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Abstract

This paper deals with learning stability of partially observed switched linear sys-
tems under arbitrary switching. Such systems are widely used to describe cyber-
physical systems which arise by combining physical systems with digital components.
In many real-world applications, the internal states cannot be observed directly. It
is thus more realistic to conduct system analysis using the outputs of the system.
Stability is one of the most frequent requirement for safety and robustness of cyber-
physical systems. Existing methods for analyzing stability of switched linear systems
often require the knowledge of the parameters and/or all the states of the underlying
system. In this paper, we propose an algorithm for deciding stability of switched
linear systems under arbitrary switching based purely on observed output data. The
proposed algorithm essentially relies on an output-based Lyapunov stability frame-
work and returns an estimate of the joint spectral radius (JSR). We also prove a
probably approximately correct error bound on the quality of the estimate of the
JSR from the perspective of statistical learning theory.

Keywords— Stability, switched systems, scenario approach, observability

1 Introduction

Verification of safety and robustness of AI systems has gained significant attention in recent years
[1, 2, 3]. This is particularly important in the context of application of machine learning algorithms
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to cyber-physical systems (CPS), which tend to be safety-critical (e.g., autonomous vehicles, etc.),
see [4, 5]. On the other hand, stability is one of the most basic requirements for safety and
robustness of CPS [4, 5, 6]. Due to the interactions between the cyber and physical components,
CPSs can be modelled by so called hybrid systems [5, 6, 7], of which switched linear systems (SLS)
represent a subclass [8, 9]. It is thus of interest to investigate verification of stability of SLSs.

The topic of stability is a classical one in dynamical systems theory and in control theory
[10, 11], and has been studied for SLSs [7, 8, 9]. In the above-cited works, stability analysis
techniques typically require a dynamical model of the system. However, obtaining an accurate
model of real-world engineering systems by first principles can be challenging in particular for
CPSs with hybrid behaviors. From the point of view of conventional control theory, system
identification where dynamical models are learned from data could be a reasonable intermediate
step for system analysis. In fact, system identification is a well-studied subject with a huge
literature, see, e.g., [12, 13] and the references therein. Early work mainly focuses on linear
systems and tends to provide asymptotic guarantees see [12] for an overview of the classical
literature (including extensions to nonlinear systems). For hybrid systems, there also exists a rich
literature on learning SLS models, see [14, 15, 16, 17, 18] and the references therein. Many of
existing techniques assume the knowledge of the switching signal [19, 20]. When the switching
signal is unavailable, auto-regressive models are often used to approximate SLSs, which can be
computationally expensive for an accurate approximation [16]. In fact, it is proved in [21] that
learning SLS models is NP-hard without the knowledge of the switching signal. In this paper,
we address stability of SLS state-space representations with unobserved switching. Our goal is to
decide stability of a SLS directly based only on the observed data generated by it. More precisely,
we consider discrete-time SLSs with no inputs under arbitrary switching, and we are interested in
deciding if the system is stable, i.e., if the joint spectral radius (JSR) [22] of the system matrices
is smaller than 1. Our motivation is to bypass the identification phase, in order to avoid both
computational burden and potential modelling errors.

We assume that we can observe random samples of the output of the system. Moreover,
we assume that each sampled output trajectory is generated from a certain initial state and
switching signal. By output we mean a function of the hidden internal state. We then formulate
an optimization problem on the observed outputs, such that the solution of this optimization
problem gives an upper bound on the JSR of the underlying system with a certain precision
and with a certain probability. That is, the optimization problem gives an upper bound on the
JSR with high probability. From the perspective of statistical learning theory [23, 24], our result
provides a probably approximately correct (PAC) bound, which brings important insights into the
relation between the size of the sample and the precision of the solution.

The papers which are the closest to the present one are [25, 26, 27, 28] where the celebrated
scenario approach is applied in order to infer stability of the system from a sampled set of obser-
vations. They show that, even though it is not obvious that the scenario approach can be used
in this context, the geometric properties of SLSs allow to retrieve firm, probabilistic, stability
guarantees under a set of mild assumptions. We refer the reader to [29, 30, 31, 32, 33] for good
introductions to the scenario approach. In contrast to [25, 26, 27, 28] where fully observed SLSs
are considered, this paper considers partially observed SLSs, i.e., we no longer assume that the
whole internal state can be observed. The extension from the fully observed case to the partially
observed case allows us to consider a wider range of practical systems where the internal state is
not directly accessible. However, the challenge is that we need to construct a Lyapunov function
from the output trajectory instead of the state trajectory. More specifically, for this extension,
we need to develop an output-based Lyapunov stability analysis technique which serves as a basis
for the proposed data-driven approach under observability conditions. Similar to [25], we show
that the data-based solution converges to the model-based solution as the sample size increases.
In addition, we explicitly derive a convergence rate which provides important insights into the
relation between the sample size and the precision of the solution. With the obtained convergence
rate, we also show that the output-based Lyapunov function is PAC learnable in the sense of
Valiant’s definition in [34] using the proposed algorithm.

Our work is also closely related with the research on learning safety certificates, such as
Lyapunov functions and contraction metrics, which guarantee stability, see [35, 36, 37, 38, 39,
40, 41, 42, 43, 44]. The latter references require the knowledge of the underlying system, except
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[37, 36, 42, 44]. Moreover,all these works require the knowledge of the full state and hybrid
behaviors are not taken into consideration. Hence, these techniques are not suitable for the
stability analysis of partially observed switched systems.

The contribution of this paper is threefold. First, we propose a stability learning approach
for SLSs with only partial observation under observability assumptions. Second, we provide a
PAC bound on the JSR with an explicit convergence rate, which allows to derive the sample
complexity of the proposed learning approach. Third, we conduct a comparison with hybrid system
identification techniques [14, 15] using numerical examples. More precisely, by the numerical
experiments in Section 5, we show that hybrid system identification techniques [14, 15] not only
are computationally expensive but also generate modelling errors which leads to false stability
inference.

The rest of the paper is organized as follows. In Section 2, we present the formal problem
formulation and some preliminary results on stability of SLSs. Section 3 is the main part of
the paper, where we present the proposed output-based Lyapunov framework from the stability
learning problem to probabilistic guarantees. In Section 4, we discuss some practical issues about
the proposed analysis. In Section 5, we provide numerical simulations and comparison with hybrid
system identification techniques.

Notation. We denote by R+ and Z+ the set of all non-negative real numbers and the set
of all non-negative integers respectively. For a square matrix Q, Q � (�)0 means Q is positive
definite (semi-definite). For a symmetric Q � 0, let κ(Q) := λmax(Q)/λmin(Q). Consider the set
M := {1, 2, · · · ,M} for some given integer M ∈ Z+, Mk denotes the k-Cartesian product of M
for any k ∈ Zk. Let σσσ = (σ0, σ1, · · · , σk−1) be an element ofMk. For any a, b ∈ Z+ with b ≥ a, we
denote the segment (σa, · · · , σb) by σσσa:b. For consistence, let σσσa:b = ∅ when a > b. For any p ≥ 1,
the p-norm of a vector/matrix x is ‖x‖p (‖x‖ is the 2-norm by default), and let ‖x‖F denote the
Frobenius norm.

2 Problem statement and preliminaries

Switched linear systems Below we will define the notion of switched linear systems and recall
some basic properties of such systems. These properties will allow us to relate stability of the
system with the observed behavior.

A discrete-time switched linear system (SLS) is a dynamical system with output of the form

x(t+ 1) = Aσ(t)x(t), y(t) = Cσ(t)x(t), t ∈ Z+ (1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output and σ : Z+ →M := {1, 2, · · · ,M} is
a time-dependent switching signal that indicates the current active mode of the system among M
possible modes in {A1, A2, · · · , AM}. We will use the tuple Σ = (n, {(Ai, Ci) : i ∈M}) to denote
the switched linear system above.

Intuitively, a SLS is just a collection of linear dynamical systems defined on the same state-
space. During the evolution of the SLS, one switches from one linear system to another according
to the switching signal. For more details on switched systems see [45, 9].

Informaly, we would like to decide stability of (1) based on a finite number of observed output
data points. In order to state the problem formally, first we will define below what we mean by
stability. Then, we will explain our assumption on the data collection mechanism.
Stability Let us recall some basic stability results on discrete-time SLSs. We begin with the
formal definition of asymptotic stability below.

Definition 1 (Asymptotic stability) The discrete-time SLS (1) is asymptotically stable if for
any initial state x(0) ∈ Rn and switching signal σ : Z+ →M, limt→+∞ x(t) = 0.

To characterize this asymptotic stability property, we recall the concept of the joint spectral radius
(JSR) [22] of a SLS Σ:

ρ(Σ) := lim
k→∞

max
σσσ∈Mk

‖Aσσσ‖1/k. (2)
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It is well known that the SLS Σ is asymptotically stable under arbitrary switching if and only
if ρ(Σ) < 1, see, e.g., [22]. In general, computing the exact value of the JSR ρ(Σ) is a difficult
problem. Hence, in practice, we approximate ρ(Σ) by computing lower and upper bounds within a
Lyapunov framework, where the template of the Lyapunov function V : Rn×Mk → R is specified
for some k ∈ Z+. More precisely, given a Lyapunov function V above, such that for any sequence
(i1, . . . , ik) ∈Mk, we solve the following Lyapunov inequality for some choice of integers T > 0:

V (Ai1 · · ·AiT−kx, (iT−k+1 · · · iT )) ≤ (3)

γ2(T−k)V (x, i1, · · · , ik), ∀(i1, . . . , iT )) ∈Mk,∀x ∈ Rn

where γ ∈ R+ and V is parameterized by some variables. We refer the reader to [22] for some
popular Lyapounov templates. In this paper, we consider quadratic Lyapunov functions in the
form of V (x, i1, · · · , ik) = xTP(i1,··· ,ik)x for some positive definite matrix P(i1,··· ,ik) � 0.
Data collection We randomly generate multiple trajectories of (1) where the initial state x0 is
uniform and i.i.d. in the unit sphere Sn−1 and the switching signal σt is uniform and i.i.d. in M
for any t ∈ Z+. Suppose we generate N ∈ Z+ trajectories of length T ∈ Z+, the sample is denoted
as

ωN := {(xi0,σσσi) : i = 1, 2, · · · , N}. (4)

where σσσi = (σi0, σ
i
1, · · · , σiT−1) ∈ MT . For each sampling pair, we measure the output trajectory

data

yit = Cσitx
i
t, x

i
t+1 = Aσitx

i
t, 0 ≤ t ≤ T − 1,∀i (5)

where the subscript t denotes the time instant and the superscript i denotes each trajectory. The
whole observed data set is denoted by

Dobs := {yit : 0 ≤ t ≤ T − 1, i = 1, 2, · · · , N}. (6)

Formal problem formulation Suppose System (1) is not known, but the observations Dobs are
available and they correspond to the random sample ωN in (4). Find an estimate γ∗(ωN ) of the
JSR ρ(Σ). Note that we do not require the information on the switching signal.

3 Learning stability from output data

In this section, we present a data-driven stability analysis approach for SLSs with partial obser-
vation. We start with the procedure to estimate the JSR of a SLS in the form of (1). We then
present the probabilistic guarantees which describe the quality of that estimate.

3.1 Estimating JSR from data

We propose to estimate the JSR and the corresponding Lyapunov function by solving an opti-
mization problem based on observed data. In order to state the optimization problem, for each
trajectory, given the observed data set Dobs and some k ∈ Z+, let us define the following time-series
data

vik =


yi0
yi1
...

yik−1

 , zik =


yiT−k
yiT−k+1

...
yiT−1

 ,∀i. (7)

For notational convenience, let the time-series data set be denoted by, ∀k ≤ T − 1,

Dk := {(vik, zik) : i = 1, 2, · · · , N}. (8)
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Given the data set Dk for a sufficiently large k ∈ Z+, we estimate the JSR by solving the following
scenario (or sampled-based) program

min
γ≥0,P

(γ, ‖P‖F ) (9a)

s.t. z>Pz ≤ γ2(T−k)v>Pv,∀(v, z) ∈ Dk, (9b)

I � P � λ̄I. (9c)

where the minimization is implemented in the lexicographic order 1 of the components of the
objective function. Let the solution be denoted by (γ∗k(ωN ), P ∗k (ωN )) and and suppose that it
is unique. The quantity γ∗k(ωN ) will be our estimate of the JSR of the unknown system (1). If
γ∗k(ωN ) is sufficiently smaller than 1, then we can conclude that the underlying system is stable,
at least with high probability.
Computational complexity By fixing γ, the constraint (9b) is linear, so that the optimization
problem (9) can be solved efficiently using SDP solvers [46] and bisection on γ. The computational
complexity of solving it is polynomial in the number of data points ( note that we do not need to
know the number of modes). In particular, solving (9) is expected to be much less computation-
ally expensive than identifying the underlying SLS, which essentially has a complexity growing
exponentially with the number of modes. This is supported by numerical results, see Table 1 in
Section 5.
Intuition Intuitively, the solution of (9) results in a Lypaunov function V (x, (i1, · · · , ik)) which
can be rewritten as a quadratic function of the outputs and which satisfies (3) with γ ≤ γ∗k(ωN ).
More precisely, given any k ∈ Z+, consider a switching sequence σσσ = (σ0, σ1, · · · , σT−1) ∈ MT .
For any initial state x of (1) and any integer k, ` ∈ Z+ with k + ` ≤ T , define

Yσσσ,x,`,k =


y(`)

y(`+ 1)
...

y(`+ k − 1)

 (10)

where (y(0), · · · y(T − 1)) is the output generated by (1) for the switching signal σ(i) = σi,
i = 0, . . . , T − 1 and initial state x(0) = x. We consider quadratic Lyapunov functions of the
output trajectory which can be expressed as

V (x,σσσ) = Y >σσσ,x,0,kPYσσσ,x,0,k (11)

where P ∈ Rkp×kp is a positive definite matrix.
It then follows that if V satisfies (3), then the constant γ is an upper bound on the JSR of

(1) when k and T satisfy certain conditions, as we will see in Theorem 1. In turn, V satisfies (3),
if it satisfies the following inequality: for every σσσ ∈MT

Y >σσσ,x,T−k,kPYσσσ,x,T−k,k ≤ γ2(T−k)Y >σσσ,x,0,kPYσσσ,x,0,k (12)

for every initial state x. Since any output sequence (y(0), y(1), · · · , y(T − 1)) arises as Yσσσ,x,0,T for
some initial state x and switching σσσ ∈MT , it follows that (12) is equivalent to requiring that

y(T − k)
y(T − k + 1)

...
y(T − 1)


>

P


y(T − k)

y(T − k + 1)
...

y(T − 1)



≤γ2(T−k)


y(0)
y(1)

...
y(k − 1)


>

P


y(0)
y(1)

...
y(k − 1)


(13)

1The first component comes first: (γ1, ‖P1‖F ) < (γ2, ‖P2‖F ) if γ1 < γ2 or else γ1 = γ2 and ‖P1‖F <
‖P2‖F .
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holds for any output sequence (y(0), y(1), · · · , y(T − 1)) and generated by (1). Hence, in order to
find a bound of the JSR, we have to solve the optimization problem for some sufficiently large
T ∈ Z+

(γok, P
o
k ) := arg min

γ≥0,P�I
(γ, ‖P‖F )

s.t. P, γ satisfy (13) for all output trajectories

(y(0), y(1), · · · , y(T − 1))

(14)

The scenario program (9) can be in fact considered as a sampled version of the robust optimization
problem (14).

3.2 Pathwise observability

Since our goal is to learn stability from the output trajectory, first we need to recall some technical
concepts on observability of switched systems. By incorporating these concepts into Lyapunov sta-
bility analysis, we present new results that are needed for developing formal probabilistic stability
guarantees in the sequel.

Definition 2 A switching sequence σσσ ∈ Mk is said to be observable for (1), if the following
implication holds:

Yσσσ,x,0,k = 0 =⇒ x = 0,

where Yσσσ,x,0,k is as in (10). The smallest k ∈ Z+ such that there exists an observable switching
sequence σσσ ∈Mk is called the observability index of Σ, denoted by h(Σ).

Intuitively, a switching signal is observable, then the state of the system can be reconstructed
from the observed outputs. When a SLS Σ has no observable switching signal, we let h(Σ) =∞.
We also recall a stronger observability condition from [47], called pathwise observable.

Definition 3 The SLS (1) is said pathwise observable if there exists k ∈ Z+ such that every
switching signal σσσ ∈ Mk is observable. We refer to the smallest such integer k as the pathwise
observability index, denoted by H(Σ).

Intuitively, pathwise observability means that the state of the system can be reconstructed from
the observed outputs, for any choice of the switching signal. When an SLS Σ is not pathwise
observable, we say that H(Σ) =∞. Let us also point out that, the condition of pathwise observable
is decidable as shown in [47, 48] by providing explicit upper bounds on H(Σ).

For any a, b ∈ Z+, let us also define Aσσσa:b
:= Aσb · · ·Aσa . By convention, when a > b, let

Aσσσa:b
= I. Following [49], for any σσσ = (σ0, σ1, · · · , σk−1) ∈ Mk of length k ∈ Z+, we define the

path-dependent observability matrix

OΣ(σσσ) :=


Cσ0

Cσ1
Aσ0

...
Cσk−1

Aσk−2
· · ·Aσ1

Aσ0

 . (15)

Remark 1 Using the definition of path-dependent observability matrices, a switching sequence
σσσ ∈ Mk for some k ∈ Z+ is said to be observable if rank (OΣ(σσσ)) = n. Following this, we say
that a SLS Σ = (n, {(Ai, Ci) : i ∈M}) is pathwise observable if there exists k ∈ Z+ such that
rank (OΣ(σσσ)) = n for any σσσ ∈Mk.

Note that the output trajectory can be rewritten as Yσσσ,x,0,k = OΣ(σσσ)x, the quadratic Lyapunov
function in (11) can be rewritten as V (x,σσσ) = x>OΣ(σσσ)>POΣ(σσσ)x. For notational convenience,
we then define the following matrices based on the switching sequence

PσσσΣ(P, `, k) = OΣ(σσσ`:k+`−1)>POΣ(σσσ`:k+`−1). (16)

With the definitions above, we obtain a Lyapunov stability result for SLSs.
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Theorem 1 Consider an SLS, denoted by Σ = (n, {(Ai, Ci) : i ∈M}), suppose that Σ admits at
least one observable switching signal, and denote h(Σ) the observability index as in Definition 2.
Assume that there exist k ∈ Z+, ` ∈ Z+, γ ≥ 0 and P � 0 such that k ≥ h(Σ), and for any
σσσ ∈Mk+`,

A>σσσ0:`−1
PσσσΣ(P, `, k)Aσσσ0:`−1

� γ2`PσσσΣ(P, 0, k), (17)

where PσσσΣ(P, 0, k) and PσσσΣ(P, `, k) are given as in (16). Then, ρ(Σ) ≤ γ.

Proof: For any q ∈ Z+ and σσσ ∈Mq`+k, from (17), it holds that

A>σσσ(q−1)`:q`−1
PσσσΣ(P, q`, k)Aσσσ(q−1)`:q`−1

�γ2`PσσσΣ(P, (q − 1)`, k).

This implies that

A>σσσ0:q`−1
PσσσΣ(P, q`, k)Aσσσ0:q`−1

�γ2`A>σσσ0:(q−1)`−1
PσσσΣ(P, (q − 1)`, k)Aσσσ0:(q−1)`−1

...

�γ2q`PσσσΣ(P, 0, k), ∀σσσ ∈Mq`+k, q ∈ Z+. (18)

Since k ≥ h(Σ), there exists σ̃σσ ∈ Mk such that rank (OΣ(σ̃σσ)) = n from Definition 2. Thus, there
exist c ≥ c > 0 such that OΣ(σ̃σσ)>OΣ(σ̃σσ) � cI and OΣ(σσσ)>OΣ(σσσ) � cI for any σσσ ∈ Mk. With
this, we have that, for any σσσ ∈Mq`+k with σσσq`:k+q`−1 = σ̃σσ,

A>σσσ0:q`−1
PσσσΣ(P, q`, k)Aσσσ0:q`−1

� λmin(P )cA>σσσ0:q`−1
Aσσσ0:q`−1

,

PσσσΣ(P, 0, k) � cλmax(P )I.

The two inequalities above, together with (18), imply that

λmin(P )cA>σσσ0:q`−1
Aσσσ0:q`−1

� γ2q`cλmax(P )I

which means that

‖Aσσσ‖ ≤ γq`
√
κ(P )

c

c
, ∀σσσ ∈Mq` (19)

Hence,

ρ(Σ) = lim
q→∞

max
σσσ∈Mql

‖Aσσσ‖
1
ql ≤ γ lim

q→∞

(
κ(P )

c

c

) 1
2ql

= γ.

�
The stability result in Theorem 1 serves as a basis for the rest of the paper. Observe that the

constraint (17) is not amenable as it is for a data-driven approach, as it explicitly uses the system
matrices. In order to leverage it in a data-driven framework, we now provide an interpretation of
this stability condition from the perspective of robust optimization. Suppose the overall length
of the output trajectory is T . For any k ∈ Z+, we formulate the following robust optimization
problem

(γok,P
o
k ) := arg min

γ≥0,P�I
(γ, ‖P‖F ) (20a)

s.t. x>A>σσσ0:`−1
PσσσΣ(P, T − k, k)Aσσσ0:`−1

x (20b)

≤ γ2(T−k)x>PσσσΣ(P, 0, k)x, ∀(x,σσσ) ∈ Sn−1 ×MT

where PσσσΣ(P, 0, k) and PσσσΣ(P, `, k) are given as in (16). By homogeneity, (20b) is equivalent to (17).
From this robust optimization formulation, the stability condition in Theorem 1 means that for
any initial state x(0) the aggregated quadratic Lyapunov function in (11) is decreasing at a rate
of γ. The problem (20) can be also seen as a reformulation of (14)

If all the dynamics matrices are nonsingular, Theorem 1 in fact implies the pathwise observ-
ability property, as stated in the following corollary.
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Corollary 1 Suppose the conditions in Theorem 1 hold. Suppose the matrices {Ai}i∈M, ` ≥ k,
and γ > 0, the stability condition (17) also implies that rank (OΣ(σσσ)) = n for any σσσ ∈Mk.

Proof: Since ` ≥ k, there is no overlapping between σσσ0:k−1 and σσσl:k+l−1. Again, let σ̃σσ ∈ Mk be
such that rank (OΣ(σ̃σσ)) = n. With the fact that Ai is invertible for any i ∈M (as Σ is reversible),
the condition (17) implies that, for any σσσ ∈Mk+` with σσσl:k+l−1 = σ̃σσ,

PσσσΣ(P, 0, k) � γ−2`A>σσσ0:`−1
PσσσΣ(P, `, k)Aσσσ0:`−1

� 0. (21)

This means that OΣ(σσσ) is full-column rank for any σσσ ∈Mk. �

Remark 2 From Corollary 1, we can see that pathwise observability is not a conservative con-
dition in our output-based Lyapunov framework in which the switching signal is not available.

3.3 Almost Lyapunov stability

Before we prove our main result, we introduce the concept of almost Lyapunov stability which
allows to describe the stability with unseen regions in the state space. More precisely, we aim to
derive formal guarantees on the JSR from an almost stability condition in which the aggregated
Lyapunov functions based on the matrices as defined in (16) are non-increasing everywhere except
on a small subset whose measure is bounded by ε ∈ (0, 1).

To formally state the stability result with an almost Lyapunov function, the following definition
is also needed. Given any ε ∈ (0, 1), let

δ(ε) :=

{√
1− I−1(2ε; n−1

2 , 1
2 ) ε ∈ [0, 1

2 )

0 ε ≥ 1
2

(22)

where I(x; a, b) the regularized incomplete beta function defined as

I(x; a, b) :=

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

. (23)

A geometric interpretation of the function δ(·) is given in Figure 1.

0

ε

δ(ε)

Figure 1: Illustration of δ(ε): ε is the uniform (probability) measure of the spherical cap
in red and δ(ε) is the distance to the base of the spherical cap.

With this definition, we derive the following stability result under the Lyapunov condition
(17) with a violating subset.

Theorem 2 Consider a pathwise observable SLS Σ as in (1).Suppose there exist k ∈ Z+, ` ∈ Z+,
γ ≥ 0, P � 0 and a subset S ⊆ Sn−1 such that, k ≥ H(Σ), and for any σσσ ∈Mk+`,

x>A>σσσ0:`−1
PσσσΣ(P, `, k)Aσσσ0:`−1

x ≤γ2`x>PσσσΣ(P, 0, k)x,

∀x ∈ Sn−1 \ S. (24)
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where PσσσΣ(P, 0, k) and PσσσΣ(P, `, k) are given as in (16). Then,

ρ(Σ) ≤ γ√̀
δ
(
µ(S)χΣ(P,k)

2

) (25)

where µ(·) is the uniform probability measure on the unit sphere Sn−1, δ(·) is defined in (22) and

χΣ(P, k) := max
σσσ∈Mk

√
det(PσσσΣ(P, 0, k))

λmin(PσσσΣ(P, 0, k))n
. (26)

The proof of Theorem 2 is given in the appendix. From the definition of χΣ(P, k) in (26),
pathwise observability is crucial for the stability result in Theorem 2 in the sense that it guarantees
the boundedness of χΣ(P, k). From Theorem 2, more explicit stability guarantees can be also
derived, as shown in the following corollary.

Corollary 2 Given the same conditions as in Theorem 2, it holds that χΣ(P, k) ≤
√

(ckκ(P ))n−1

and

ρ(Σ) ≤ γ√̀
δ

(
µ(S)
√

(ckκ(P ))n−1

2

) , (27)

where

κ(P ) =
λmax(P )

λmin(P )
and ck := max

σσσ∈Mk
κ(OΣ(σσσ)>OΣ(σσσ))

Moreover, when I � P � λ̄I for some λ̄ ≥ 1,

ρ(Σ) ≤ γ√̀
δ

(
µ(S)
√

(ckλ̄)n−1

2

) . (28)

Proof: By definition, since Σ is pathwise observable with H(Σ) ≤ k, there exists r > 0 such that
rI � OΣ(σσσ)>OΣ(σσσ) � rckI for any σσσ ∈Mk, which leads to the following inequalities:

λmax(PσσσΣ(P, 0, k)) ≤ λmax(OΣ(σσσ)>OΣ(σσσ))λmax(P )

≤ rckλmax(P ),

λmin(PσσσΣ(P, 0, k)) ≥ λmin(OΣ(σσσ)>OΣ(σσσ))λmin(P )

≥ rλmin(P ).

Using these inequalities, we arrive at√
det(PσσσΣ(P, 0, k))

λmin(PσσσΣ(P, 0, k))n
≤

√
λmax(PσσσΣ(P, 0, k))n−1

λmin(PσσσΣ(P, 0, k))n−1

≤
√

(ckκ(P ))
n−1

,∀σσσ ∈Mk.

Hence, it holds that χΣ(P, k) ≤
√

(ckκ(P ))
n−1

. Putting this inequality into (25), we obtain (27).

Note that the function δ(·) is decreasing. When κ(P ) ≤ λ̄, (27) implies (28). �
With the results above, we are able to extend the technique in [25] which only considers the

fully observed case to the partially observed case.

9



3.4 Main result: Probabilistic stability certificates

In the rest of this section, we formally present our main result, that is, stability certificates based
on the solution of the scenario program (9) in a probabilistic sense.

Our derivation relies on the scenario approach (also known as scenario optimization) [29, 30,
32]. In order to use [32], we need to fulfill a non-degeneracy assumption, formalized below.

Definition 4 For the SLS (1) and k, T ∈ Z+, a switching sequence σσσ ∈ MT is degenerate if
there exist P � 0 and γ ≥ 0 such that for any initial state x,

Y >σσσ,x,T−k,kPYσσσ,x,T−k,k = γ2(T−k)Y >σσσ,x,0,kPYσσσ,x,0,k

where Yσσσ,x,0,k, Yσσσ,x,T−k,k are as in (10).

With the discussions and definitions above, we are now ready to present the main result of this
section.

Theorem 3 (Main result) Consider the SLS Σ as given in (1), where the initial state is i.i.d
with the uniform distribution over the unit sphere Sn−1 and the switching signal is uniform and
i.i.d. in M. Given N,T ∈ Z+, the sample set ωN as defined in (4), and k ≤ T − 1, let
(γ∗k(ωN ), P ∗k (ωN )) be the unique solution of the scenario program (9). Assume that Σ is path-
wise observable with H(Σ) ≤ k and that none of the switching sequences in MT is degenerate in
the sense of Definition 4. For any ε ∈ (0, 1), with probability no smaller than 1− φ(ε; d,N),

ρ(Σ) ≤ γ∗(ωN )

T−k

√
δ
(
εMTχΣ(P∗(ωN ),k)

2

) (29)

where d = kp(kp+1)
2 , and χΣ(·, k) is given in (26), δ(·) is defined as in (22), and

φ(ε; d,N) := 1− I(ε; d,N − d+ 1). (30)

The proof of Theorem 3 is presented in the appendix. Let us emphasize that the assumption
that none of the sequences is degenerate in Theorem 3 is not conservative in practice. In fact,
this assumption is a particular case of Assumption 2 in [32], see Section 3.4 in [32] for discussions
on relaxing such an assumption. In the fully observed case, this assumption actually means that
none of the matrices {Ai}Mi=1 is similar to a Barabanov matrix, which is diagonalizable with all
the eigenvalues having the same modulus, see [26]. Let us also point out that the function χΣ(·, k)
as defined in (26) implicitly depends on the parameters of the underlying system Σ. In Subsection
4.3 we present an algorithm for estimating χΣ(·, k).

The error bound of Theorem 3 implies that the true JSR is smaller than the sample-based
solution γ∗(ωN ) multiplied with the correction factor

1

T−k

√
δ
(
εMTχΣ(P∗(ωN ),k)

2

)
with a high probability 1 − φ(ε; d,N). The probability 1 − φ(ε; d,N) converges to 1 as N → ∞.
That is, the more data points we have, the more certain we are that (29) holds. The factor depends
on the accuracy level ε, and it tends to 1 as ε→ 0. We will explicitly discuss the convergence rate
in Section 4.1.

The correction factor above is a posteriori, in the sense that its numerical value depends on
the outcome of the scenario program (9). For this reason it may be difficult to evaluate the quality
of this factor. Below we present a modified error bound where the factor with which γ∗(ωN ) is
multiplied does not depend on data. This then allows to bound that factor using prior knowledge
on the set of possible models. This is done by exploiting the constraint I � P � λ̄I in (9).
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Corollary 3 Suppose that the conditions in Theorem 3 hold. There exists a constant c ≥ 1, for
any β ∈ (0, 1), with probability no smaller than 1− β,

ρ(Σ) ≤ γ∗k(ωN )

T−k

√
δ

(
εMT
√

(cλ̄)n−1

2

) (31)

with ε = I−1(1− β; d,N − d+ 1) and d = kp(kp+1)
2 .

Proof: This is a direct consequence of Theorem 3 and Corollary 2 with c = ck. �
The constant c in (31) depends on the underlying system as shown in Corollary 2. Corollary

3 enables us to know a priori how much data is needed to reach certain accuracy and confidence
level. That is, given a fixed confidence level β and a fixed ε, we are able to compute N such that
(31) holds with probability 1− β. Note that this requires the knowledge of the constant c, which
depends on the matrices of the underlying system. Suppose that the underlying unknown system
comes from a certain family of SLSs, we can choose c to be an upper bound on the constant
maxσσσ∈Mk κ(OΣ(σσσ)>OΣ(σσσ)) of each Σ where Σ varies through all possible SLSs. The constant c
can be hence considered as a counterpart of VC dimensions in PAC-style error bounds [23], and
it captures the complexity of the model class. Alternatively, c could also be estimated from data
with high probability, as we will see in Theorem 4 in Section 4.

Remark 3 In fact, our analysis in Section 3.4 can be extended to the case when the initial state is
not uniformly distributed, but its distribution P satisfies the following regularity condition: There
exists an increasing function ν : [0, 1] → [0, 1] such that, for any S ⊆ Sn−1, P{x : x/‖x‖ ∈ S} ≥
ν(µ(S)), where µ(·) is the uniform probability measure on the unit sphere Sn−1. This condition
is satisfied for example for Gaussian distributions. Under this condition, the inequality in (29)
becomes

ρ(Σ) ≤ γ∗(ωN )

T−k

√
δ
(
ν−1(εMT )χΣ(P∗(ωN ),k)

2

) . (32)

Remark 4 The proposed approach can be also extended to disturbed systems with bounded additive
disturbances in the form of

x(t+ 1) = Aσ(t)x(t) + w(t), y(t) = Cσ(t)x(t) + v(t) (33)

where w(t) and v(t) are bounded. Similar probabilistic guarantees can be derived with a-priori
information on the bounds of the disturbances.

4 Technical issues

In this section, we discuss some technical issues of the proposed data-driven stability analysis
approach.

4.1 Sample complexity

We first provide some insights into the relation between the size of the sample and the precision
of the solution of the scenario program (9) from the perspective of PAC learning [24]. Let us
formally define the sample complexity of the scenario program (9) below.

Definition 5 (Sample complexity) Given β ∈ (0, 1), ε ≥ 0 and any integer k ≥ H(Σ) , the
sample complexity of the scenario program (9), denoted by Ns(ε, β), is the minimal N ∈ Z+ such
that

PN{ωN : γok ≤ (1 + ε)γ∗k(ωN )} ≥ 1− β, (34)

where γok is given in (14).
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In the following proposition, we present some results on the sample complexity for the proposed
data-driven approach.

Proposition 1 Suppose the conditions in Theorem 3 hold. For any β ∈ (0, 1) and ε ≥ 0, let the
sample complexity Ns(ε, β) be defined as in Definition 5. Then, the following results hold:
(i) There exists a constant c ≥ 1 such that

Ns(ε, β) ≤ Nφ(
I(1− 1

(1+ε)2(T−k) ; n−1
2 , 1

2 )

MTχ(Q)
√

(cλ̄)n−1
, β) (35)

= O

(
1

β
(
1

ε
)
n
2

)
. (36)

where Nφ(ε, β) denotes the minimal N ∈ Z+ satisfying φ(ε; d,N) ≤ β for any ε ∈ (0, 1).
(ii) When the system Σ is not asymptotically stable under arbitrary switching, i.e., ρ(Σ) > 1, for
any N ≥ Ns(ε, β),

PN{ωN : γ∗(ωN ) <
1

1 + ε
} ≤ β. (37)

The proof is given in the appendix. From Proposition 1, the sample complexity is polynomial
in 1/ε and 1/β, which implies PAC learnability in the sense of Valiant’s definition in [34]. In
addition, Property (ii) of Proposition 1 provides a measure of the risk of stability learning using
the proposed data-driven approach.

Remark 5 Using tighter explicit bounds of φ(ε; d,N) in [32, 50], it can be even shown that

Ns(ε, β) = O
(

ln( 1
β )( 1

ε )
n
2

)
.

Alternatively, we can also define sample complexity based on the absolute error, i.e., the
minimal N ∈ Z+ such that

PN{ωN : γo ≤ γ∗(ωN ) + ε} ≥ 1− β. (38)

The analysis above can be adapted to this alternative definition. To avoid repetition, we do not
intend to provide the details.

4.2 Pathwise observability index estimation

The results in the previous section all rely on the condition that k ≥ H(Σ). However, the exact
value of H(Σ) is often unavailable. Though explicit bounds on H(Σ) exist in [47], they are only
useful for small values of n and M .

We now show an efficient procedure to estimate H(Σ). Let us define, ∀k ≥ 1,

ξok := inf
ξ≥0

ξ (39a)

s.t. Y >σσσ,x,k,kYσσσ,x,k,k ≤ ξ2kY >σσσ,x,0,kYσσσ,x,0,k,

∀(x,σσσ) ∈ Sn−1 ×M2k (39b)

where Yσσσ,x,k,k and Yσσσ,x,0,k are given in (10). The following proposition shows an important
property of the sequence {ξok}k≥1.

Proposition 2 Suppose the SLS Σ is pathwise observable. Let {ξok}k≥1 be defined as in (39).
Then, ξok <∞ if and only if k ≥ H(Σ).

Given a sample set ωN with a sufficiently long horizon T and the observed trajectories {yit : 0 ≤
t ≤ T − 1, 1 ≤ i ≤ N}, empirical estimates of {ξok : 1 ≤ k ≤ bT2 c} are given as

ξk(ωN ) := max
1≤i≤N

‖ṽik‖
‖vik‖

, (40)
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where vik is given in (7) and

ṽik =
(
(yik)> (yik+1)> · · · (yi2k−1)>

)>
. (41)

With these estimates, we then consider the minimal k such that ξk(ωN ) is less than some user-
defined threshold. This will be illustrated by a numerical example in the next section.

4.3 Explicit bounds

The probabilistic bound in Theorem 3 implicitly depends on the system matrices which are not
available. In this section, we show that explicit bounds can also be derived by estimating χΣ(·, k).

Given any k ≥ H(Σ) and a sample set ωN with the corresponding measurements {yit : t =
0, 1, · · · , T − 1, i = 1, 2, · · · , N}, let

ζk(ωN ) := max
1≤i≤N

‖vik‖, ζ
k
(ωN ) := min

1≤i≤N
‖vik‖, (42)

where vik is defined in (7). For any ε ∈ (0, 1) and ε′ ∈ (0, 1), let us define

ψε,ε′(ωN ) :=
1

δ( εM
k

2 )
ζ
k
(ωN )

ζk(ωN )
−
√

2− 2δ( ε
′Mk

2 )
. (43)

This allows to estimate χΣ(·, k) in Theorem 3, which leads to an explicit probabilistic upper bound
on ρ(Σ), as stated in the following theorem.

Theorem 4 Consider the same conditions as in Theorem 3. For any ε̄, ε, ε′ ∈ (0, 1), with proba-
bility no smaller than 1− φ(ε̄; d,N)− (1− ε)N − (1− ε′)N ,

ρ(Σ) ≤ γ∗(ωN )

T−k

√
δ

(
ε̄MT (ψε,ε′ (ωN ))

n−1
√

(P∗(ωN ))n−1

2

) (44)

where ψε,ε′(ωN ) is given in (43).

Remark 6 (Checking stability) We are now ready to continue our discussion on checking sta-
bility. As it was mentioned in Section 3.1, the main idea is to solve (9) and then to check if γ∗k(ωN )
is sufficiently smaller than 1. If we want to make this idea reliable, we can proceed as follows. One
option is to choose the confidence level β and check if the right-hand side of (31) is smaller than

1, i.e., if γ∗k(ωN ) ≤ T−k

√
δ

(
εMT
√

(cλ̄)n−1

2

)
. We can then conclude that the underlying system is

stable, with probability 1−β over the data. The drawback of this approach that we need to estimate
c, for which we need some a-priori knoweldge on the underlying system. Another option is to use
Theorem 4: we choose ε, ε

′
such that β = φ(ε̄; d,N) − (1 − ε)N − (1 − ε′)N and then we check if

γ∗k(ωN ) ≤ T−k

√
δ

(
ε̄MT (ψε,ε′ (ωN ))

n−1
√

(P∗(ωN ))n−1

2

)
. If the latter is the case, then the underlying

system is stable with probability 1 − β over the sampled data. Note that P ∗(ωN ) is computed at
the same time as γ∗k(ωN ), when (9) is solved.

5 Numerical examples

In this section, we illustrate the performance of the proposed approach on numerical examples.
To show the advantages of our approach, we make a comparison with the identification-based
approach in which we identify the model using hybrid system identification techniques and analyze
the stability based on the model. Our codes are available via https://github.com/zhemingwang/

DataDrivenStabilityAnalysis, and all experiments are run on a MacBook Pro with an Intel
Core i7 and 16 GB of RAM.
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5.1 Comparison with hybrid system identification

To analyze properties of the system, a natural idea is to first identify a dynamical model which
then allows us to use well-documented model-based techniques. For hybrid systems, there also
exist many identification techniques, see, e.g., [14, 15]. In the comparison, we consider switched
auto-regressive models, which are quite popular in hybrid system identification, see, e.g., [16]. For
stability analysis, we convert the switched auto-regressive model into its state-space form using
the transformation described in [51] and compute the JSR of the augmented model using the JSR
toolbox [52]. Note that the equivalence between switched affine models and switched ARX models
has been proved in [51] under the pathwise observability condition. In particular, let us emphasize
that such a conversion preserves internal stability under the pathwise observability condition.
The key step in the identification procedure is clustering where we group or label the output
trajectories. For each group, we then estimate the parameters of its auto-regressive model by
solving a least-square problem. A few clustering algorithms that we use in the simulation are the
following: Generalized Principal Component Analysis (GPCA) [53], Sparse Subspace Clustering
(SSC) [54], Sparse Subspace Clustering by Orthogonal Matching Pursuit (SSC-OMP), [55], Elastic
net Subspace Clustering (EnSC) [56], and Piecewise Affine Regression and Classification (PARC)
[57].

The numerical example is a three-dimensional switched linear system with 3 modes and 2
outputs. We then generate an output data set of length T = 5 and set k = 3 in (7). The
order of the auto-regressive models is set to be k and the maximal number of groups in the
clustering algorithms is set to be Mk−1. The results are given in Figure 2, which shows the JSR
estimation of our approach and the identification-based approach for different clustering algorithms
as the number of data points increases. From this figure, we can see that the modeling error in
hybrid system identification can lead to a false stability inference. Note that more data does
not necessarily result in more accurate system identification from an algorithmic point of view,
especially when there is a clustering step in the whole procedure. This is supported by Figure 2 as
the JSR estimation can become worse as N increases. In contrast, our approach is guaranteed to
provide better JSR estimation as N increases. Another practical issue of the identification-based
approach is that in the clustering algorithms there are some parameters that need to be tuned
carefully. We also make a comparison with the two standard clustering algorithms GPCA and
SSC in terms of computational time in Table 1.

N 500 1000 1500 2000

Our approach 22.08 50.53 61.18 62.48

GPCA
Tid 4.92 40.46 137.90 256.27

TJSR 15.42 32.93 14.22 5.19

SSC
Tid 894.20 2550.08 3554.40 5015.54

TJSR 67.90 124.18 67.10 120.97

Table 1: Computational time (second) for different algorithms: Tid denotes the compu-
tational time for the identification step and TJSR denotes the computational time for
computing the JSR using the model.

5.2 A six-dimensional example

We also apply the proposed data-driven approach to a higher-dimensional example. We consider
a switched linear system with n = 6,M = 3, p = 2 where the entries of the dynamics and output
matrices are chosen randomly from the uniform distribution over [−1, 1]. We then sample a finite
set of initial states following the Gaussian distribution N (0, I) and project them onto the unit
sphere. In this way, we obtain a set of initial states that are uniformly distributed on the unit
sphere. With this data set, we formulate Problem (9) with k = 3. This is a valid option as it can
be verified that the system is pathwise observable with the pathwise observability index H(Σ) = 2.
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Figure 2: Comparison with the identification-based approach using different hybrid system
identification algorithms.

When the information of H(Σ) is not available, we use the procedure in Section 4.2 to estimate
H(Σ). Finally, we are ready to solve Problem (9). The simulation results are given in Figure 4
for different values of horizon length T . As expected, γ∗(ωN ) gradually approaches the true JSR
(which can be obtained from the JSR toolbox [52]) as N and T increase.

6 Conclusions

In this paper, we have studied the problem of output-based stability learning of a special family
of hybrid systems, namely switched linear systems, using a time-series output data set. We
leverage a recently introduced approach for state-based data-driven stability analysis. However,
the fact that only a (possibly low-dimensional) output is observed incurs additional theoretical
challenges that we tackle here. With the proposed output-based Lyapunov framework, we are
able to derive probabilistic stability certificates for partially observed switched linear systems.
We have also presented additional procedures which allow to use explicit upper bounds on the
JSR of switched linear systems. To validate our approach, we have made a comparison with the
identification-based approach in which a model is identified using existing clustering algorithms in
the literature. Numerical results suggest that it is beneficial to use our direct analysis approach
as modeling errors can lead to false stability inferences.
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Figure 3: Estimates of ξok for different values of k.

Appendix

A1 Proof of Theorem 2

Since Σ is pathwise observable, PσσσΣ(P, 0, k) � 0 and PσσσΣ(P, `, k) � 0 for any σσσ ∈ Mk+`. We pick
an arbitrary σσσ ∈Mk+` and consider the Cholesky decompositions of PσσσΣ(P, 0, k) and PσσσΣ(P, `, k):

U>U = PσσσΣ(P, 0, k), Ũ>Ũ = PσσσΣ(P, `, k),

where U ∈ Rn×n and Ũ ∈ Rn×n are upper triangular matrices. Hence, by the change of coordi-
nates, (24) becomes

(ŨAσσσ0:`−1
U−1x)>ŨAσσσ0:`−1

U−1x

≤γ2`x>x, ∀x ∈ U(Sn−1 \ S). (45)

The homogeneity of the dynamics implies that

(ŨAσσσ0:`−1
U−1x)>ŨAσσσ0:`−1

U−1x

≤γ2`x>x, ∀x ∈ ΠSn−1
(U(Sn−1 \ S)) , (46)

where ΠSn−1(·) denote the projection onto Sn−1. Equivalently, we can write (46) as

(ŨAσσσ0:`−1
U−1x)>ŨAσσσ0:`−1

U−1x

≤γ2`x>x, ∀x ∈ Sn−1 \ΠSn−1
(US) . (47)

Following the same arguments in Theorem 15 in [25], we obtain that

ŨAσσσ0:`−1
U−1Sn−1 ⊂

γ`

δ
(
µ(S)χ(PσσσΣ(P,0,k))

2

)Bn. (48)

An illustration of the function δ(·) is given in Figure 1. Hence, it holds that(
ŨAσσσ0:`−1

U−1
)>

ŨAσσσ0:`−1
U−1

� γ2`

(δ
(
µ(S)χ(PσσσΣ(P,0,k))

2

)
)2
I, (49)
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Figure 4: Data-based convergence rates for different horizon lengths.

which implies that

A>σσσ0:`−1
PσσσΣ(P, `, k)Aσσσ0:`−1

� γ2`

(δ
(
µ(S)χ(PσσσΣ(P,0,k))

2

)
)2
PσσσΣ(P, 0, k). (50)

As σσσ is chosen arbitrarily, the inequality above holds for any σσσ ∈ Mk+`. Note that the function
δ(·) is non-increasing. Therefore, with the definition of χΣ(P, k) as in (26), we arrive at

A>σσσ0:`−1
PσσσΣ(P, `, k)Aσσσ0:`−1

� γ2`

(δ
(
µ(S)χΣ(P,k)

2

)
)2
PσσσΣ(P, 0, k),∀σσσ ∈Mk+`. (51)

Finally, from Theorem 1, we arrive at (25).

A2 Proof Theorem 3

To simplify the notation, we drop the subscript k in (γ∗k(ωN ), P ∗k (ωN )) in the proof. We use
the scenario approach to derive a probabilistic upper bound on the JSR via geometric analysis,
following [25, 26]. From Theorem 6 in [26], the chance-constrained theorem in [31, 32] is applicable
and we obtain that for any ε ∈ (0, 1),

PN{ωN : P{V (ωN )} > ε} ≤ φ(ε; d,N),

where

V (ωN ) :={(x,σσσ) ∈ Sn−1 ×MT :

x>A>σσσ0:`−1
PσσσΣ(P ∗(ωN )), T − k, k)Aσσσ0:`−1

x

>(γ∗(ωN ))2(T−k)x>PσσσΣ(P ∗(ωN ), 0, k)x}.
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For any σσσ ∈ MT , let V σσσ(ωN ) := {x ∈ Sn−1 : (x,σσσ) ∈ V (ωN )}. With this definition, we claim
that, for any σσσ ∈MT x ∈ Sn−1 \

⋃
σσσ∈MT V σσσ(ωN )

x>A>σσσ0:`−1
PσσσΣ(P ∗(ωN )), T − k, k)Aσσσ0:`−1

x

≤(γ∗(ωN ))2(T−k)x>PσσσΣ(P ∗(ωN ), 0, k)x

Note that in the worst case, the sets {V σσσ(ωN )} are disjoint. When P{V (ωN )} ≤ ε, µ(
⋃
σσσ∈MT V σσσ(ωN )) ≤

εMT , where µ(·) denotes the (probability) uniform measure on Sn−1. From Theorem 2, we con-
clude that, with probability no smaller than 1− φ(ε; d,N), (29) holds.

A3 Proof of Proposition 1

Proof: (i) Given β ∈ (0, 1) and ε > 0, from Corollary 3, we look for a N such that η(β,N) ≤ 1+ε,
which is equivalent to

φ(
I(1− 1

(1+ε)2(T−k) ; n−1
2 , 1

2 )

K2
, d,N) ≤ β (52)

where K2 = MTχ(Q)
√

(cλ̄)n−1. Hence, (35) holds. We then show that N (ε, β) = O
(

1
β

1

ε
n
2

)
as

ε→ 0. To do so, we first show that φ(ε; d,N) can be explicitly bounded from above by d
ε(N+1) for

any ε ∈ (0, 1) and any N ∈ Z+. This can be verified using the following manipulations:

φ(ε; d,N)
d

ε(N+1)

=

∑d−1
i=0

(
N
i

)
εi(1− ε)N−i
d

ε(N+1)

=

d−1∑
i=0

i+ 1

d

(
N + 1

i+ 1

)
εi+1(1− ε)N−i

≤
d∑
i=1

(
N + 1

i

)
εi(1− ε)N+1−i

≤ φ(ε; d+ 1, N + 1) ≤ 1. (53)

This means that

Nφ(ε, β) ≤ d

βε
. (54)

We then show that I(x; n−1
2 , 1

2 ) ≥ K1x
n
2 , where I(x; a, b) is defined as in (23) and K1 =

4
n∫ 1

0
t
n−3

2 (1−t)−
1
2 dt

, as follows

I(x;
n− 1

2
,

1

2
) =

∫ x
0
t
n−3

2 (1− t)− 1
2 dt∫ 1

0
t
n−3

2 (1− t)− 1
2 dt

=

∫ x
0
t
n−2

2
1

(t(1−t))
1
2
dt∫ 1

0
t
n−3

2 (1− t)− 1
2 dt

≥
2
∫ x

0
t
n−2

2 dt∫ 1

0
t
n−3

2 (1− t)− 1
2 dt

= K1x
n
2 , (55)
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where the inequality is due to the fact that t(1− t) ≤ 1
4 . Combing (54) and (55) yields

Nφ(
I(1− 1

(1+ε)2(T−k) ; n−1
2 , 1

2 )

MTχ(Q)
√

(cλ̄)n−1
, β)

≤ K2d

βI(1− 1
(1+ε)2(T−k) ; n−1

2 , 1
2 )

≤ K2d

βK1(1− 1
(1+ε)2(T−k) )

n
2

=
K2d

K1β

(1 + 1
ε )n(T−k)(

(1 + 1
ε )2(T−k) − ( 1

ε )2(T−k)
)n

2
.

By some manipulations, we get that Ns(ε, β) ≤ K2d
K1β

( 1
ε )

n
2 as ε → 0, which can be equivalently

expressed as (36). This completes the proof.
(ii) From the definition of sample complexity in Definition 5, it holds that PN{ωN : γo > (1 +
ε)γ∗(ωN )} ≤ β for any N ≥ Ns(ε, β). The fact that ρ(Σ) > 1 implies that γo > 1. With this, it
can be verified that {ωN : γ∗(ωN ) < 1

1+ε} ⊆ {ωN : γo > (1 + ε)γ∗(ωN )}, which implies (37).

A4 Proof of Proposition 2

When k ≥ H(Σ), rank (OΣ(σσσ)) = n for any σσσ ∈ Mk. Hence, ξok is bounded. (Necessity) The
proof goes by contradiction. Suppose there exists k < H(Σ) such that ξok < ∞. From the
definition of H(Σ), there exists at least one sequence σ̃σσ ∈ Mk such that rank (OΣ(σ̃σσ)) < n.
The fact that ξok < ∞ implies that OΣ(σ̃σσ)x = 0 implies OΣ(σσσ)Aσ̃σσx = 0 for any σσσ ∈ Mk. In
particular, OΣ(σ̃σσ)x = 0 implies OΣ(σ̃σσ)Aσ̃σσx = 0. Then, there exists a matrix G ∈ Rpk×pk such
that OΣ(σ̃σσ)Aσ̃σσ = GOΣ(σ̃σσ), i.e., each row of OΣ(σ̃σσ)Aσ̃σσ can be written as a linear combination of
the rows in OΣ(σ̃σσ). As a result, the periodic sequence σ̃σσσ̃σσ · · · is unobservable, which contradicts
the fact that Σ is pathwise observable.

A5 Proof of Theorem 4

To prove Theorem 4, we first state the following bound on the singular value of the observability
matrices.

Lemma 1 Consider the same conditions as in Theorem 3. Then, for any ε ∈ (0, 1) and ε′ ∈ (0, 1),
with probability no smaller than 1− (1− ε)N − (1− ε′)N ,

maxσσσ∈Mk σmax(OΣ(σσσ))

minσσσ∈Mk σmin(OΣ(σσσ))
≤ ψ(ωN ) (56)

Proof: Since only the first k steps of the trajectory are relevant, we only consider the sample set
ωN of length k. The proof consists of three steps:
Step 1: We consider the robust optimization problem below:

min
ζ≥0

ζ : ‖OΣ(σσσ)x‖ ≤ ζ,∀(x,σσσ) ∈ Sn−1 ×Mk. (57)

The optimum is exactly maxσσσ∈Mk σmax(OΣ(σσσ)). We want to show that the solution ζk(ωN ) in
(42) provides a probabilistic upper bound for Problem (57). To do so, we show the following
chance-constrained result, given an ε ∈ (0, 1),

PN{ωN : Ω(ζk(ωN )) > ε} = (1− ε)N (58)

where Ω(ζ) := P{(x,σσσ) ∈ Sn−1×Mk : ‖OΣ(σσσ)x‖ > ζ}. The function Ω : [0,maxσσσ∈Mk σmax(OΣ(σσσ)))→
[0, 1] is decreasing. Hence, there exists a unique ζ such that Ω(ζ) = ε, denoted by ζε. With this,
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the set {ωN : Ω(ζk(ωN )) > ε} can be equivalently expressed as {ωN : ωN ∩ {(x,σσσ) : ‖OΣ(σσσ)x‖ ≥
ζε} = ∅} (whose measure is (1 − ε)N ), which leads to (58). Let us define the projected violating
subset S̃ as follows:

S̃ := {x ∈ Sn−1 : ∃σσσ ∈Mk, ‖OΣ(σσσ)x‖ > ζk(ωN )}.

For any σσσ ∈Mk, we also define:

S̃σσσ := {x ∈ Sn−1 : ‖OΣ(σσσ)x‖ > ζk(ωN )} (59)

By definition, S̃ = ∪σσσ∈Mk S̃σσσ, which implies that

Px{S̃} ≤
∑
σσσ∈Mk

Px{S̃σσσ} (60)

where Px denotes the uniform probability measure on Sn−1 and the equality holds when the sets
{S̃σσσ}σσσ∈Mk are disjoint. With the inequality above, we get that

Ω(ζk(ωN )) =
∑
σσσ∈Mk

Px{S̃σσσ}Pσ{σσσ} =
1

Mk

∑
σσσ∈Mk

Px{S̃σσσ}

≥ 1

Mk
Px{S̃} (61)

where Pσ denote the uniform distribution on Mk. This means that Ω(ζk(ωN )) ≤ ε implies
Px{S̃} ≤Mkε. Hence,

PN{ωN : Px{S̃} ≤ εMk} = (1− ε)N (62)

from (58). Finally, following the same lines as the proof of [25, Theorem 15], we conclude that,
with probability no smaller than 1− (1− ε)N ,

max
σσσ∈Mk

σmax(OΣ(σσσ)) ≤ ζk(ωN )

δ( εM
k

2 )
. (63)

Step 2: Similarly, we define the following robust optimization problem:

max
ζ≥0

ζ : ‖OΣ(σσσ)x‖ ≥ ζ,∀(x,σσσ) ∈ Sn−1 ×Mk. (64)

As the constraint above is not convex in x, we cannot repeat the same reasoning in (i). Neverthe-
less, it still holds that the optimum of (64) is minσσσ∈Mk σmin(OΣ(σσσ)), which can be attained, i.e.,
there exists (x∗,σσσ∗) such that

‖OΣ(σσσ∗)x∗‖ = min
σσσ∈Mk

σmin(OΣ(σσσ)).

For any ε ∈ (0, 1), we define the set S̄ := {x ∈ Sn−1 : |x>x∗| ≥ δ( εM
k

2 )} with Px{S̄} = εMk. The
probability that ωN ∩ S̄ × {σσσ∗} 6= ∅ is 1 − (1 − ε)N . In this case, there exists (x̄, σ̄σσ) ∈ ωN such

that σσσ = σσσ∗ and |x̄>x∗| ≥ δ( εM
k

2 ), which implies that ‖x̄ − x∗‖ ≤
√

2− 2δ( εM
k

2 ) or ‖x̄ + x∗‖ ≤√
2− 2δ( εM

k

2 ). From the definition in (42), ‖OΣ(σ̄σσ)x̄‖ ≥ ζ
k
(ωN ). We then consider the case

that ‖x̄− x∗‖ ≤
√

2− 2δ( εM
k

2 ) (the analysis is exactly the same for the other case). With these

relations, it holds that

‖OΣ(σσσ∗)x∗‖ = ‖OΣ(σσσ∗)(x̄+ x∗ − x̄)‖
≥ ‖OΣ(σσσ∗)x̄‖ − ‖OΣ(σσσ∗)‖x∗ − x̄‖

≥ ζ
k
(ωN )− max

σσσ∈Mk
‖OΣ(σσσ)‖

√
2− 2δ(

εMk

2
).

20



Based on this inequality, we conclude that, with probability no smaller than 1− (1− ε)N ,

min
σσσ∈Mk

σmin(OΣ(σσσ)) ≥ζ
k
(ωN ) (65)

− max
σσσ∈Mk

‖OΣ(σσσ)‖
√

2− 2δ(
εMk

2
).

Step 3: We now combine the results from Steps 1 & 2. From Step 1, for any ε ∈ (0, 1), the
probability that (63) does not hold is less than (1 − ε)N . From Step 2, for any ε′ ∈ (0, 1) the
probability that (65) with ε′ does not hold is also less than (1− ε′)N . Hence, the probability that
(63) or (65) does not hold becomes (1 − ε)N + (1 − ε′)N , which means that the probability that
both of (63) and (65) hold is no smaller than 1 − (1 − ε)N − (1 − ε′)N . Thus, (56) holds with
probability no smaller than 1− (1− ε)N − (1− ε′)N . �

From the arguments in the proof of Corollary 2, it holds that

χΣ(P, k) ≤
√

(c2kκ(P ))
n−1

where

ck =
maxσσσ∈Mk σmax(OΣ(σσσ))

minσσσ∈Mk σmin(OΣ(σσσ))
.

This, together with Theorem 3, and Lemma 1, leads to the result in Theorem 4.
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