation σ(Ĩcam) images
are shown in Fig. 1. Note that the plasma column is not per-
fectly axisymmetric, and the fluctuations are of the order of
10% of the mean amplitude. Note also that the depth of field
of the optical set-up being of the order of the length of the
chamber (with a camera objective aperture set at f/4, and a
focal length of 135 mm), the light intensity recorded by the
camera is actually the result of an integration along the z-axis.
Due to the magnetic field ripple and to the parallax, the di-
rect comparison of the probes’ measurements (at z = 49 cm)
and the camera images (where light is integrated along z), is
not relevant. We thus introduce a distorted space (x∗, y∗, z)
in which the camera lines of sight are parallel (see Ref.27 for
more details). The camera images are hence observed in the
plane (x∗, y∗), that may also be referenced as (r∗,θ) in a polar
coordinate system.

B. Radial profiles of the plasma parameters

The top row of Fig. 2 displays the radial profiles of the
plasma density, electron temperature and plasma potential as
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FIG. 2. Radial profiles of the density, electron temperature, and
plasma potential mean values (top row) and fluctuations (middle row)
at p0 = 1 mTorr. Plasma parameters measurements were made with
5-tips (n, Te) and emissive (Φp) probes. Bottom: Power Spectral den-
sity of the plasma density and light intensity fluctuations (computed
from the average value of a 5×5 pixel box on the images).

a function of r for a pressure p0 = 1 mTorr. As previously
introduced, these profiles cannot be directly compared to the
images in the (r∗,θ) plane. However, assuming axisymme-
try and invariance of the plasma parameter along magnetic
field lines, a synthetic integration process detailed in Ref27 al-
lows to map the probe measurements along r (at z = 49 cm)
to the images expressed along r∗, enabling quantitative com-
parison. The density is approximately constant in a core re-
gion of the plasma for r ≤ 4 cm (r∗ ≤ 3 cm) and then de-
creases towards the edge. A clear peak can be seen around
r = 4.5 cm (r∗ ∼ 3 cm) for the electron temperature, produced
by the higher ionization rate of the RF inductive source close
to the wall at r = 5.5 cm, z∼−10 cm. This higher temperature
is also responsible for the higher light emission observed on
the images at r∗ ∼ 3 cm in Fig.1. Finally, the plasma potential
decreases from the center to r ∼ 4 cm (i.e. r∗ ∼ 3 cm), and
presents a strong positive gradient at the edge of the plasma
column. This is responsible for an ~E × ~B drift that drives
plasma rotation in the −~eθ direction, discussed later in this
work.

The radial profiles of the fluctuations of the plasma param-
eters are shown in the middle panel of Fig. 2. The fluctuations
are peaked at the edge of the plasma column at r ∼ 5.5 cm
(i.e. r∗ ∼ 4 cm).

Filtered light fluctuations recorded by fast camera are usu-
ally considered to be a proxy for density fluctuations28–30. For
the magnetic field value of B = 170 G reported in this ar-
ticle, simultaneous probe and camera measurements showed
the fluctuations of density ñ and light intensity Ĩcam at the
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probe location to have very similar spectra, as shown in the
bottom panel of Fig. 2. However, as it was shown in our pre-
vious work27, for magnetic field values in the range 100 to
700 G, light intensity naturally radiated by low temperature
plasmas are also highly correlated to the electron temperature.
In Sec. IV, the comparison of experimental phase velocities
with the theoretical ion acoustic speed nonetheless requires
to assume Ĩcam to be a reasonable proxy for ñ. We therefore
underline that this is a rather strong assumption, and that for
further quantitative comparison Ĩcam should be interpreted as a
combination of both ñ and T̃e - a task beyond the scope of this
article. The strong spectral component observed at 5.6 kHz
is identified as a Kelvin-Helmholtz mode31. In the present
work, we will focus on fluctuations observed between 50 and
70 kHz, which are unambiguously identified as ion acoustic
waves.

III. IMAGE ANALYSIS

The first and most natural tool that comes to mind for the
images analysis is the Fourier decomposition. This is used
later on; we prefer here to start the analysis by using an alter-
native method, the Proper Orthogonal Decomposition (POD).

Note that before performing these decomposition, we
choose to normalize each pixel by its fluctuations mean, as
was done in similar conditions32. This choice greatly en-
hances the contrast, allowing to nicely extract the relative am-
plitudes of the modes (especially in the regions of low light
intensity), but at the cost of losing information on the abso-
lute amplitude of the modes.

Note finally that in the following the light fluctuations
recorded by the camera Ĩcam will simply be denoted I for eas-
ier readability.

A. Proper Orthogonal Decomposition

The POD consists in extracting the spatial structures that
are dominant throughout time in a given data set I(r∗, t),
where r∗ denotes space. This is done by computing the eigen-
modes Ψi of the spatial autocorrelation of the time-averaged
field 〈I〉(r∗). These so-called spatial modes Ψi then define
an orthonormal basis onto which the original data can be pro-
jected. This can be written:

I(r∗, t) = ∑
i

σi ai(t)ψi(r∗)

with σi ai(t) being the time evolution of the data projected on
the spatial modes Ψi. Here ai and Ψi are of norm unity; the
amplitude of the various components of the decomposition are
thus given by the values of σi.

One of the most interesting aspects of this decomposition
is that it is done without any a priori on the shape of the Ψi
structures: they simply come out from the computation pro-
cess, as natural modes, contrary to Fourier analysis, which
projects the data onto predefined spatial and temporal struc-
tures. Hence POD might allow the emergence of structures

with physical significance that are not well described by mere
Fourier modes. Thanks moreover to its simplicity of imple-
mentation and computational speed when performed onto a
discrete set of data, as is explained later, POD becomes a very
attractive and efficient analysis tool for experimentalists, and
has grown very popular in the last decades for the analysis of
data from experiments or from numerical simulations. Note
that depending on the field, this technique is also referred to
as Karhunen-Loève decomposition (as a reference to the orig-
inal mathematical theorem) or principal component analysis.

The set of spatial modes (Ψi) has the property of being the
optimal basis for approximating the data I33: for any N, the
norm of the projection of I onto (Ψi)1,N , which reads ∑

N
1 σ2

i , is
higher than the projection onto any other basis than one might
choose. For a given value of N, the spatial modes (Ψi)1,N can
then be interpreted as the vectors that are the best suited to
reproduce the information carried by I, in the most efficient
way. Applied to physical data, this property is even more in-
teresting if the σ2

i have a clear physical meaning. The use
of POD on experimental data has been initiated in fluid dy-
namics, for the analysis of turbulent velocity fields34. In this
context the norm ∑

N
1 σ2

i of the projected data represents a ki-
netic energy, and the modes Ψi may then be interpreted as
the most important flow structures in terms of kinetic energy.
POD has then been applied to spatio-temporal measurements
of plasma fluctuations in tokamaks, either measured by sets of
Langmuir probes35–37 or by means of soft x-ray emission38. It
has also been applied to camera imaging data of plasma natu-
rally radiated light to exhibit spiral shaped structure generated
by a m = 2 instability in a linear device39 and in a tokamak
to highlight plasma response to resonant magnetic perturba-
tions40. More recently, the technique was used to characterize
instabilities in the plume of a Hall thruster from fast imaging
data41. Following this study, POD has been applied to decom-
pose the camera imaging data of a plasma plume produced
by a high-current hollow cathode42. Unfortunately, in the lat-
ter cases, the physical interpretation of the Ψi vectors is not
as straightforward as in fluid mechanics, since the extracted
modes result from the decomposition of light intensity fields,
which depends in a non trivial way on the plasma parameters.
And even by considering as a crude approximation Ĩcam ∝ ñ,
not much can be said on the norm ∑

N
1 σ2

i in terms of physical
significance. This does not mean the amplitude of the modes
extracted from plasma emitted light is void of meaning, but
simply that one has to be careful before thinking of it as a
precise energy estimation. In this article POD decomposition
is thus discussed in a purely qualitative way. Finally, POD
does not require any symmetry, which is a significant advan-
tage over Fourier decomposition for instance. In the case of
complex geometries, POD can be an efficient alternative for
capturing the physical structures in the data.

In practice, it can be shown that a direct extraction of the
spatial modes Ψi associated to their temporal evolution ai, is
in fact achieved by applying a mere singular value decompo-
sition (SVD) to the matrix containing the data I, rearranged
in such a way that one dimension of the matrix represents
space, and the other time. This way of computing a POD,
also referred to as bi-orthogonal decomposition43 is the one
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FIG. 3. Proper Orthogonal Decomposition modes (a) and singular values (b) of light intensity normalized fluctuations, for p0 = 1.3 mTorr. c)
Zoom on the evolution of a1 and a2. See text for details.

implemented here. Each image (of p pixels) of a video con-
taining q frames is rearranged to form a matrix I of size p×q
to which a singular value decomposition is applied I = ΨΣAt .
Ψ and A are orthonormal matrices of respective sizes p× p
and q×q, and Σ is a matrix of the same size as I. The matrix
Σ only contains diagonal elements, which are the decomposi-
tion’s singular values σi:

space




(I)i j



time︷ ︸︸ ︷

=


...

...
...

Ψ1 Ψ2 Ψq

...
...

...





σ1

. . .
σq


 · · · a1 · · ·
· · · a2 · · ·

· · · ap · · ·



Figure 3 a) shows the result of a POD applied to a 100 ms
time series of intensity fluctuations (i.e. 20000 images)
recorded at a pressure p0 = 1.3 mTorr. The spatial modes
Ψi(r∗) are displayed in the top row, the time series of the am-
plitudes ai(t) in the the middle row, and the corresponding
power spectral density S( f ) in the bottom row. The interpreta-
tion of the decomposition requires to consider pairs of modes,
such as IPOD

1,2 (r∗, t) = σ1a1(t)Ψ1(r∗)+σ2a2(t)Ψ2(r∗), which
yields rotating azimuthal waves of the type e−iωt−imθ (shown
later in subsection III C), since the spatial modes Ψ1 and Ψ2
are shifted by a quarter wavelength and the temporal modes
a1 and a2 are in quadrature (see Fig. 3 c))44. In the example
shown in Fig. 3, the modes (Ψ1, a1) and (Ψ2, a2) correspond
to a m =−5 rotating azimuthal wave, the modes (Ψ3, a3) and
(Ψ4, a4) correspond to a m = −6 rotating azimuthal wave,
and the modes (Ψ6, a6) and (Ψ7, a7) correspond to a m =−4
rotating azimuthal wave.

The rotation frequencies of the m-modes can be deduced
from the spectra of the temporal signals ai, shown in the
bottom row of Fig. 3 a). A very clear peak at frequency
f = 55.6 kHz is observed for the modes 1&2, capturing the

m = −5 azimuthal wave. The m = −6 wave (POD modes
3&4) has a f = 65.1 kHz frequency, and the m = −4 wave
(POD modes 6&7) has a f = 45.2 kHz frequency. Section IV
shows that these modes are ion acoustic waves.

The singular values σi of the modes are plotted in Fig. 3
b). The amplitudes of σ1 and σ2 are nearly identical (within
0.3%), and more than twice larger than the other singular val-
ues, showing that the dynamics is dominated by a m = −5
rotating mode. The time series ai(t) show sudden changes
in amplitude, for instance at times t ∼ 3.8 ms, 29.5 ms and
65.2 ms, corresponding to an energy exchange between modes
m = −6 and m = −5, that will be investigated in Section V.
The relatively intense POD mode (Ψ5, a5), with a strong spec-
tral component at f = 5.6 kHz, was identified as a m = 3
Kelvin-Helmoltz mode31, not discussed here. The POD analy-
sis presented here was straightforward to implement, and pro-
vide a very efficient way of extracting global features captured
in a video sample. Now we present the results of a Fourier
analysis performed on the same data that complements the
POD analysis.

B. 2D Fourier Transform

The 2D Fourier Transform (2D-FT) of a two variables func-
tion f (x, t) reads: f̂ (k,ω) =

∫∫
f (x, t)e−i(k·x+ωt)dxdt. 2D-

FT is classically used to decompose the spatio-temporal sig-
nals collected by azimuthally distributed probe arrays into az-
imuthal modes45,46. Following many studies using camera
imaging and performed in the context of linear plasma de-
vices29,47–49 and plasma thrusters50,51, the 2D-FT is here per-
formed on virtual rings at various radii r∗. For a given value
of the radius r∗, a time series I(θ , t)|r∗ is extracted from the
camera images. For each angle θn =

2πn
Nθ

with n ∈ [0 : Nθ −1],
the value of the pixel at position (r∗, θn) is extracted. The
angle resolution of Nθ = 700 is chosen here, such that no in-
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FIG. 4. Power spectrum of the raw light intensity fluctuations from
camera imaging, taken on a corona of radius r∗ = 3.3 cm for p0 =
1.3 mTorr. Dispersion relations are plotted from experimental fits of
the power spectrum maxima (red) and from the ion acoustic speed
(black) (see section IV).

terpolation is needed in the processes of converting either a
ring of pixels in the image space (x∗, y∗) into a vector along
the θ direction, nor in the inverse process, when reconstruct-
ing images in the (x∗, y∗) plane from the mode decomposition
results. Since the images are 2π periodic in the θ direction,
the wave-vectors read m/r∗, with m an integer, and the 2D-FT
of I(θ , t)|r∗ is computed as

ˆIr∗(m, f ) =
∫∫

I(θ , t)|r∗e−i(mθ+2π f t)dθdt

with f the frequency. The resulting 2D power spectrum
Sr∗(m, f ) = | ˆIr∗(m, f )|2 displays the amplitudes of light inten-
sity fluctuations as a function of the spatial mode m and the
frequency f , at a given radius r∗. Note that at radius r∗ ∼
3.5 cm on the images, the intensity I(θ , t)|r∗ is reconstructed
from a corona of∼ 400 pixels, which ensures a very good pre-
cision in the extraction of the first modes m up to m∼ 20. The
power spectrum at r∗ = 3.3 cm and p0 = 1.3 mTorr is shown
in Fig. 4. The observations are similar to those drawn from
the POD analysis : the dominant mode is an m = −5 mode
whose frequency is peaked at 55.6 kHz, and the other impor-
tant modes are an m = −6 mode peaked at 65.2 kHz and an
m = −4 mode peaked at 44.9 kHz. Note that this 2D power
spectrum provides a dependence of the dominant frequency
on the mode number, and can therefore be seen as an experi-
mental dispersion relation. This is used in section IV for the
identification of the modes.

The full spatio-temporal evolution of any given m mode can
also be extracted by 2D-FT. To this end, the 2D Fourier Trans-
form is computed for radii r∗ covering the full image (here
2D-FT are computed for r∗ = 2i px, i ∈ [1 : 64], instead of
r∗= [1 : 128] px, to limit memory storage and increase compu-
tational speed). For given m and r∗ values, the inverse Fourier
Transform of Îr∗(m, f ) is computed, resulting in the spatio-
temporal signal of the m mode, at radius r∗. Performing this
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FIG. 5. Time evolution of m-mode average amplitudes extracted by
2D-FT, for p0 = 1.3 mTorr.

inverse computation for all radii previously mentioned leads
to the full spatio-temporal reconstruction of the m mode. Ex-
amples of snapshots of such reconstructed 2D-FT modes are
shown and commented in subsection III C.

The average amplitude of the reconstructed modes is then
computed along time, providing a global picture of the modes
dynamics. The global m-modes time evolution for p0 =
1,3 mTorr is plotted in Fig. 5 (top). As already observed on
the time signals of the POD in Fig. 3, clear exchange events
can be observed involving modes m = −5 and m = −6. The
m =−4 mode is seen to follow the dynamics of m =−5 while
the m = −7 mode follows the dynamics of m = −6 mode,
a feature that was not detected by the POD analysis. From
the reconstructed signals of the individual m-modes, the in-
stantaneous mean radial profile is computed by an integration
over θ , allowing for the computation of the radial location
r∗max where the wave amplitude is maximal. Figure 5 (bottom)
shows r∗max for the m =−5 and m =−6 modes, that are highly
correlated to the global dynamics of the modes. Again this
could not be deduced from POD, since spatial modes struc-
ture are deduced from a time-averaged analysis. Figure 5 is
further discussed in section V. Now let us compare the results
obtained from both POD and 2D-FT analysis.

C. Comparison between POD and 2D Fourier Transform

Figure 6 shows snapshots of the m = −5 and m = −6 2D-
FT reconstructed modes, as well as the corresponding modes
reconstructed from the POD analysis IPOD

1,2 and IPOD
3,4 , for the

experiment achieved at p0 = 1.3 mTorr. The snapshots are
shown every 0.06 ms following t0 = 77.27 ms, marking the
beginning of an energy exchange between modes m =−5 and
m = −6 (see Fig. 5 (top)). The time interval 0.06 ms repre-
sents slightly more than 3 wave periods for the m =−5 mode,
and nearly 4 wave periods for the m = −6 mode. The spa-
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lighted by the dashed-black box in Fig. 5, for p0 = 1.3 mTorr.

tial shape of the 2D-FT modes varies significantly. On the
contrary the shapes of the POD reconstructed modes remains
almost unchanged. This is actually expected since each of
these signals is merely composed of the linear combination
of two spatial fields. Note also that the spatial structures Ψi
were extracted from the time-averaged data field (see subsec-
tion III A): the reconstructed mode are unable to account for
spatially localized variations.

Let us now compare the spatial structures provided by POD
and 2D-FT. Figure 7 (top) shows time-average radial profiles
of the modes for both decompositions. The profiles are com-
puted by an integration along θ , averaged over the 20000 im-
ages. Fig. 7 (bottom) shows the azimuthal profiles taken at a
given time and for r∗ = 4 cm. The comparison between POD
modes (1&2) and the m = −5 2D-FT mode shows an almost
perfect match (note that the match slightly decreases when the
amplitude of the m =−5 mode strongly decreases). The com-
parison between POD modes IPOD

3,4 and the m = −6 2D-FT
mode give similar results, although with a lower agreement
on the outward part (r∗ ≥ 4 cm) of the radial profiles. An
overall good match is observed between the lower amplitude
POD modes (6&7) and the m = −4 2D-FT mode radial pro-
files. The instantaneous azimuthal profile are not identical,
with a phase shift up to∼ π/8 depending on the frame. These
results show that, in the context of data having 2-π periodic-
ity, POD and 2D-FT decompositions share several common
features, while they do provide exactly the same knowledge.
Note finally that for the computations performed here with a
number of images N = 20000, the POD is twice faster than
the 2D-FT (even though it was taken into account for the 2D-
FT only 20 mode reconstructions, and half of the images pix-
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FIG. 7. Comparison of (top) radial and (bottom) azimuthal profiles of
the POD and 2D-FT modes, at p0 = 1.3 mTorr, for the (left) m =−5,
(center) m =−6 and (right) m =−4 modes.

els as mentioned in subsection III B). Then when only taking
N = 2000, the POD is more than 12 times faster than the 2D-
FT.

The main strengths of both POD and 2D-FT techniques are
summarized:

• POD is fast and easy. It is extremely simple to imple-
ment, and it provides quick and direct results on the
spatio-temporal dynamics of a dataset.

• POD is flexible. It does not rely on any particular shape
of the physical structure at play, nor on a specific loca-
tion in the images analysed. It will therefore be partic-
ularly well suited to study for instance non-linearly sat-
urated modes exhibiting a complex spatial or temporal
pattern. Note however that if the results can be particu-
larly insightful, they might also be difficult to interpret
(and in some cases even unusable).

• 2D-FT is explicit, hence robust. Projecting the data onto
a predefined set of wave modes (here for instance of the
form e−iωt−imθ ) prevents the emergence of unexpected
structures, but it provides the results with a well identi-
fied physical meaning.

• 2D-FT is exhaustive for linear mode analysis. Since
it provides the full spatio-temporal evolution of linear
wave, 2D-FT is particularly attractive to study their
dynamics, exhibit the corresponding dispersion rela-
tions, or use for instance the phase correlations between
modes to study weakly non-linear interactions (see the
use of bicoherence in section V).

Both techniques can provide insightful and complementary
results. A recent preprint, reporting on the specific compar-
ison between POD and 2D-FT applied to Hall thruster cam-
era imaging52, concludes similarly. Applied to the present
datasets, POD shows that the dominant physical structures are
m-modes of the form e−iωt−imθ . This indicates that the 2D-FT
as implemented here, is an appropriate numerical tool for the
mode decomposition. Hence POD does not constitute a strong
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gain for further analysis here. In the following, for the iden-
tification of the waves and the in-depth study of their weakly
non-linear interactions, we will use the results from the 2D-FT
decomposition.

IV. WAVES IDENTIFICATION

The azimuthal waves detected by both POD and 2D-FT are
now unambiguously identified as ion acoustic waves. A series
of high-speed imaging acquisitions was performed for pres-
sures p0 in the range [0.8;2] mTorr by steps of 0.1 mTorr.
For each value of the pressure, the radius r∗max at which the
wave amplitude is maximal is deduced from the time-average
of the raw images. The experimental phase velocity vφ is de-
termined by a linear fit of the most energetic modes observed
on the spectrum Sr∗max( f ,m) as f (m) = vφ m/(2πr∗max). A typ-
ical linear fit is shown in Fig. 4 for p0 = 1.3 mTorr. The ex-
perimental phase velocities vexp

φ
are displayed in Fig. 8 as red

dots. The errorbars are estimated by the combination of the
uncertainties on the fit on S(m, f ), and on the evaluation of
r∗max (r∗max(t) fluctuates around its mean value with a standard
deviation of ∼ 3%, see Fig. 5 (bottom)).

These experimental phase velocities are compared to the
theoretical ion acoustic speed cs =

√
eTe/mi, with e the ele-

mentary charge and mi the ion mass. The computation of the
latter requires careful estimates of Te where the phase velocity
is measured on the high-speed images. Note that at z = 49 cm,
where the probe measurement is performed, the radial posi-
tion that is best representative of what is seen at r∗ = 3.3 cm
on the images is in fact at r = 5 cm (see Appendix A and for
a detailed explanation see27). A detailed pressure scan of the
electron temperature Te was performed with the 5-tips probe
at a radius r = 4 cm, and from a finely resolved radial scan
at p0 = 1 mTorr27,31, we have Te(5 cm)≈ Te(4 cm)+0.2 eV.
Therefore, from the measured values Te(4 cm), Te(5 cm) is
evaluated to lie in the range [Te(4 cm);Te(4 cm)+0.5] eV. The
resulting theoretical ion acoustic speeds cs(p0) are shown in
Fig. 8 (gray area).

The experimental phase velocities follow the trend of
cs(p0), with values shifted down by approximately 700 m/s.
This is well explained by a Doppler shift due to the plasma
column rotation. The plasma column indeed rotates, as

was reported previously53, where the electric drift
~E×~B

B2 =

−∇rφp/B~eθ was shown to overcome the diamagnetic drift

−Ti

n

~∇n×~B
B2 . Two damping mechanisms also need to be ac-

counted for: ion-neutral friction and effective friction due to
ionization. The ion-neutral collision frequency reads νin =
nnσinvth,i, with vth,i =

√
eTi(eV )/mi, nn being the neutral den-

sity and Ti the ion temperature. We consider nn ≈ p0/kBTn
with Tn(p0) = 350 K, σin = 1.6× 1018 m−2 from experi-
mental cross sections54, and Ti ≈ 0.2 eV using previous LIF
measurements. The effective friction due to the ionization
originates from ions created with a temperature much lower
than the surrounding Ti and depends upon the ionization
frequency νiz, computed as νiz = nnKiz,0T 0.59

e exp(−εiz/Te),

0.8 1 1.2 1.4 1.6 1.8 2
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FIG. 8. Comparison between the experimental phase velocity (red
dots), the ion sound velocity cs (black curve), and its Doppler shifted
values (green curve).

with Kiz,0 = 2.34× 10−14 m3/s and εiz = 17.44 eV, and Te

in eV55. A global damping factor K is then given31,53 as

K = 1+
(

νin +νiz

ωci

)2

, with ωci the ion cyclotron frequency.

This finally gives a background azimuthal rotation of the ions
as vi0,θ ≈−(1/K)∂rφ(r)/B.

The rotation velocity vi0,θ is estimated from the experimen-
tal profiles φp(r) shown in Fig. 2 (measured at p0 = 1 mTorr,
and assuming variations with pressure within ±20%). The
estimated values of nn and Ti are considered to be bounded
within ±10%, and Te is estimated from T r=4cm

e (p0) as ex-
plained above. The results for the estimate of cs + vi0,θ are
shown in Fig. 8 (green curve). In spite of all the approxima-
tions made, the comparison between experimental phase ve-
locities and the Doppler shifted values of cs provides a very
satisfactory agreement. This allows us to identify with great
confidence the azimuthal waves observed at B = 170 G as ion
acoustic waves. An interesting feature is that the ion acoustic
waves travel in the positive θ direction, i.e. opposite to the
E×B drive.

We stress here that adding the ion background velocity to
the classical ion acoustic wave speed is a crude approxima-
tion, deemed sufficient here for the purpose of wave identifica-
tion. However, a careful calculation would require to compute
a complete dispersion relation from the governing equations,
which couple in a complex way and prescribe direct analytical
computation. Indeed the effect of an ion background velocity
on the ion acoustic phase velocity is likely to be coupled with
other effects such as electron magnetization or friction with
the neutrals, leading to computations well beyond the scope
of this article.

Interestingly, we observed that the ion acoustic waves are
only observed over a narrow range of magnetic field values.
For B = 80 G no clear wave emerges from the fluctuations of
the plasma density or emitted light intensity; on the other hand
for B≥ 300 G low frequency waves develop31.
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FIG. 9. Left: time evolution of m-modes average amplitudes, ex-
tracted by 2D-FT. Left: fit of the 2D-FT m =−5 mode growth rate at
an exchange event with m =−6 mode, for p0 = 1.3 mTorr. The fit is
done on a selected interval of the raw data (light blue). The red curve
is the result of a filter. Right: Evolution of the growth time scale of
m=−5 mode, evaluated during exchange events, as a function of the
pressure p0.

V. MODES DYNAMICS AND INTERACTIONS

The spatio-temporal dynamics and the non-linear nature
of the energy exchanges between the ion acoustic modes, as
clearly shown in Fig. 5, are now described.

A. Growth rates of ion acoustic modes

The time series shown in Fig. 6 is taken around the ex-
change event highlighted at t0 in Fig. 5. At time t0 the am-
plitude of the m = −6 mode is close to its maximum, while
the amplitude of the m = −5 mode is close to its minimum.
At time t0 + 18 ms, the amplitude of the m = −6 mode has
decreased close to its minimum value, and the m = −5 mode
dominates. Figure 5 (bottom) shows that the radial position of
the dominant mode (either the m = −5 or the m = −6 mode)
is indeed very stable. On the other hand, the radial position of
the low amplitude mode strongly fluctuates around its equi-
librium value (with standard deviations around 0.6 cm for the
m =−5 mode and ∼ 0.5 cm for the m =−6 mode).

The exchange events observed for p0 = 1.3 mTorr between
modes m=−5 and m=−6 (Figures 3 and 5) are similarly ob-
served at p0 = 1.1 mTorr and p0 = 0.9 mTorr. The timescales
of the exchange events are now determined at these three val-
ues of the pressure. This is done by fitting the mode amplitude
Am as exponentially growing: Am ∝ exp(t/τ). Figure 9 (left)
shows a typical fit around t0: the green part shows the interval
over which the raw signal (blue) is fitted; a low-pass filtered
signal is shown for clarity (red). Figure 9 (right) shows the
resulting values of τ found for the m=−5 mode. The growth-
time τ significantly increases with the pressure, its value dou-
bles from p0 = 0.9 mTorr to 1.3 mTorr. This is interpreted as
being the result of an increased friction from the neutrals at
higher pressure. Note that this observation of a decrease of
the ion acoustic wave growth rate with increasing pressure is
consistent with theoretical predictions9.
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FIG. 10. Residence time PDF, obtained for a neutral pressure p0 =
1.30 mTorr.

B. Residence time distribution

The statistics of the transitions between the m = −5 and
m=−6 modes were obtained in a new set of experiments, per-
formed at a lower sampling frequency (20 kfps)56 over longer
times (2 seconds). This allows to extract the time evolution
of the modes average amplitude, extracted by 2D-FT. The
probability distribution function of the residence time of the
m = −4, m = −5 and m = −6 modes are shown in Fig. 10,
for a total duration of 4 seconds (i.e. more than one thou-
sand transitions between modes). The distributions are com-
patible with an exponential distribution, which implies that
the transition events are not correlated. Such distributions of
residence times or waiting times are ubiquitous to transitions
observed in aerodynamics57, turbulent flows58,59 or convec-
tion60, to the waiting time between reversals in dynamo ex-
periments61, or the turbulent dynamics of the scrape-off layer
in tokamaks62,63.

For all modes, the probability distribution function is com-
patible with a functional fit of the form e−t/τ , with τ = 5.4 ms
for m = −4, and τ = 6.0 ms for m = −5 and τ = 3.2 ms for
m = −6. As already observed in Fig. 5, the m = −4 mode
is tied to the m = −5 mode, resulting in similar pdf. Fig-
ure 5 also shows that the system is more often dominated by
a m = −5 mode, which results in an exponential pdf with a
larger characteristic time for the m = −5 mode as compared
to the m =−6 mode. High speed imaging of the dynamics of
the plasma allows to probe long-time statistics of the waves
dynamics. It opens the possibility to probe the evolution of
the characteristic residence time as a function of the control
parameters (for instance pressure), possibly shedding light to
the physical processes leading to exchange events. Note that
the dominant mode (and the associated characteristic time)
was observed to strongly evolve with pressure (data not shown
and beyond the scope of this article).
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FIG. 11. Maps of the threshold b2
0 (a) and bicoherence b2 (b), cor-

responding to the three-wave interaction (m = −5)+ (m = −1)↔
(m = −6). c) Frequency power spectra of modes m = −1, m = −5
and m = −6 from 2D-FT computed at r∗ = 3.3 cm. B = 170 G and
p0 = 1.3 mTorr.

C. Non-linear behaviour

In order to further assess the non-linear nature of the dy-
namics between the dominant ion acoustic modes, the bico-
herence b2( fm=−5, fm=−1) is computed for the three wave in-
teraction (m = −5)+ (m = −1)↔ (m = −6), and shown in
Fig 11. Note that to increase statistics, the 2D-FT at all radii
1 ≤ r∗ ≤ 5 around the wave maximal amplitude are used.
More details on the bicoherence computations are provided
in appendix B. The threshold map shown in Fig 11 a) was

computed using a basic surrogate technique where the phases
of the 2D-FT signal are randomly mixed. This yields bico-
herence values for signals without any preferential phase re-
lations, from which a threshold value of max(b2

0) = 0.12 is
estimated. Figure 11 b) shows the map of b2( fm=−5, fm=−1)
with fm=−5 and fm=−1 the frequencies of modes m = −5
and m = −1 respectively. For the sake of visibility, the ar-
eas of bicoherence high values are highlighted by gray con-
tours (defined at 40% of the maximum value of a Gaussian
filtered b2 map). Most of the bicoherence highest values lie
around the diagonal fm=−5 + fm=−1 = 65 kHz, that is the
dominant frequency of the m = −6 mode. This reveals the
strong non-linear behaviour of the (m = −6, f ∼ 65 kHz)
mode component, which interacts with m = −5 and m = −1
modes via continuous sets of frequencies. The points dis-
played as red dots in Fig. 11 b) are also enlarged for clar-
ity: they correspond to b2 & 0.36, i.e. more than three times
the threshold value. The points for which fm=−1 = 0 kHz,
and fm=−5 ∈ [64.6;65.4] kHz correspond to frequency com-
ponents of the m =−5 mode being fed by the high amplitude
of the (m = −6, f ∼ 65 kHz) component. Note that these
interactions are not the dominant process characterizing the
energy exchanges detailed in subsection V B, since they only
involves frequency components of the m = −5 mode around
65 kHz, with a low energy. The point at fm=−5 = 55.4 kHz
and fm=−1 = 11.2 kHz however corresponds to the interac-
tion:

(m =−5, f = 55.4) + (m =−1, f = 11.2) ↔ (m =−6, f = 66.7)

which involves the dominant frequency components of the
m =−5 and m =−6 modes. The very high bicoherence value
at this location (b2 = 0.39) definitively establishes the non-
linearity of the interactions between the ion acoustic modes
(m = −5, f = 55.4 kHz) and (m = −6, f = 66.7 kHz), at the
origin of the transitions observed in Fig. 5.

Finally, Fig. 11 c) shows the frequency spectra of the m =
−6, m = −5 and m = −1 modes involved in the three-wave
interactions described above. These spectra correspond to 1D
cuts along the frequency axis of the 2D-FT spectrum shown
in Fig. 4. These spectra clearly display the non-linear feeding
of the m = −5 mode by the high amplitude m = −6 mode
around 65 kHz. The non-linear feeding of modes m = −1
and m = −6 by the high amplitude m = −5 mode around 55
kHz is also visible. The component (m =−6, f = 55 kHz) is
then non-linearly interacting with (m =−5, f = 44) kHz and
(m = −1, f = 11 kHz), as can be deduced by the high values
of b2( fm=−5 ∼ 44, fm=−1 ∼ 11) from Fig. 11 b).

The computation of other bicoherence maps (not shown
here) reveals additional non-linear behaviours. The bicoher-
ence computation of the (m = −6)+ (m = −1)↔ (m = −7)
coupling unambiguously shows that (m =−6, f = 65.2 kHz)
non-linearly interacts with (m = −7, f = 74.0 kHz) via an
(m = −1, f = 8.8 kHz) mode component (with b2 = 0.36 >
3max(b2

0)). Similarly, bicoherence computation of the (m =
−4)+ (m = −1)↔ (m = −5) coupling highlights that (m =
−4, f = 44.2 kHz) and (m = −5, f = 55.4 kHz) modes non-
linearly interact via (m = −1, f = 11.2 kHz) (with b2 =
0.38 > 3max(b2

0)). As a last example, the bicoherence map
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for the interaction (m = −4)+ (m = −2)↔ (m = −6) does
not exhibit high values indicating the absence of non-linear
interaction between the corresponding ion acoustic modes. It
however reveals that the frequency components ( f = 55 kHz)
of (m =−4) and (m =−6) modes (resulting from the spread
of the m =−5 mode, visible in Fig. 4) are non-linearly linked
via the (m =−2, f = 0 kHz) mode component.

Thanks to the rich spatio-temporal information provided by
camera imaging and to the use of bicoherence, the weakly
non-linear interactions are clearly highlighted. In particular
the existence of three-wave interactions between ion acoustic
modes m = −p, m = −p−1 and m = −1, for p ∈ [4,5,6], is
demonstrated.

VI. CONCLUSION

We have presented the first report of temporally and spa-
tially entirely resolved ion acoustic waves in a magnetized
plasma column. The ion acoustic waves were observed by
means of fast camera imaging in a low temperature argon
plasma column, with dominant azimuthal mode numbers m =
−4, m = −5 and m = −6 depending on the neutral pressure
that was varied from 0.8 mTorr to 2 mTorr.

Two image analysis techniques, namely proper orthogo-
nal decomposition (POD) and 2D Fourier transform (2D-FT),
were presented and thoroughly compared. These tools are
found to be complementary. POD is easy to implement and
adaptable to any type of data, and useful to provide a fast
overview of the underlying dynamics of a given dataset. This
helps focusing in a second time on a more precise and targeted
analysis, that 2D-FT can then provide, yielding detailed and
unambiguous information.

Using 2D-FT analysis of high speed images, the ion acous-
tic waves were found to rotate in opposite direction to the
global E×B drift of the plasma column, with a phase velocity
Doppler shifted by this actual electric drift velocity.

The dynamics of the dominant ion acoustic modes was
then explored using the 2D-FT decomposition. Growth rates,
which extraction was made possible by the camera high tem-
poral resolution, were found to decrease as pressure increases,
following previous numerical predictions. A detailed analysis
was then carried out in the particular case of p0 = 1.3 mTorr.
At this pressure the exchange dynamics between dominant
modes m = −5 and m = −6 was shown to be of a bistable
nature. More generally the weakly non-linear nature of the
m = −p and m = −p− 1 mode interaction (p ∈ [4,5,6]), in-
volved in a three-wave interaction with a m = −1 mode, was
demonstrated by means of bicoherence computation.

Finally we emphasize that, except from probe measure-
ments that were needed for the wave identification, all the re-
sults that were presented exclusively rely on fast camera imag-
ing measurements. This work can therefore be considered as
a case study demonstrating the very powerful capabilities of
fast camera imaging as a plasma diagnostics, notably for the
exploration of complex waves dynamics.
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Appendix A: Radial scale: camera imaging v.s. probe

The magnetic field ripple and parallax in our experimen-
tal set-up leads the camera lines of sight to cross regions of
different plasma parameters. The light recorded by camera,
resulting of an integration process along these lines of sight,
cannot be directly compared to probe measurements that are
performed at z = L2.

A transformation is implemented, modeling the integration
along the camera lines of sight of any plasma parameter that
is measured at z = L2. The details of this transformation are
provided in Ref.27.

Figure 12 shows the result of this artificial integration pro-
cess, applied to a test profile peaked at r = 5 cm (blue curve).
The resulting profile (red curve), expressed along the camera
imaging coordinate r∗, shows that what is seen on the cam-
era images at r∗ = 3.3 cm mainly corresponds to the plasma
parameter evolution that is located at r = 5 cm on the axis
z = L2.
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FIG. 12. Camera lines of sight integration process, applied to a test
profile measured at z = L2.
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Appendix B: Bicoherence and confidence level

Bicoherence is a spectral analysis tool that is commonly
used in physics, for the detection of non-linear three waves
interactions. Bicoherence computation essentially consists in
extracting the frequency components of one of several signals,
and comparing their phases. The signal decomposition at the
basis of a bicoherence analysis can be done by Fourier trans-
form64,65 as it is the case in this work, or based on a wavelet
approach66,67. In this appendix, we first remind the basic prin-
ciple of bicoherence, and then explained how bicoherence is
computed in the particular case of camera images. Then we
provide the definition of a clear and mathematically meaning-
ful threshold, that is often lacking when bicoherence is used
onto experimental data in plasma physics.

Evaluate three wave interactions by bicoherence

Let us consider three signals x, y and z with correspond-
ing Fourier transforms x̂, ŷ and ẑ. The cross bispectrum of
x, y and z is defined as a function of frequencies ( f1, f2)
as : B( f1, f2) = x̂( f1)ŷ( f2)ẑ∗( f1 + f2). If the frequency com-
ponents f1 and f2 of x and y respectively (with phases φ x

1
and φ

y
2 ) are involved in a three-wave interaction with the fre-

quency component f1 + f2 of z (with a phase φ
z
1+2) the phase

difference between these signals is a constant. Computing
the bispectrum onto successive reduced parts δt of the sig-
nals is therefore a way of measuring this phase locking, since
Bδ t( f1, f2) ∝ exp−i(φ x

1+φ
y
2−φ

z
1+2). The bicoherence is defined

by the normalized average over a statistically significant num-
ber of such bispectrum computations:

b2( f1, f2) =
|〈x̂( f1).ŷ( f2).ẑ∗( f1 + f2)〉δt |2

〈|x̂( f1).ŷ( f2)|2〉δt 〈|ẑ( f1 + f2)|2〉δt

If the signal frequency components previously mentionned
are perfectly uncorrelated, b2 corresponds to the average of
random complex numbers, and tends to cancel out. If those
frequency components are on the contrary perfectly phase
locked, the computations of Bδ t( f1, f2) have a constant value
and b2 = 1. In the case of experimental data, neither case is
realistic, and a threshold value b2

0 above which the bicoher-
ence can be considered significant needs to be defined (see
last paragraph of this appendix).

Bicoherence on camera images

With camera images that provide 2D spatio-temporal sig-
nals, bicoherence can be computed between the frequency
components of distinct modes m. Bicoherence allows to probe
the phases of signal components for given set of wave vector
and frequency (m, f ). This analysis is applied on the present
camera images, following the work of Ref.46. For a given
radius r∗, let us denote the 2D Fourier decomposition of the

light intensity:

A(t,θ) = ∑
n,p

a( fn,mp)ei(2π fnt−mpθ+φn,p)

The spectrum associated with a single mp mode is a part of
this decomposition:

Âmp( fn) = a( fn,mp)eiφn,p

Similarly to computations achieved for 1D signals, the
bispectrum is defined as a statistical averaging, over parts
of lengths δ t of the signal. In order to improve the sta-
tistical averaging here, the sum is also done over the sig-
nals from various radii r∗. This double averaging pro-
cess is denoted 〈.〉r∗,δt . The bispectrum between compo-
nents (m1, f1) and (m2, f2) is then defined as Bm1,m2( f1, f2) =

Âm1( f1).Âm2( f2).Âm1+m2( f1 + f2)
∗, and the bicoherence is

computed as:

b2
m1 ,m2

( f1, f2) =
|〈Âm1 ( f1).Âm2 ( f2).Â∗m1+m2

( f1 + f2)〉r∗ ,δt |
2

〈|Âm1 ( f1).Âm2 ( f2)|2〉r∗ ,δt 〈|Âm1+m2 ( f1 + f2)|2〉r∗ ,δt

The bicoherence as it is implemented in our code takes
mode numbers m1 and m2 as an entry and explores all possible
three-wave interactions (m1, f1)+ (m2, f2)↔ (m1 +m2, f1 +
f2) in terms of frequencies f1 and f2. The operation is fixed
as an addition, and the result is in a form of a 2D map of
b2

m1,m2
( f1, f2), with [ f1, f2]∈ [0,Fs/2]2, Fs being the data sam-

pling frequency. Here for simplicity, the bicoherence applied
to camera images is simply denoted b2.

Definition of a threshold

The phase correlation between any set of experimental sig-
nals is likely to be imperfect or partial, leading to 0 < b2 < 1.
Moreover the absolute values of the bicoherence are relative
to each set of signals investigated: a general threshold value is
not relevant. A method to systematically determine the level
above which the value of b2 becomes physically meaningful,
that depends on each bicoherence computation, is therefore
needed.

A possible method consists in the creation of an artificial
set of signals, sharing the same characteristics than the orig-
inal signals, but without any preferential relation between its
frequency components. The bicoherence of this artificial set
of signals is then computed, providing a lower limit for the
values of b2. This type of method is called surrogate tech-
nique68, and can be very sophisticated. Here we use a very
basic version of the surrogate techniques: the phases of each
2D-FT spectra are randomly mixed. The bicoherence compu-
tation applied to this modified data defines a threshold map
b2

0( f1, f2). Then for simplicity we take the maximal value
max(b2

0) and define it as a global threshold value for the real
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