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PAC-Bayesian bounds for learning LTI-ss systems with input from
empirical loss

Deividas Eringis*, John Leth, Zheng-Hua Tan, Rafal Wisniewski, Mihaly Petreczky

Abstract— In this paper we derive a Probably Approxilmately
Correct(PAC)-Bayesian error bound for linear time-invariant
(LTI) stochastic dynamical systems with inputs. Such bounds
are widespread in machine learning, and they are useful for
characterizing the predictive power of models learned from
finitely many data points. In particular, with the bound derived
in this paper relates future average prediction errors with the
prediction error generated by the model on the data used
for learning. In turn, this allows us to provide finite-sample
error bounds for a wide class of learning/system identification
algorithms. Furthermore, as LTI systems are a sub-class of
recurrent neural networks (RNNs), these error bounds could
be a first step towards PAC-Bayesian bounds for RNNs.

I. INTRODUCTION

Linear time invariant (LTI) state-space models have been
widely used in control and econometric applications to model
time-series and have rich literature on learning (classically
called identification)[/1].

In this paper, we present PAC-Bayesian type bounds on
learning LTI systems from data generated by LTI system
driven by zero-mean, i.i.d., Gaussian or sub-Gaussian noise.

The Probably Approximately Correct (PAC)-Bayesian
framework, provides theoretical guarantees (with arbitrary
high probability) on the difference between learning from
infinite amount of data, and learning from finite empirical
data, see [2]-[8].

Motivation PAC and PAC-Bayesian bounds have been a
major tool for analyzing learning algorithms. They provide
bounds on the generalization error in terms of the empirical
error, in a manner which is independent of the learning
algorithm. Hence, these bounds can be used to analyze and
explain a wide variety of learning algorithms. Moreover, by
minimizing the error bound, new, theoretically well-founded
learning algorithms can be formulated. In particular, PAC-
Bayesian error bounds turned out to be useful for providing
non-vacuous error bounds for neural networks [9].

While there is a wealth of literature on PAC [1(0] and
PAC-Bayesian [2], [3], bounds for static models, much less
is known on dynamical systems.

Traditionally, the literature on LTI systems [1] has focused
on statistical consistency. More recently, several results have
appeared on finite-sample bounds for learning LTI systems,
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but they are valid only for specific learning algorithms or for
very limited subclasses [11]-[13],

Contribution In this paper we consider stochastic LTI
state-space representations (LTI systems for short) in innova-
tion form. In accordance with the standard practice in system
identification, we view stochastic LTI systems as predictors,
which take past inputs and outputs and generate predictions
for the current output. We assume that the data used for
learning (system identification) are generated by stochastic
LTT systems in innvation form too. Learning/identifying an
LTT system is then amounts to finding the best predictor, i.e.,
the predictor which results in the smallest prediction error for
the training data, i.e., in the smalled empirical loss However,
for decision making (fault detection,control, etc.), the quality
of the learned model is determined by the generalization
error, i.e., the average prediction error for future, unseen
data. The PAC-Bayesian bound of this paper says that with
a high probability (probability 1 —4), the generalization error
is smaller than the empirical loss plus a an error term. The
error term depends on the number of data points /N and on
parameter (learning rate A). In this paper we provide explicit
formulas for the error term. We show that the error term
converges to a constant as N — oco. The constant depends
on the confidence level § and the distance between prior
and posterior densities on models. If we assume that the
data used for learning is generated by an LTI system with
bounded noise, we can show that the error term converges
to 0 as N — oo. The rate of convergence is O(\/—lﬁ), which
is consistent with most of finite-sample bounds available
in the literature for various, not necessarily LTI, models.
This suggests that the obtained error bound is likely to be
asymptotically sharp for bounded signals.

Related work The related literature can be divided into

the following categories.
Generalization bounds for RNNs. PAC bounds for RNN
were developed in [14]-[16] using VC dimension, and in
[16], [17] using Rademacher complexity, and in [18] us-
ing PAC-Bayesian bounds approach. However, all the cited
papers assume noiseless models, a fixed number of time-
steps, that the training data are i.i.d sampled time-series, and
the signals are bounded. In contrast, we consider (1) noisy
models, (2) prediction error defined on infinite time horizon,
(3) only one single time series available for training data, and
(4) unbounded signals. Moreover, several papers [14], [15],
[19] assume Lipschitz loss functions, while we use quadratic
loss function.

Finite-sample bounds for system identification of LTI
systems. Guarantees for asymptotic convergence of learning
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algorithms is a classical topic in system identification [1].
Recently, several publications on finite-sample bounds for
learning linear dynamical systems were derived, without
claiming completeness [[11/], [13], [20]-[26]. First, all the
cited papers propose a bound which is valid only for models
generated by a specific learning algorithm. In particular,
these bounds do not relate the generalization loss with the
empirical loss for arbitrary models, i.e., they are not PAC(-
Bayesian) bounds. This means that in contrast to the results
of this paper, the bounds of the cited papers cannot be use
for analyzing algorithms others than for which they were de-
rived. Second, many of the cited papers do not derive bounds
on the infinite horizon prediction error. More precisely, [13],
[22], [25]-[27] provided error bounds for the difference of
the first 7' Markov-parameters of the estimated and true
system for a specific identification algorithm. However, in
order to characterize the infinite horizon prediction error, we
need to take 7' = co. For T = oo the cited bounds become
infinite, i.e., vacuous. In addition, in contrast to the present
paper, [13], [20], [26] deals only with the deterministic part
of the stochastic LTI, [25] deals only with the stochastic part.

PAC-Bayesian bounds for state-space representation.
In [28] learning of stochastic differential equations without
inputs was considered and it was assumed that several in-
dependently sampled time-series were available for learning.
In contrast, in this paper we deal with discrete-time systems
with inputs and the learning takes place from a single
time-series. In [29] learning of general Markov-chains was
considered, but the state of the Markov-chain was assumed
to be observable and no inputs were considered. The learning
problem of [29] is thus different from the one considered in
this paper.

In [30] PAC-Bayesian error bounds were developed for
autonomous LTI state-space systems without exogenous in-
put. In contrast to [30], in the current paper we consider
systems with exogenous inputs. Moreover, the error bound
of this paper is much tighter than that of [30]: in contrast
to [30], with the growth of the number of observations, the
error bounds of this paper converge either to zero (in the
case of bounded innovation noise) or to a constant involving
KL-divergence. Finally, the proof technique is completely
different from that of [30Q].

Paper Outline We start by defining the problem formu-
lation in Section Il where all the assumptions and impor-
tant quantities are defined. Then we will discuss the PAC-
Bayesian framework in Section then we will present the
main results of the paper in Section [IV] then we will present
some auxiliary results for systems driven by bounded noise in
Section [V] We will finish off with a short numerical example
in Section[VIl Finally, we will have the conclusion in Section

II. PROBLEM FORMULATION
Notation and terminology

We occasionally use = to denote “defined by”. Let F
denote a o-algebra on the set 2 and P be a probability
measure on F. Unless otherwise stated all probabilistic

considerations will be with respect to the probability space
(Q,F,P), and we let E(z) denote expectation of the stochas-
tic variable z. We use bold face letters to indicate stochastic
variables/processes. Each euclidean space is associated with
the topology generated by the 2-norm || - ||, and the Borel
o-algebra generated by the open sets. The induced matrix
2-norm is also denoted || - ||2. We say that a random variable
z taking values in R" is essentially bounded, if for some
constant C' > 0, ||z||2 < C holds with probability one.

A stochastic linear-time invariant (LTI) systems with in-
puts in state-space form [31, Chapter 17] is a dynamical
system of the form

x(t + 1) = Ax(t) + Bu(t) + v(t),
y(t) = Cx(t) + Du(t) + n(t)

defined for all ¢t € Z, where A,B,C,D are n X n,
n X Ny, ny X n and ny, X n, matrices respectively, A is
a Schur matrix (a square matrix with all its eigenvalues
inside the unit disk), v,n are zero-mean Gaussian i.i.d
processes, u, X, are zero-mean stationary Gaussian processes,
u(t) and [nT(t),VT(t)}T are independent, and x(t) and
[VT(t),nT(t)]T are independent. The process x is called
the state process, v is called the process noise and 7 is the
measurement noise. If B, D are absent from (1), then we say
that is an autonomous stochastic LTI system

Let us fix stochastic processes y(t) € R™, and u(t) €
R™ that share a time axis t € Z, that is, for any ¢t € Z,
y(t): Q = R%;w— y(t)(w), and u(t) : @ = R w —
u(t)(w) are random vectors on (2, F,P). The goal is to
estimate y(¢) from current and past values of u(t), for this
we need a structure connecting y(¢) and u(t), thus we have

Assumption 2.1: Let y(t) and u(t) be generated by an
autonomous stochastic LTI system

ey

x(t+1) = Agx(t) + Kye4(t), (2a)
y)| _ o
L( t)} = Cyx(t) + e4(1) (2b)

where A, € R™*" K, € R"™*™ C, € R™*" for n > 0,
m = ny+n, > 2 and X, y and e, are stationary, zero-mean,
and jointly Gaussian stochastic processes. Furthermore, we
require that A, and A, — K,C, are Schur (all its eigenvalues
are inside the open unit circle), that e,(¢) is white noise
uncorrelated with x(¢ — k), with covariance E[e,(t)el (t)] =
(e, and that e, is the innovation process (see [31] for
definition) of [y” uT]T. We identify the system @) with
the tuple Sye, = (Ay, Ky, Cy, 1);
Note: For learning, we assume to have the training data
set Dy = {{y(s),u(s)}}2', ie. a single trajectory
of [yT(t),u”(t)]”, but no knowledge of the matrices
Ay, K4, Cy and noise process e,. The system (@) only
defines the assumptions on the data generating process.
The goal is to use the past and present of u(t), or past
of y(t), to estimate y(t). Note that y and u are stationary
processes by [32, Theorem 1.4]. Moreover, from classical
theory of LTI systems it follows that y(¢) and u(t), t € Z are



essentially bounded if the noise e,(s) is essentially bounded
forall s € Z
That is we wish to consider LTI predictors,
x(t+1) = A%(t) + Bu(t) + Ly(t), %(0) =0
y(t) = Cx(t) + Du(t)

(3a)
(3b)

where matrices /1, B , ﬁ, C , D are of appropriate size, and A
is Schur (all its eigenvalues are inside the unit disk).

Note: In this paper, we will allow a more general form
of predictors, where L can be set to 0, i.e. we may wish
to estimate y(¢) only from measurements u(t), when past
values of the process y(t) is not available. In order to
accommodate this let us define a stochastic process w(t) €
R™_ by two cases

o w(t)=[y"(t) uT(t)]T, Nw = Ny + Ny

e W(t) =u(t), nw = ny
Note that, one can define w(t), to consist of some of the
components of y(t), i.e. w(t) does not need to contain all
of y.

Class of predictors (hypotheses) In this paper, we will
be interested in the following hypothesis class, consisting of
predictors realizable by LTI systems.

Assumption 2.2 (Parameterised hypothesis class): The

hypothesis class F is a parametrized set of LTI predictors,
with £(0) = (A(8), B(6), C(6), D(6)):

%(t+1) = Ax(t) + Bw(t), %(0) =0,
ooy ({W(s)}Yim) = CX(t) + Dw(t).

F={fs@ | 1(A(0) <1, 6 € ©}

(4a)
(4b)

with v(A(6)) the spectral radius of A(f), i.e. the largest
modulus of eigenvalues of A(0). Set © C R is a compact
set, and A(0),B(0),C (), D() are continuous functions of
6 taking values in the sets of 7 X 7, 7L X Ny, Ny X 7 and
ny X n,, matrices respectively. If w(t) = [y” (¢),u? (¢)]7,
then D = [0, Dy] for some n,, x n,, matrix Dy, i.e., Dw(t)
depends only on u(t).

We will identify the system (@) with the tuple (A, B, C, D).
For the sake of notation, throughout the paper we will use
[, to denote fxg), for some arbitrary ¢ € ©.

Under assumption 2.2} we can use probability densities on
the set of predictors F. The latter will be essential for using
the PAC-Bayesian framework.

Next, we define the notions of empirical and generalization
loss for predictors which are realized by LTI systems.

Assumption 2.3 (Quadratic loss function):

We will consider quadratic loss functions £ : R™ x R™ 3
W.y) = lly =y 13 = —y) (y—y) € [0,00).
The empirical loss of a predictor for the data Dy =
{y(t), w(t)}¥, is defined as follows: we define the random
variable

yr(t]s) = flw(s),...

,w(t))

IThe latter assumption is necessary, since otherwise we would be using
the components of y(¢) to predict y(¢), which is not meaningful.

which represents the estimate of y(t¢) based on random vari-
ables {w(s),...,w(t)} . The empirical loss for a predictor
f and processes (y,w) is defined by

. 1 N—-1
Ln(f) 2 5 D U350 10),y(), ®)
i=0

The definition of the generalization loss is a bit more
involved. Namely, we are using varying number of inputs for
predictions and hence the expectation E[{(y (¢ | 0),y(¢))]
depends on ¢. This will hold true even if the processes y and
w are stationary. Note that this issue is specific for state-
space models: autoregressive models always use the same
number of inputs to make a prediction, see Remark 2.1l In
this paper we will opt for looking at the case when the size
of the past used for the prediction is infinite. To this end, we
need the following result from [33].

Lemma 2.1 ([33]):
The limit y7(¢t) = lims—,_o ¥ (¢ | $) exists in the mean-
square sense for all ¢, the process ys(t) is stationary, and
E[((3 (1), y(t))] = limas_oc E[E(F1(¢ | ), 3(1))]
This motivates us to introduce the quantity

L(f) =E[lys@),y®)] = Tim E[l(ys(]s),y(t)]

which is called the generalization loss of the predictor f
when applied to process (y, w).

Intuitively, y¢(¢) can be interpreted as the prediction of
y(t) generated by the predictor f based on all (infinite) past
and present values of w. As stated in Lemma[2.J] we consider
the special case when y;(t) is the mean-square limit of
yi(t | s) as s - —oo. Clearly, for large enough ¢ — s,
the empirical loss, is close to the generalization loss. In fact,
it is standard practice in learning dynamical systems [1] to
use L(f) as the measure of fitness of the predictor. With
these definitions in mind, the learning problem considered
in this paper can be stated as follows.

Problem 2.1 (Learning problem): Compute a predictor
f € F from a sample Dy = {y(t)(w), w(t)(w)}X, of the
random variables {y(t), w(t)}}', such that the generaliza-
tion loss £(f) is small.

Remark 2.1: Tt is known [1, Section 4.2] that the LTI
system (@) can be rewritten as an ARX model:

n n—1
Vr(tls) =D Ayt —ils)+ > miw(t—i)  (6)
=1 =0

At a first glance this is similar to classical ARX predictors,
where §(t) = S1_, ary(t — k) + 27— Biw(t — i) where
y is predicted based on the last n values of y and w.
However, in contrast to classical ARX models, in (@) we
do not use the past values of y, but the past values of the
prediction y . This difference has significant consequences,
in particular, it means that the previous results [34] do not
apply. Note that [35], [36] studied autoregressive models
without inputs (nonlinear AR models), so those results are
not applicable either. In fact, the problem of learning LTI
systems with inputs, or, which is almost equivalent, learning
LTI predictors, is essentially equivalent to learning ARMA



models, and the latter is much more involved than learning
ARX models.

ITII. PAC-BAYESIAN FRAMEWORK

Below we present the adaptation of the PAC-Bayesian
framework for LTI systems. To this end, let Bg be the o-
algebra of Lebesque-measurable subsets of the parameter set
© C R™, and m denote the Lebesque measure on R™. We
then define

Eo2 [ pOglfsdme) @
f~p 6€o
with p a probability density function on the measure space
(©, Bg,m), and g : F — R a map such that © 3> 0 — g(fo)
is measurable and absolutely integrable. The essence of the
PAC-Bayesian approach is to prove that for any density 7
on F, and any ¢ € (0,1],

P({w €Q|Vpe My EL(f) < ﬁ(w)}) >1-4, (8

with

k(w) = EﬁN(f)(w) +rN

f~p

M., the set of all absolutely continuous densities w.r.t 7, and
ry = ry(m, p,0) an error term. That is, the PAC-Bayesian
bound holds for every posterior p in M, simultaneously.

We may think of 7 as a prior distribution density function
and p as any candidate to a posterior distribution on the
space of predictors. The inequality (8) says that the average
generalization loss for models sampled from the posterior
distribution is smaller than the average empirical loss for the
posterior distribution plus the error terms 7.

A learning algorithm can be thought of as fixing a prior
7 and then choosing a posterior p for which k(w) is small.
Moreover, k(w) can be viewed as a cost function involving
the empirical loss and the regularization term 7. The
learned model is either sampled from the posterior density
p, or it is chosen as the one with maximal likelihood w.r.t.
p. Inequality (8) then gives guarantees on the generalization
loss of the learned model. For more details on using PAC-
Bayesian bounds see [3] For (8) to be useful, the term ry
should converge to a small constant, preferably zero, as
N — o0, and to be decreasing in J. The most common
way of expressing the error term 7y, is based on Donsker-
Varadhan’s change of measure [7, Theorem 3]:

1 . 1
TN =5 DKL(PHW)'FIHS'F‘I’W(/\N) ; 9

where A > 0 and Dxp,(p | m) 2 Ej;In 24 is the KL-
divergence between 7 and p, and

U, (A, N) 2 In By B[N —En ()] (10)

That is, r involves the KL-divergence and a free parameter
A. The density which minimizes x(w), with ry from @) is
known as the Gibbs-posterior [3] and it can be explicitly
computed, i.e.

paivws (f) £ Z 7 w(f) exp(—=ALn (£)),
Z é EfNﬂ- exp(—)\ﬁN(f)).

Y

The disadvantage of this approach is that it is difficult to
bound W, (A, N), since it involves bounding higher-order
moments

E[L(f) = Ln(f)]), reN

One can also use PAC-Bayesian bounds, in order to choose
the prior 7 or the hypothesis class F, s.t. the difference
between generalised loss and empirical loss is within some
acceptable level, i.e.

E¢p (L(f) - ﬁN(f)) <ry(A\,7m) <e

then it is only a matter of choosing 7, A\, F, s.t. ry (A, 7) < €,
after which one can proceed with more standard Bayesian
learning approach on just the empirical loss ﬁN( 1)

In the next section, we will apply a simple trick, which
will allow us to upper-bound higher-order moments.

12)

13)

IV. MAIN RESULTS

In this paper we derive PAC-Bayesian bounds (8) for LTI
systems. The main idea is to use the change of measure
inequality from [7, Theorem 3]. The major challenge is to
bound the corresponding moment generating function/higher-
order moments of (£(f)—Ln (f)). However this brings some
technical challenges. Namely, the processes involved are not
ii.d.. Moreover, they are not bounded, and the quadratic
loss function is not Lipschitz. In addition, the empirical loss
Ly (f) is not an unbiased estimate of the generalization loss
L(f). This is specific to state-space representations, for auto-
regressive models considered in [35]-[37)] this problem does
not occur. All these issues make it impossible to directly
apply existing techniques [35]-[37].

As the first step, temporarily we replace the empirical loss
Ln(f) by

(14)

where the finite-horizon prediction y;(¢ | 0) is replaced
by the infinite horizon prediction y¢(t) defined in Lemma
The advantage of Vi (f) over Ly (f) is that Vi (f) is
an unbiased estimate of the generalization loss L(f), i.e.,
E[Vn(f)] = L(f). Indeed, since y(t) —ys(t) is a stationary
process, E[||ly(i) — y¢(i)||3] = L£(f) does not depend on
i, and hence E[Viv(f)] = % 225" Ellly(i) = ys ()] =
L(f). hence, usual techniques for deriving error bounds
are easier to extend to Vi (f) than to £y (f). Moreover,
, from Lemma B.7 in Appendix B of the supplementary
material, it follows that £y (f) — Vi (f) converges to zero
as N — oo in the mean sense. In order to derive upper
bounds on the errors of the type (9), we will first derive
upper bounds of the type (), for L(f)—Vn(f), secondly we
will derive upper bounds for Vi (f) — Lx(f), then we will
combine them using union bound. Doing this might seem
counter-productive, however it is significantly easier to bound
moments, E[(L(f) — Vn(f))"], and E[(V () — Ln(/))"]

For every predictor f we define the following constants.



Definition 4.1 (Constants G;(f), G.(f)): Let
f = (A,B,C,D) be a predictor. Let Ay, K,,C, be
the matrices of the data generator from Assumption 21l
Define the matrices (A., K., Ce, D.) as D, = I — Do,

) me i) e[

Ae = [BC A B,

where Cy = [CT 3 }T and C1 has n, rows and Cy has n,,
rows; and (Cy, By, Dy) = (CQ, [O B] 0 f)}) if w=
u, and (vaéwvl/\)w) ( g» ) lf w = [yT uT]T
Choose for all f € F, M(f ) > 1, and

lemal
o7

(f) € (). 1),
such that || A*|ly < M(f)4*(f), with 4*(A) the spectral
radius of A. With these definitions,

GE(f):H(Aea Ke, Ce, De)”& éHDEHT"Z HCeAleCKe”2

k=0
Hzgen”& =1+ Z ”CgAlgc_lKglb
B k=0
Ggen = ”EgenH?l/LmaX(Qe)
5 S MIBICIH MIC|) Bl
G =\({1+]|D
1 = (141Dl + = )

The interpretation of the various terms appearing in Defini-
tion is as follows.

Remark 4.1 (Interpretation of constants):
The matrices A., K.,C., D, represent the LTI system
driven by the innovation process e, of (y©,w?T)T, output
of which is y — yy, i.e,

(¢ + 1)
y(t) —yst) =

The term Ggen depends only on the data generator system
@), and characterises the scaling of y,u

The term G/ (f) depends only the predictor f, and should
be interpreted similarly to ||(A, B, C, D)Hgl

Theorem 4.1: Let M, denote the set of all absolutely
continuous densities w.r.t w. Then for any density 7 on
hypothesis class F, any § € (0,1], and

= AK(t) + Keey(t),

CeX(t) + Deey(t) (15)

0<A< ( sup max{8(ny, + 1y)Ggen Gy (f),

feFr
6(7’Lu + Ny + 1)nyﬂmax(Qe)Ge(f)2}) )

the following inequality holds with probability at least 1 — 26

(16)

Vp e My o EppL(f) < Eppn(f) + (A N),

A7)

with

1— v
+n5+

(@m(x, N) + Ty n(A, N))
(A, N)

Al
NESYES: [DKL (3llm) 0 N)} (18)
(19)

—In EfNﬂE[e/\(ﬂ(f)féN(f))]

and
Uo1(AN) L2 InEpor (1 + %Cl(f, /\)) (20)
oA N) 2 1InEfor <1+ \/1_ 5 (f, )) 1)
o 20m £ D) (6M1ttimax (Q2) G (1))
B TR N A
OQ(f, /\) Y ( )/\Ggent (f) (23)

1 — 8\Gyen Gy fﬁl

For proof of Theorem [4.1] see Proof in the Appendix.

Note that, as N — oo the PAC-Bayesian error vy —
1 (DkL(p|m) +1n (5)). That is, irrespective of p,m, the
error ry > 1 1n (1) Usually, one chooses A = A(N) as
an increasing function of N, which then allows the PAC-
Bayesian error to converge to 0. However, since by Theorem
A is bounded by a constant, we can not control the term
+In(5), and ry > 0 always.

Remark 4.2: Theorem holds under assumption
for any distribution of e4(t), as long as

e,4(t) € R™ is zero-mean, i.i.d.,
[He ‘2T] < 2T,Ufmax(Q€) (m +r— 1)"
. 0(7’) < 3Tumax(Qe) (m+4+r—1),
with

o(r) = sup E{lle(t, k, j)|2]
t,k,j

e(t,k,j) 2 e (t—j)] —eq(t —k)el (t - j)

That is, Theorem (.1 holds, for e, (), zero mean, i.i.d. with
any sub-gaussian distribution.

Eley(t — k)

V. BOUNDED CASE

If we drop the assumption that e,4(t) has a Gaussian
distribution, and only assume that e,4(t) is bounded, we get
quite straight-forward PAC-Bayesian bounds.

Assumption 5.1: e4(t) is a zero mean ii.d. stochastic
process, with arbitrary distribution, but for all components
e, (t) of e4(t) |eg,i(t)| < ce, for some c. > 0.

Theorem 5.1: Let M, denote the set of all absolutely
continuous densities w.r.t m. Under assumption it holds
true that for any density m on hypothesis class F, any
d € (0,1], and X > 0 the following inequality holds with
probability at least 1 — 29

Vpe Mg

EfpL(f) < Eppn(f)+Tn (A N)  (24)

with

fN(AvN)él

1
b\ |:DKL(p||7T) + In =

Ve, (AN
s+ Ten0 )|

(25)

~ 1/~ ~
Teoe W N) 2 2 (Fe, ma A N) + T, (A N))(26)

~ 1
\I]ceﬂr,l(/\a N) é ln EfNﬂ' (1 + Ne)\cgen’lGe(f)2) (27)

~ 1 _
e\ N) 2 1By (” N AL )
ey J \/N



and

Gen1 = 8¢2n,(ny + ny,) (29)

Ggen2 = £ 4”qun”€1 e(n’lj + nu) (30)
For proof of Theorem [5.1] see Corollary [A3] in the Ap-
pendix. Note that, in this case A is not bounded, and as such
we can choose A = A(N) an increasing function of N, in
order to control the term )\( 1n6 1. More specifically one
can choose

InvN

Supfe]—" maX{Ggen,l Ge(f)27 Ggen,2(_;f (f)} ’
(31)

A(N) =

for which, it can be shown that A= (N)¥ . . (A(N),N) —
0,and A~Y(N)Iné~! — 0. If one considers p independently
of \, then A™*(N)Dxky(p||r) — 0, however if one consid-
ers Gibbs posteriors (II), which do depend on ), then it
is hard to say what will happen with A=!(N)Dxr,(p||7).
Simulations seem to indicate that if A(/V) is any reasonable
increasing function of N, then A(N) will converge to some
problem dependant constant.

The bound above has all the desired properties, but its rate
of convergence to zero as N — o0 is very slow. In fact,
using [36], the results of Theorem can be sharpened as
follows.

Theorem 5.2: Let M, denote the set of all absolutely
continuous densities w.r.t m. Under assumption it holds
true that for any density m on hypothesis class F, any
d € (0,1], and X > 0 the following inequality holds with
probability at least 1 — 29

Vpe My:  Epo,L(f) < Eppn(£)+7n(AN)  (32)
with
é |:DKL p||7T +lng +\I/ce ()\,N):|
(33)
- !
Ve, N) 2 2 ( (A, N) + T (N, N)) (34)
LN £ By (1= Calf) + Caa($)ed @)
(35)
Ty(\N) 2 0B,y (6%02<f'>) (36)
and, with C' £ Cer/My T Ny,
C11(f) £ 2| Zgenlles CG2(f) (37)
Ch 2(f)éé ( )”EgenHélC (38)
Co(f) £ 8(Ge(f) + Gen(f)*C*(4G(f)C + 1) (39)

Gen 2 | Dellz + > (k + 1)||C.AFK|| (40)

k=0
For proof of Theorem [3.2] see Proof in the Appendix.
If Ay = VN is chosen, then the error bound 7~ (An) above
converges to zero as N — oo at a rate O( \/—%)

VI. NUMERICAL EXAMPLE

For the sake of illustration let us assume that data is
generated by

0.16 -0.3 0.33
x(t+1) = { 0 _0'05] x(t) + [ 0

y®)| _ |t 1

|:u(t):| = |:0 1 x(t) + eq(t),
Following the two theorems in the paper, we will consider
two cases

—0.75
_0'09} ey(t)

N(0,Qe),

» Unbounded innovation noise: e4(t) ~

0.054 0.018]

Qe = [0.018 0.248 “D

« Bounded innovation noise: e4(t) is distributed accord-
ing to zero-mean truncated gaussian, s.t. c. = 1, and

Eley(t)e) (1)] = Q. (42)

We will assume that the predictors are fully parameterised,
i.e. for the case of w(t) = u(t)

N 01 62| - ¢
A(o) = [93 94} B(9) = {gj
C(0) = [0 05] D(0) = [6o]

for the case of w(t) = [y (t),u (¢)]¥

Thus, with 2(0) = (A(0), B(9), C (), D(6)), we will define
our hypothesis class to be

F = {fuo)(A0)) < 1,Gf(f) < 10,0 € R"}
The prior is given by

m(f) = Zxexp(=Gy(f))

with Z, the normalisation term. This prior will act as
regularisation, penalising predictors with high ¢; norms. We
will use the Gibbs posterior

p(fIN) = Zym(f) exp(=A(N)Lx (f))

In order to compute the numerical value of ry, we can use
Markov-Chain Monte-Carlo methods, which means that we
only need to be able to evaluate

7(f) = exp(=Gy(f)) < 7(f)
p(f) = 7(f) exp(—ALn (f)) x p(f)

More precisely one can approximate rN, by only being able
to evaluate 7(f) and B(f) £ p(();)) o (f)

In Figure [I] we see the convergence of the error term,
for the case of bounded noise. Note that the proposed
function A\(N) is close to numerically optimal (blue line
in Figure [I), asymptotically A(N) o< In+/N, seem to be
optimal, one could try to find a less conservative scaling

9(F) < suppermax{Gyen1Ge(f)? Gen2Gy(f)}. For

(43)

(44)

(45)
(46)
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Fig. 1.  Numerical simulation of both cases (bounded and unbounded

noise), solid lines depict case of w = u, dashed lines show case of

w o= [yT,uT}T, A* is found by numerical optimisation, i.e. A\* =

arg miny rn (A, N), the black horizontal line denotes a vacuous bound
for the bounded noise case, i.e. any bounds above that line are vacuous

the proposed PAC-Bayesian bounds to be useful, the bounds
should convergence faster than O(ln\l/ﬁ)’ since in most
applications collecting N = 10'° data points is not feasible.
Note that for N < 460, for this system Theorem [5.1] yields
vacuous bounds, i.e. 7y > 2(C'sup;cr Ge(f))?. However
for Theorem only for N < 64, is the bound vacuous.

For the case of unbounded innovation noise, as stated
before we see in Figure 1] that it converges to a constant.
Unfortunately, since A is bounded not much can be done.
However, since the noise is unbounded it is difficult to
determine if the bound is vacuous.

VII. CONCLUSION

In this paper we have derived two PAC-Bayesian error
bounds for stochastic LTI systems with inputs. For data
generated by an LTI system with sub-gaussian noise, we
see that the difference between empirical and generalised
loss is bounded from below, which intuitively should not
be the case. Thus, more work needs to be done, to obtain
less conservative bounds, or use a difference approach, i.e.
one can derive PAC-Bayesian type bounds based on different
change of measure inequalities.

For data generated by an LTI system with bounded innova-
tion noise, we have that the difference between empirical and
generalised loss will convergence to 0, slowly at the rate of
O( ln\l/ﬁ)' That is the problem of minimising the empirical
loss, becomes equivalent to minimising the generalised loss,
at the aforementioned rate.

Future research will be directed towards extending these
results to more general state-space representations and using
the results of the paper for deriving oracle inequalities [3].
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APPENDIX
A. Proofs

In this section we provide the proofs of theorem and under the assumptions stated in the main text. To do so we
first prove a series of lemmas.
Lemma A.1: For random variable e4(t) ~ N (0, Q.), the following holds

E[leg(t)5] < ptmax(Qe) 2E[||2(1)]15]
z(t) ~ N(0,1),

where Q. = Eley(t)e] (t)], and fimax(Q.) denotes the maximal eigen value of Q..
N 1
Proof A.1 (Proof of Lemma[Al): First, note z(t) = Qe >€4(t), and

leg(t)]l5 = e (H)ey(t) = 2" (1)Q2 Q2 a(t) = 2" (1)Q.a(t)
therefore
I3

E[leg(t)[5] < ptmax(Qe) 2 E[]|2(1)]|5]

Finally, note that z(t)
Lemma A.2: If z(t)

N(0,1).
N(0, I,,,), then

~
~

E[|lz(t)[|5)]* < 4((m +r — 1))

Proof A.2 (Proof of Lemma [A2): First, notice that the distribution of ||z(t)||2 = /D>..-, zZ(¢) is chi- distribution, as
such
. I\(err)
E[|z(t)|5] = 22 ——= (A.47)
? r'(%)
We will use mathematical induction to prove the lemma.
For r = 0, lemma holds, since
o 1"(_+0) 2
E[||z(t)|]9)% = <22 F(;) ) =1<4(m-1)!, VmeN. (A.48)
2
for » = 1, lemma holds, as
F(_Jrl)
E[|2(1)]15] = 2% 2y
’ r'(3)
Notice that, for scalar x ~ N(0, 1)
p(u)
E k — 2% 2
bt =24 =—F

It is also known that

-, k even
therefore,
ok L) [ (k—1)1/2, kodd
VT (k—1)!, k even
Applying this to £k = m and k = m — 1, we obtain
s D) [m— 12, modd
VT (m —1)N, m even
ma D(5)

(m—2)!1y/2, (m—1) odd, (m even)
(m —2)!1, (m — 1) even, (m odd)



Now notice,

w D25
L oaD(mely PP m— 1)
E[ll=()])}] = 2t 2 = T _ .
LS
%, ™m even
Cm =
V3, modd
notice that ¢, < 2 for all m, and therefore
(m—1)!!
Blll2(t)l3] < 27—y < 20m = D!

Then
E[||z(t)|2]* < 4((m — 1))

(A.49)

Note that ((m—1)!1)2 < m!. We can see that by contradiction: assume that ((m—1)!!)2 > m!. Notice that m! = m!!(m—1)!!
and hence ((m—1)!")2 > m! implies (m —1)!! > m!l. As (m—1)!! must be less than m!! we have a contradiction. Therefore

((m — 1)!M2 < m! holds and we have
E[[lz(t)]|2]* < 4m!.

That is, we have shown that for » = 0 and r = 1 Lemma holds.
Now suppose that for all £ > 2 and forall 0 <r < k
r(™3r)

r'(3)

We will show that (A.50) holds for » = k£ + 1 too. To this end, notice that

m+k m+k—2 m+k—2 m+k—2
r() = () - ()

Using this relation we obtain
2 2
) ([ (T <2m+k—2>
(%) (%) 2

_ <2’32F(1%k;2)>2 (2m+2k_2)2.

Now k — 2 € [0, k], so we can apply to it the induction hypothesis. That is, for r = k& — 2, (A.30) holds, i.e.,

2%

<4(m+r—-1),

[SES

S T(57) _
<22 ED) )§4(m+7’—1)!—4(m+k—3)!.

2

and therefore

<2% F;é;”) < 4(m+k—3)! (47(7” + ’Z - 2)2>

=4(m+k—-3)!(m+k—-2)(m+k—2).

Using (m 4+ k —2) < (m + k — 1), it follows that
m+k—2
I'(3)

Substituting the last inequality into (A3T), it follows that (A.30) holds for r = k + 1.
Lemma A.3: For random variable z ~ N(0, I,,,), the even moments of ||z||2 are bounded by

E[|lz]3"] < 2"(m +r — 1)!

)> (2m+2k_2>2 <A(m4k—3)(m+k—2)(m+k—2) <dm+k—1)!

(A.50)

(A51)



Proof A.3 (Proof of Lemma [A3): Clearly ||z||2 has the chi distribution,

0% (%QT) TF(%""T)
Bl = 2% rrmy = r)
F(%+r):r(%+(r—1)+1):(T+(r—1))r(%+(r—1))

E[||z]3] = 2" (Z+(r—1) (2

notice 2 < m, then

1
E[|z)2] < 2TM <2 (m+r—1)!
Combining Lemmas (A1l and [A2), we obtain the followifig! lemma.

Lemma A4: Letr € N

E(lleg(t)[I3] < fimax(Qe)"2" (m +r — 1)!
Combining Lemmas (A1] and [A3), we obtain the following lemma.
Lemma A.5: Let r € {1,3,5,...}

E[leg(t)[5] < 2ptmax(Qe) 2/ (m + 1 — 1)
Lemma A.6: Let z(t) be any stationary process, and € N, then for a stochastic process s(t) = Y- axz(t — k), with
> ore ol < 400, the following holds

(Z Iak|> [llz(®)11"] (A.52)

(Zlakll (t—k II>]

o) 5 2

k1=0 k=0

Proof A.4 (of Lemma [A.6):

Hzakzt— )"
£33 (Tl T

k1=0 k=0

El|s( <E

E [Tzt - k)l
=0

) (A.53)
By the inequality of arithmetic and geometric means

[Tzt - ko)) < = lezt— I (A.54)
1=0
then

T 1 T
E | [T llz(t — k)| =D llat = ki) IT] ZE [ll(t = k)] (A.55)
=0 =1

By assumption z(t) is stationary, therefore E[||z(t — k;)||"] = E[||z(¢)]|"], i.e. E[||z( )||”] does not depend on k;, and so we

obtain the statement of the lemma
) (Z lak|> z(t)|"] (A.56)

E[[[s@®)" < E[llz®)["] Z Z <H |
Lemma A.7: Let r € N, then with notation as above the following holds
y(t)
u(t)

k1=0
e [ MICIIBI
Elllzo(t) — 2, (0" <4 | ——2—
Proof A.5 (of Lemma[A7): Notice that the process s(t) = zoo(t) — zs(t) = y(t|0) — y#(t) can be expressed as:

} (A.57)

1-%

s(t) = <Z CA*'Bw(t — k) + ﬁw(t)) — (i CA*'Bw(t — k) + ﬁw(t)) (A.58)
k=1 k=1
S A Bl (A.59)

k=t+1



in the case of w(t) = u(t)

—k
s(t) Z A1 Bu(t Zakt s,1) { kﬂ (A.60)
k=t+1
with
—CAB|, kE>t+1
k(s 1) = {0 ¢ ] =t (A.61)
0, E<t+1

In the case of w(t) = [y (t) u”(t)]

ZCAk 13{ } Zakts2

k=t+1

r—|

w??‘
NN,
—_

(A.62)

with

—CA*1B, k>t+1
ar(s,2) = {0 . ; r+1 (A.63)

Notice that in both cases we can upper-bound with the same quantity || (s, 1)]| < |law.c(s)|], and |Jag (s, 2)|| < ||, e(s)]|
with

k—1 >
e )||—{”CA Bl k241 (A.64)

, kE<t+1

Since w(t) is a stationary process, and by assumption predictors are stable, i.e. all eigenvalues of A are inside unit circle,
thus 3.7 [k, (s)]| < 400, Vt > 0, we apply Lemma[A.6] and obtain

y(t)

u(t)

El[ls()"] = Ell|zeo () — 2 (1)[|"] < (Z ||0<k,t(8)|> E H
k=0

< (;f; ||O||Ak_1||||l§||>TE [H mﬂ '

with || A¥|| < MA*, for some M > 1 and 4 € [§*,1), where 4* is the spectral radius of A, then with a sum of geometric
series, we get the statement of the lemma

} (A.65)

} (A.66)

~t T T
~ ~ A y t
Bllax() - 2,01 < (MiCHE1 ) B ][50 (A67)
Lemma A.8: Let r € N, then with notation as above the following holds
o MIBIICTY &l y®7)
Elllzoo(®)]|"] < [ 1 D —— | E A.
Iz <>||1_< D]+ = e (A68)
Proof A.6 (of Lemma[A.8): Notice that z(t) = y(t) — y¢(¢) can be expressed as
In the case of w(t) = u(t),
S -1 AN > _ — y(t—k)
Zoo(t Z Bu(t— k) — Du(t) = > ag(zs0,1) wlt — k) (A.69)
k=1 k=0
with
1 -Dl, k=0
ap(zoo, 1) = (A.70)

0 _éAk—lg] k>0

in the case of w(t) = [yT(¢),u? (¢)]"

Zoo(t) = y(t) — i CAF'B [ig - ]/3] ) [3’18] = Iiak(zm, 2) E’lg B iﬂ (A71)



Recall that in this case, we assume D = [0, Dy], note that ||D|| = || Dy and thus

I —Dy|, k=0
g (200, 2) = [ . } (A.72)
—CA*'B, k>0

Note that in both cases we can upper-bound with the same quantity, i.e. ||ag(2oo)| < |lak(Zoo)l]s and ||ak(Zoo, 2)|| <
|k (Zoo )|, With

l—l—HlA)H, k=0
(6% 00 < AA A A73
|| k(z )H o {||CAk_lB||7 k>0 ( )

Since, in both cases, >y ||k (Zoo)|| < 400, due to stability of the predictor, and [y”(t) u”(t)] Tis stationary, we apply
Lemma to both cases, and upper bound by (A.73), to obtain an upper-bound for both cases:

E (<1 (Z (. |> TSN (AT4)
< (un D]+ Z |C*A“B|>TE I (A75)
< (1 D)+ _M|B||||cn> el (a76)

Lemma A.9: Let r € N, then with notation as above, the following holds
B (2;(1)]"] < (un D]+ M'%”','f”)E [N A7)

Proof A.7 (of Lemma[A9): Notice that the process z¢(t) = y(t) — y(¢|0) can be expressed as:
In the case of w(t) = u(t)

: . - s (t— k)
Z:: CA* ' Bu(t - )—Du(t):kzzoak(zf,l) [i(t_kﬂ (A.78)
with
I —f)}, k=0
ak(zg,1) = 4 |0 —C*AHB}, 0<k<t (A.79)
0, k>t
In the case of w(t) = [y (t),u” (t)]7,
o S e g R A O] S o [YER)
290 =)~ 204 B [0 D] - 0] =5 auter ) [T (A50)

with
[I o} - D, k=0
ak(zp,2) =4 —CA1B, 0<k<t (A81)
0, k>t

Note that for both cases we can upper-bound by the same quantity ||a(zs,1)|| < ||aw(z)|, and |lak(zr,2)|| < ||ar(z/)|,
with

1+|D|, k=0
lak(zp)|| = < ||CAF1B|, 0<k<t (A.82)
0, k>t



Since by assumption predictors are stable, we apply Lemma and obtain
y®)1|"
> ||ak<z.f>|> e || [5]]]

1< () <[IRE]
< <||I| D] +Z|OA“B|> B|
(

E(|lzs(t)

k=1

k=1

(
(
< (12l + 101 + FLIBIIEN S 3 >E[

(|I|| +1D) + 311 B0 A= )

Notice that 4 > 0, V¢, thus we obtain the statement of the lemma

E [z )7 < 17| + D] + 220 MHBHHCH HH y(t) ]

Lemma A.10: Let r € N, then with notation as above, the followmg holds.

y®|] ,
s[|RO]] < 1o
with
S genlles = 121+ D 10, A5~ Kl
k=1

Gy (e,) = 2% fimax(Qe) 2 (N + 1y + 5 — 1), 7 is even
e 2Mmax(Qe)%\/(nu +ny+r— 1)', r is odd

Proof A.8 (of Lemma [A_10): Note that [igﬂ can be expressed as
y(t) —iCAk_lKe(t— )+ ey Za Jeg(t — k)
u(t) = gilg 9€g g kY, W)€q
k=1

with e(t) stationary, we apply Lemma [A.6] to get

=l

} < <Z|ak(y,W)ll> E[leg(®)]"]
k=0

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A91)

(A.92)

Let us denote || Zgenlle; = Do [lak(y, w)||, the ¢4 norm of the generative system. Furthermore we can apply Lemma [A4]

and Lemma to obtain,

Ellleg()[l5] < Gr(eg) = {

2% fmax (Qe) 2 (ny + ny +4— 1)1, 7iseven
2/Lmax(Qe)%\/(nu +ny+r— 1)', r is odd

with this we have the statement of the lemma.
Lemma A.11: Let r € N, and r > 0, then for a,b € R the following holds

(CL + b)2r S 22r—1a27‘ + 22r—1b2r
Proof A.9 (of Lemma [AT]):

2r
1 1
(a+b)* 22T2 (a+b)%" =227 (§(a + b))
since ¢(z) = 22" is convex for r > 0, we have by definition of convexity

(gle0) =o(%57) <3010+ 3o0)

thus we obtain the statement of the lemma

227‘
(a 4 b)2r S T(GQT‘ 4 b2r) _ 22r—1(a2r 4 b2r)

(A.93)

(A.94)

(A.95)

(A.96)



Lemma A.12: Let r € N, then with notation as above, the following holds

E[[Vv(f) = La (D] <

(o + ”\y/%r “ D 4G, () (A.97)

with

M||B||||é||> M€l Bl (A.98)

Gy(f) = <1+ 1P+ =15~ ) =4

Ggen = ”Egen”z:umaX(Qe) (A.99)
Proof A.10: with 2 (t) = y(t) — §y¢(t), and z;(t) = y(t) — y£(¢|0), we start by applying triangle inequalities

(% 3 [z ()7 - |zf<t>||2!)

t=0

T

< E

E[|[Vn(f) = Ly ("] (A.100)

ZHZoo W = iz ()]]*

E[||Vx(f) = £x(f)

1 N-1 N-1
SNTZ"'Z Hlllzoo P = llzs (£5)11%] (A.101)
t1=0 t,.-=0

Now using the fact that |a? — b2| = |(a — b)(a + b)| = |a — b|(a + b), since a,b > 0, we get

N—-1

+
. 1 g
BV () - VI < 57 3 - Z

We apply Cauchy-Schwarz, ie. E[XY] < [E[XY]| < /E[X?/E[Y?], with X = [];_, |l|zeo(t;)Il — [z (t;)]l], and
Y =TT= (2o (81 + [lz (£5)1D,

[HIIIZoo )= llzs( ')||(||Zoo(tj)|+|Zf(tj)|)] (A.102)

E[|V(f) = La (D] < ; - >, [Hlllzoo ) = llzs( -)IIQ} E [H(Izoo(tj)ll+||Zf(tj)||)2}

j=1

(A.103)

For now let’s focus on E [H;:1 [ Zoo (t)]] — Hzf(tj)|||2} , by applying reverse triangle inequality we obtain

[HIIIzoo ) = llzs (¢ ||]<E[H||zoo —74( )|2] (A.104)

now we apply the inequality of arithmetic-geometric means

E[H”Zoo(t)_zf ||2] ZElzoo ) =z ()] (A.105)
j=1
by applying Lemma we obtain the first term
AA ~ 2r
2| _ (MICIIBI YO | L= 42
{Hluzw 0~ lls 7>||] s( ) e |R)] s (A.106

Now for the second term E {H;Zl (1zoo (t;)]] + ||z f(tj)H)ﬂ , we apply the inequality of arithmetic-geometric means

j=1

E[Hmzm( DN+ llzg (1 ] ZE[HZOO )+ llzs (2D (A.107)

By Lemma we obtain

—ZE[Hzoo 4 g ()] < 2o 37 (B [laaolt) 7] + B [z (15)177]) (A.108)

j=1



By Lemma [A.8] and Lemma we obtain

2r
227“71 r 22r T R M B C« 2r
— 3 (B [l ()] + E [las(t)]*]) < = (1+||D|+'1f”g”> B30 ] (A.109)
i=1 i=1
2r
<1+|ID| M|1B””C”> H[ H 1 (A.110)
Now taking (A.244) and (A.106) back to (A.230), we have
A | No1 N i r
E[[VN(f) = LvOIN< = D> | B Hlllzoo W=z DI B T] Ulzeo E)] + 12 (25)]1)?
t1=0  £,=0 j=1

N-1 N-1

1 M|CYIB|
<
SN

t1=0 t.=0

[

1 % 2 ,3/2th

M| B|||IC (t)
22r (1+||D||—|— Hl ”” ”) H{ t] (A.111)
A e arileli:Iy [Y(t)} .
E[||V; - L "1<2" 14+ ||D|| + — ~ E
VN (f) = La ()] < ( D 5 5 u(t)
| N-1 N-1
~ ¥2rti - (A.112)
t1=0 =0 j=1
Note that we can write
N-1
1
NG (A.113)
t1:0

thus we can apply Jensen’s inequality for concave function ¢(x) = \/z, i.e. ¢ (W Yics xi) > ”—é” Y ics @(x;), thus we
obtain

N-1 N-1 N-1, r
1 1 I sore
~ NG ; 727"15] (A.114)
t1=0 t1=0  t.=0 ;=1
Now by commuting the sums we get
1 N-1 Nfl1 r 1 T 1 N-1 N—-1
— Z 2rt; — | Z — 321t
N D ST =S 2 A (A.115)
t1=0  t.=0 " j=1 j=1 t1=0  t.=0

now notice that 42"% only depend on one sum, for which we can use the sum of geometric series, after which the same

term will be repeated N7™! times, therefore

T N-1 N-1 T ~ ~
1 1 1 Nr—11 _— 42rN 1 1 — A2rN
‘ZNT YA = |- NG 177%:— 177% (A.116)
=Y S0 =0 i - VN -
since 42N >0, and (1 —4)% < (1 —4%")2, since
T P ~p 1
(I=9)2 <((1=9")1+49))> (A.117)
1< (1447 (A.118)



we obtain

EW@@—EMﬂMS;%<H4M+”q%%”>(%ﬁﬂgglEHQMQW (A119)
We can apply Lemma [A.T0] to get
2r
B H mﬂ < [[Sgen 2 Gor(ey) (A.120)
since 2r is always even, then
Gar(eg) = 2" timax(Qe)" (N + 1y + 17 — 1)! (A.121)

and with this we obtain the statement of the lemma
A 2% U MIBIICT (McnBl
E[|VN(f) - L <=1+ 1D+ -
V() = £x (DI ,N( D)+ =% Ty
NS genll? tmax(Qe) (nu + ny +7 — 1)1 (A.122)

with some algebraic manipulation we get

A (nu+ny +r—1)! s MIBIICH MIC)B] > '
E|||Vi —L "< ‘ 411+ |D Ygen max (e A.123
Vi () —Ln (] < Ht 1D+ = ) S e mas@2) ) 123
Lemma A.13: With notation as above for 0 < \ < m following holds
BN -Lx (D] < 1 4 T £ 1) NCoen G (f) (A.124)

X VN 1 —=4A(ny + ny)Geen G (f)
Proof A.11 (of Lemma [A13): with X = XV (f) — Ln(f)]

> A" . OO)\T(n +n —i—T‘—l)! = = r
AVN () =LN ()] = - _ T 2 Vu Yy
B UE U] = 14 50 S BV — Ln(DT £ 14+ 30 TR E = (16 Gr() (A2
Furthermore, with n,, = n, + ny
(N +7r—1)! wtlne+2  nyt+r—1
= Ny! e
7! 2 3 r
and as %H < Ny, for all » > 1, then
(N + 17— 1)! r—1 (nw)” 1! - ,
7’!‘! < nw! (nw) - ’er! N - E (nw) - (nw - 1)'(7’Lw) .
this allows us to write
- A - - 1)' > = = r
E[AVN(D=En()] < 1 4 (e — D! AN G yenG s A.126
| I 14205 ) (WnuGeenGy (1) (A.126)
the infinite sum is absolutely convergent if o
Ay, Geen G (f) < 1
that means that
1
0< A< ————5—— (A.127)

4angent (f)
under this condition we can write

(nw = D! 4\nuGoenGr(f) | mul  40GyenGy(f)

ElA VN (D=L < 1 en ) = — — A.128
le <1+ \/N 1 —4My,Ggen Gy (f) \/N 1- 4Aangent( ) ( )
Lemma A.14: Let y,(t),¥7.,(t), ¥ (t|s) € R! denote the v’th component of y(t),y(t),y(t|s) respectively,
L,(f) 2 B(y10(t) =y ()] = lim E[(Fr.(ts) - yu (1)) (A.129)
| Nl
Vi) 2 5 32 F00(0) = v0(0)? (A.130

t=0



and let o(r), be such that the following holds.
o(r) = sup E[[[e(t, ., 1)]2]

t.k,l

Qe —eyt—ReT (), k=j
e“”“’”‘{—egafk)e;(tg—j), k4

Then the raw moments are bounded

1
B0 (1)~ Vau(F))'] € ol — DGl
Proof A.12 (Proof of LemmalA.14): The prediction error can be expressed as

(yv(t yfu Zakegt_

with

D.., k=0
= okl) =30 g s

(A.131)

(A.132)

(A.133)

where D., = 1,D,, and C,, = 1,C, denote the v’th row of matrices D,, C, respectively. Then generalised loss L, (f)

for component v is expressed as

Lu(f) = E[(yv(t) - yf.,v(t))Q]

= E |trace (i axeq(t — k)) (i axeq(t — k))
k=0 k=0

o0
T
= § Qg Qeak
k=0

and infinite horizon prediction loss is

‘Cu(f)_VN,V(f) = % Zaerak Zzakeq t—k eq(t_])

t=0 \ k=0 k=0 j=0

-5 Z are(t, k,j)o;
t=0 k=0 j=0
e(t. k. ) trace(Q.) — ey(t — kel (t —j), k=
) ,j = . .
—ey(t — k)eg (t — j), k#j

For ease of notation let us define
z(t, k, j) = one(t, k, j)o]
then

E[(L,(f) — VNu ()]
1 =

(f
LYYy v

1= t»=0Fky1,7:=0 K, jr=0

—

T

~+
(=)

Note that, with i.i.d. innovation noise e4(t), if
tr_kr ¢ {tz_kzvtl_jl ::711
Atr = jr & {ti = kit = Gi}i2]

or similarly
{tr = koo tr — 5o} O {ts — kit — Gi}i2) =0

Hz(tla klajl)
=1

(A.134)



then z(t,, k., j) is independent of z(t;, k;, j;). Moreover, notice that E(z(t., k., j-)] = 0. Hence, if (A134), it holds that

T

Hz(tl,kujz

=1

H (t1, ki, i)

E

E[Z(tra kijT)] =0.
—_—
=0

Let us denote
Z={t; — ki + ke ti — ji + ke ti — ki + o ti — §i + G Y21
Then using (AI33) for those {t;, ki, ji };_, which satisfy (A.134), it follows that

B -V =Y Y S Y YE

t1=0 tr—1=0k1,j1=0 kr,jr=0t.€2

H tz,kldz)] -

Note that

T

HZ t, ki, i)

=1

E

Hz(tl,kl;]l

=1

E < <E

H|Z(tl,k17j1)|] :

=1

Let us focus on |z(t;, ki, 3i)|:

|2t ks )| < e, [l2lle ll2lle(tr, ke, i)l
T T T
E H|Z(tl,kl,jl)|‘| < [Tl N2l 2B Hlle(tz,kz,jz)llzl
=1 =1 =1

Then using Arithmetic Mean-Geometric Mean Inequality, [38] we have

HHe tlaklajl |] ZE ||e tluklujl)H ]

Now, let o(r), be such that the following holds.

o(r) > flllcr;E[lle(t,k,l)HE]

Then, £ 77, E[|le(ts, ki, ji)||3] < o(r) and then from (AI37) it follows that

E Hle(tz,kz,jlﬂ] <o(r)
=1

Combining this with (A.136)), it follows that
N-1
1
L
t1=0
and the quantity o(r) [[,_, |, ||2]|ej,||2 does not depend on ¢,. Moreover

T T
> o) [T lew llzlle ll2 < o) TT ek, lzlle 12| 21,
=1 =1

tr€EZ

SN 3 S e [T llawllzles
=1

tr—1=0k1,j1=0 kr,jr=0t.€2

E[(L,(f) = VNu(f)] <

where | Z| is the cardinality of the set Z. Note | Z| < 4(r — 1), therefore

Y o) [Tlanllzlaslle < o) [T lanll2las ll24(- = 1),
=1

tr€Z =1

Combining the latter inequality with (A.140), it follows that

N—-1 o) 00 T
E[(L,(f) = VNnu(f NTZ Z Ar=1) > - >0 T lewllzlleg 2

t1=0 tr—1=0 k1,j1=0 kr,jr=01=1

(A.135)

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)

(A.141)



Now notice

00 2r 0o "
_<znakn2) (S Jauliallasle
k=0 k,j=0

0o e T
= > 3 THlewlizles 2

k1,j1=0 kr,jr=01=1

therefore we obtain

N— N-1
E[(‘CV(f)_VNU SN_Z r_l eU(f)2T
1=0 tr—1=0
< %Nrfla(r)él(r - I)Geyy(f)%
< %0(7‘)4(7‘ —1)Ge ()
and since
Hak(V)H — H]“VDEH S ||D€||7 k = 0
1, C. AR K || < ||C. AR K|, k>0
then
Gew < Ge = || De|| + Y ICAL Ko (A.142)
k=1

and since 2r > 1 we obtain the statement of the lemma

E[(L,(f) = Vo ()] < Fo(r)alr - DGe(f)* (A.143)
Lemma A.15: with notation as above the following holds
BI(L() ~ V(1)) € "2o(r)ilr - DG (A144)
Proof A.13 (of Lemma [A13): By definition
L(f) = Ely®) = y50)" (1) = 950D = D_Elu(t) = 350(1)°] = Y Lu(f) (A.145)
) N1 v=1 n ) N1 v=1 n
~ D) (1) =35 0) =D 5 Do) = F70(t)* =D Vnu(f) (A.146)
t=0 v=1 t=0 v=1
(A.147)
then
E[(L(f) - Vn(f <Z£ — V(S )) ] = ZZE [TLo.(F) = Vv () (A.148)
V1 78 =1

Then using Arithmetic Mean-Geometric Mean Inequality, [38], we get [T, (L., (f) — V() < 230 (Lo, (f) —
VN (f))", and thus

EUL(H) - V()< 3 30 2 B () = Vau (D) (A.149)
v1=1 v.=1 i=1
From Lemma [AT4] we have E[(£,(f) — Vi, (f))"] < %o (r)4(r — 1)Ge(f)?", thus
BUC) ~ V(D)€ 30 30 23 Lot - D (A150)
v1=1 vr=1 =1

= Lo = DG (A151)



Lemma A.16: let m = n, + n,, then for r > 2, the quantity
o(r) = max {(tmax(Qe)"4(m + 1 — D)), (ftmax(Qe) 3" (m + 7 — 1))} = pmax(Qe)"3"(m + 7 — 1)!
satisfies
o(r) 2 supE(lle(t, k. )13
Proof A.14 (Proof of Lemma[A_I6): Recall that o
e —ey(t—k)el(t—j), k=
e(t,k,j)z Q eg( T)eg(' .7) .7
_eg(t_k)eg (t—3) k#j
First let us take the case when k # j. Then
E[lle(t, k. 1)l5] = E[ll - eg(t — k)eg (t — )]3]
Again as e4(t) is i.i.d. we have
Ellle(t, k, D2] < Ellleg(t — F)2]E[lleq(t — 5)]2]
and due to stationarity of e4(t), we have E[|le,(t — k)||5] = E[|leq(t — 7)||5], therefore
E[lle(t, k, 1)|[5] < Ellleg(t)]3)*
and again due to stationarity of e, (), the moments do not depend on ¢, and using Lemma we obtain
(1) = pmax(Qe)"4((m + 7 — 1)1) > E[le(t, k, 1)||3)*

Now let us take the case when k& = j. Then

Efle(t, &, l)||£]

E[|Qc — eg(t — k)eg (t — k)l|3]
E[(|Qcll2 + lleg(t)113)"]

B\ (1) 10 ey 01

Jj=0

() 12l 7Blley 0]
)

As Q. is a positive definite matrix,||Qc|l2 = fmaz(Qe), and hence
T

Eflle(t, kD5 <3 (") tmax(Qe) 7 E|leq(1)]37]
2 2 (j) M 2

Jj=

using Lemma [A.4] we obtain

Ef[le(t. k,))||5] < Z <.7 Pmax(Qe) ,umax(Qe)j2j(m +7-1!
7=0

< fmax(Qe)” io (T) I(m+j— 1)

J
Since for j <r, (m+j —1)! < (m +r — 1), hence

EHe(tv k, l)ng] < Nmax(Qe)T(m +7r— 1)! . (T) 27

Notice 3" = (1 +2)" = >7_, (;) 27, hence

Elleg(t,k,1)[3] < pimax(Qe) 3" (m + 7 —1)!
Hence,
o (r) = max {fmax(Qe) 4(m + 7 — 1)},
Prmax(Qe)"3" (m + 7 — 1)!}.



As we are interested in moments higher or equal to two, i.e. r > 2, then

o(r) = pmax(Qe) 3" (m + 7 — 1)L
Lemma A.17: For \ < (3(m + 1)nypimax(Qe)Ge (f)Q)fl, the moment generating function is bounded

2

E [ )\(L(f)—VN(f))} <142 2 (m+ 1)! (3\ny imax(Qe)Ge (£)?)

(A.152)
N (1-=3(m+ 1)/\nyﬂmaX(Qe)Ge(f)2)
Proof A.15 (Proof of LemmalAI7): We can bound the moment generating function via series expansion. First note that

E[L(f) — VN(f)] = 0, and hence
E [MED-WUD] =14 ABIL(f) )+ Z . X E(L) - V().
Then using Lemma we get
E [emm Viv f>>} i _'NZ A(r = 1)G(f)* (A.153)
=

Now using Lemma |A.16] we obtain

E {eA(L(f%vN(f))} <1+ % 2 Wm = 1) (31 Mimax (Qe)Ge(£)?)"
r=2 ’

Notice that 4(r — 1) < 27, for r € N. Furthermore

(m+r—1)! ym+lm+2 m+r—1
T =m!
7! 2 3 r
and as =1 < ™l for all 7 > 2, then

(m+:!—1)!Sm!<mT+1>r—1:m!(_+1)r_ m! (m;1>r'

Hence, we can derive the following inequality:

2 m! s
E [ MED= VN(f))} <1+ Nm——l—l (3(m + 1)/\nyﬂmax(Qe)Ge(f)2) :
r=2

Notice that if
|3(m + 1)/\nyﬂmax(Qe)Ge(f)2| <1,

then the infinite sum 77, (3(m + 1)Any pmax(Qe)Ge (f)Q)T is absolutely convergent, and

00 . . N (3(77’), —+ 1)/\ny,umax(Qe)G8(f)2)
2 (3( + 1))\ y/LmaX(Qe)Ge(f) ) - 1— 3(m + ]—)Anyﬂmax(Qe)Ge(f)2

2

To sum up, if
-1
A< (3(m + 1)nyﬂmax(Qe)Ge(f)2)
then

2 ml (3(77’), + 1)/\ny,umax( )Ge(f)2)2

Nm+11-— 3(m + 1)/\ny,umax(Qe)Ge(f)2

2 (m + 1) (3)\ny,umax e f)2)2
Al

<1l+—=
. N (1 — 3(m + 1))\nyﬂmdx( e) f)2)
Lemma A.18: For measurable functions X (f), Y (f) on F, With probability at least 1 — J, the following holds

E e/\(ﬁ(f)—Vzv(f))] <14 =

Vp: BpupX(P) < EpepV () + 5 | KL() + 105+ 2a(0 N)| (A.154)

A

with '
U, (A, N) = In Ef E[e?X DY) (A.155)



Proof A.16 ( of Lemma[AI8): Let us apply the Donsker & Varadhan variational formula to the function A(X (f)—Y (f))

it then follows that

sup(AEf~p X (f) = AEfpY (f) = KL(p|7)) = In Ep XX D=V,
P

In particular,

S (AEf o p X () =AEfpY () =KL(pl|7)) _ pln Epnre XY EfN,,e’\(X(f)*Y(f))

and hence

E[esupﬁ()foNﬁX(f)—XEfN;aY(f)—KL(ﬁHW))] _ E[EfNﬂ—e)‘(X(f)_Y(f))] _

EfNT,E[e’\(X(f)_Y(f))] — ¥r(AN)
with |
U, (A\,N)=1In EfNﬂE[eA(X(J‘)*Y(f))]
Hence,
E[esupﬁ(’\Ef~ﬁX(f)—/\Ef~,aY(f)—KL(ﬁIIW)]e—‘I’W(/\,N) =1

Since

{505 AEr s X () =AB ¥ () =K L(plm)] o= a LN) _

E[esPs AB s~ X (N =ABpp¥ (f) = KL(plIm) =¥ (AN

it follows that

B[ Ps AP ~p X (N =AB 1Y (1)~ KL(lIm) W= (LN)] — |

(A.156)

(A.157)

(A.158)

(A.159)

(A.160)

(A.161)

(A.162)

By Chernoff’s bound applied to the random variable X' = sup;(AEy~;(f) — AEf~pY (f) — KL(p||7)) — Ur (A, N) it then

follows that for any a > 0

P(X >a) <

By choosing a = In }, it follows that

and hence,
1
P(X§1n5)21—6
By substituting the definition of X and regrouping the terms, it then follows that

1
P(sup(AEfp X () = AEjpY () = KL(p|m) < In 5 + Wx (A, N)) 2 18
p
Note that

(@] SWOBrsX (1) = ABpp¥ (7)) = KL(7lm) < I+ 0 (0 N)} =

. 1 . 1
(@ 1995 ErapX(f) £ BpngV (1) + 3 [ KLpI) + 1o + 9,00 ) |
and hence it then follows that with probability at least 1 — J, the following holds

¥i EpiX()S BpegV(f)+ 3 [KLGIR) + g + 900N

(A.163)

Corollary A.1: By Lemma [A18] and Lemma [A17] for 0 < X < infsecr (3(m + 1)nyumaX(Qe)Ge(f)2)_1, with M,
denoting the set of all absolutely continuous probability densities w.r.t. 7, then with probability at least 1 — d, the following

holds

1 1 -~
Vpe Mt EpepL(D) < EpepVn(f) + 5 [KL(ﬁHw) n s+ (A, N)] ,

(A.164)



with

N (1 = 3(m + 1)Any pmax (Qe)Ge(f)2) (A.165)

Corollary A.2: By Lemma and Lemma for 0 < A\ < infser (4nw@gen@f(f))_1, with M., denoting the
set of all absolutely continuous probability densities w.r.t. , then with probability at least 1 — §, the following holds

\/I\] 1()\ N) L lnEf (1 + z (m + 1)' (3)\nyﬂmax(Qe)Ge(f)2)2 )
T, 3 = ~TT e)

. 1 1 -
Vpe Mz EpsVn(f) < EfpLn(f) + X [KL([)Hw) + lng + \I/W72(/\,N):| , (A.166)
with
~ + ny)! ANG gen G4 (f)
TN 2B, (14 (M genfAT) A.167
R e e P ery (187
Lemma A.19: For
-1 o -1
0<A<s ( sup max{3(m + 1)1y ftmax (Qe ) Ge (f), 4angent(f)}) (A.168)
feF
with probability at least 1 — 26, the following holds
R 1 1 U902\, N)+ U, 1(2\,N
Vp € Ms: Bppllf) < Eropln(f) + 5| KL(RlIm) +1In 5 + 2( ); a( )] (A.169)
with
- N
o i o (m+ 1) (630, fmax (Qe)Ge(/)?)
V12N N) =T s M N)=InEpoy | 1+ — _ (A.170)
N (1= 6(m + 1)Anypimax(Qe)Ge(f)?)
~ - - ! )Yel e
U020, N) = U, (A, N) =InEfoy | 1+ (ny £ )t 8AGgenGy(f) (A.171)
VN 1 —8\(ny +14)GeenG(f)
Proof A.17: we have
PweS)>1-4 (A.172)
PweS)>1-34 (A.173)
with
1 1 -~
S1 £ {w S Q|Vp e M, : Ef,\,[,ﬁ(f) < Ej'NﬁVN(f) + X |:KL([)||7T) +In g + \I/ﬂ-_rl(/\, N):| } (A.174)
N 1 1 =~
S22 (W RN € Mrs ErogVivf) < Bpepl(f) + 3 [KLGIR) + 15 + B0 M) ) (A175)
with A denoting the complementary set of A, i.e. A =Q\ A
PweS;) <6 (A.176)
PlweS) <6 (A.177)
(A.178)
Thus by union bound we get
P(we (S51USy)) <26 (A.179)
and thus
Pwe (S1N8y))>1-26 (A.180)
with this we can write: with probability at least 1 — 24, the following holds
. 2 1 Uaa(AN)+ Ta (AN
Vo€ Ma: Bropl(f) < Epnpln () + 5 [ KL(Plm) +1n 5 + 2( ); 1 V) (A.181)



In order to bring this to a more common way of writing PAC-Bayesian bounds, let us define A= 0.5\ <> A = 2, thus we
can write, for

-1 _ —1
< A< 5 (sup max{3(m + 1nyfinax(Qe)Gel())?, 4nuClyenG ()} ) (A.182)
2\ jer
with probability at least 1 — 24, the following holds
R 1 1 U002\ N)+ U, 1(2\, N
VpE My Bppllf) < Bropln(f) + 5| KL(Rlm) +1n 5 + 2l ); il )] (A.183)
with
9 2
o i 2 (m 1) (63 e (Qe)Ge()?)
V12 N) =0, (AN)=InEpoy [ 14+ = (A.184)
N (1 - G(m + 1))‘nyﬂmax( )Ge(f)2)
~ - - ! NG G
U020, N) = U, 5(A,N) =InEfoy |1+ (ny 1)t 8AGoenGy(f) (A.185)
VN 1- 8A(ny + 1) Ggen G (f)

B. Bounded noise

In this section we state the lemmas and proofs associated with bounded innovation noise case.
Lemma A.20: Let e4(t) € £ C R™ ", be a zero mean, independant, and bounded stochastic process, s.t. |eg ;(t)] < c,
Vi e {l,...,nu+ny}, i.e e, ,;(t) is the i’th component of e,(t)

Elleg(t)]"] < (cer/ny + nu) (A.186)

Proof A.18:

nu+ny

> @] = (Vi md) =T @

Ellle, ()"l = _

Lemma A.21: Let e4(t) € € C R™ 1™y "bea zero mean, independant, and bounded stochastic process, s.t. |eg ;(¢)] < c,
Vie{l,...,nu+ny}, ie ey ,(t) is the i’th component of e4(t)

o(r) = (2c§(ny + nu))r > sup El||e(t, k,1)||5) (A.188)
bkl

e(t,k,1) = Eley(t — kel (t — )] —eg(t — k)el (t —1) (A.189)

Proof A.19: First let us take the case when k # j. Then, due to independance of e, (t), we have Ele,(t—k)ey(t—j)] = 0,
and thus

E[[le(t.k,D)]5] = E[l| - eq(t — k)eg (t — j)ll2]

Again as e4(t) is i.i.d. we have

E[e(t, k, 1)lI) < El(lleg(t — )llleg (t — 5)ll2)"] < Ellleg(t — k) [51E(lleq(t — 5)II2)

and due to stationarity of e4(t), we have E[|le,(t — k)||5] = El|le4(t — 7)||5], therefore
E[lle(t, k, 1)|[3] < Ellleg(t)]3)*

and again due to stationarity of e, (¢), the moments do not depend on ¢, and using Lemma [A.20] we obtain

vk # j, Ellle(t, k,D)]3] < (c2(ny +na))

Now let us take the case when k& = j. Then

T

E [|[Eley(t — k)eg (t — )] — eg(t — k)eg (t - [ [Eley(t — & (t—l)]H+||eg(t—k)e§(t—l)||)r} (A.190)
By convexity (a + b)" = 2" (a + b)" =2" (3(a+ b)) ~L(a" +b"), we obtain
Ble(t, k. Dll3l < 27" (B [[Bley(t - ke :;%— DIIF) +E [lleg(t — kel e~ DII']) (A.191)
= 277" (I[Eley(t — k)eg (t = DIII" + E [lleg(t — k)eg (t = DII"]) (A.192)
<277 (Eflleg(t — k)el (t = D))"+ E [leg(t — k)el (t — D)I|"]) < 2"E [[leg(1)[|*"] (A.193)



Again by using Lemma [A.20, we obtain
Vk = j E[lle(t, k,1)]|3] < (2¢2(ny +nu))”

Thus we obtain the statement of the lemma

3 Ble(t k1) < e (2ny )1 (2 )} = (26 + )

t k,
Lemma A.22: Wlth notation as above, with |eg ; Ce, the' followmg holds

B[MED-VN (D] < 1 4 %QMCﬁny(nﬁnu)Ge(f)z
Proof A.20: By power series, and E[L(f) — Vi (f)] = 0, we have
B[] =1 4 i B~ V()]
Now by Lemma and Lemma[A21] and 4(r — 1) < 2" we have

E[(L(f) = VN ()] = %(403%(% +nu)Ge(f)?)"
Thus,

o0

1
E[MED-Vw ()] Z_ Me2ny (ny + nu)Ge(f)?)"

r=2

3

now since Ac2n,(ny + ny)Ge(f)? > 0, then

1+ —= Z (Mc2ny, (ny +n4)Ge(f)?)"

<14 — N Z (Mc? “ny (ny + nu)Ge(f)?)"

— 14 L oaeny (g tnn)Gelh)?
Lemma A.23: With notation as above, with |e, ;| < ce, th@[followmg holds

1 2 2
B[N D=L < 1 4 L 2ACH (DS genll?, 2 (ny+mu)
| I< VN

with

e (14 ipp e MUBIICI (MICIB]
Gf<f>—<1+|D|+ - )( Ty )

Proof A.21: By power series, we have

E[e*VW (D=L < VW (DL = 1 4 Z E[|Vn(f) — £(f)|"

For the terms E[|Vy (f) — £ (f)|”], we reuse the proof of Lemma [AI2] and continue from (AI19), i

e

BIIVA() ~ v < 2 (1 +1D]+ M'ﬁ”ﬂ'f”) (M'lc_”iB”> B || 50
Note that
(1-4)f < (1-4*)"
it is easy to see since for 4 € [0, 1), the following holds
1=9)"<1-4"=(1-4")1+4")
1<1+4"
This allows us to simplify the expression to
BV~ v < (1 D]+ M'f_”f”) (M'f_”!B”) s ([Pl

]

(A.194)

(A.195)

(A.196)

(A.197)

(A.198)

(A.199)

(A.200)

(A.201)

(A.202)

(A.203)

(A.204)

(A.205)

(A.206)

(A.207)

(A.208)
(A.209)

(A.210)



Now, from Lemma we get

2r
t T T
2| [%0)] ] < I gen | Elle (0] (a21n)
by lemma [A.20] we get
y(®) ]|
E [u(t)} ] < (IZgenllz, ¢ (ny + 1)) (A212)
ch O A L Al MIBIICIY (MICHIBI
Thus, with G¢(f) = NieT (1 + 1D+ =5 ) ( 5 )
\ . 1 r
E[[|[VN(f) = Ln(HI'] < TN (2G 1 (NIZgenll7, 2 (ny + 1)) (A213)
Thus
: 1 1
AV (H=LHI] < 2z 2 .2 v
Ele ] <1+ Mo Z:‘; . (2AG ()| Bgenll?, 2 (ny + n4)) (A214)
L oaG (D18 genll?, 2y tna)
<14 ——e22Cr (DN Bgenllf, € (ny+nu A215
VN (A2

and therefore the statement of the lemma holds.
Corollary A.3: By lemma[AT8] lemmas[A22[A23] and by applying a union bound, we obtain, for A > 0, ¢ € [0, 1), the
set of absolutely continuous probability density functions M, w.r.t. m, the following holds with probability at least 1 — 26

~ 1 1 ~
e Mus Eppllf) < Brnpl(D) + 5 [ Do)+ (3) + eonlh )] (A216)
with
~ 1/~ ~
Ve, (A N) £ 3 (\I/ce.,w,l(/\aN) + \Ifcﬁ,ﬁ,z(A,N)) (A217)
= 1
Vo, r i\ N) 2 0By (1 + NeMC?”v("ﬁ"u)Gc<f>2 (A218)
\/I}CC,TI',Q(A7 N) L2 1n Eff\/ﬂ' <1 + \/LNSQAGJ‘(J(”Eycn|lglc§("y+"u)> (A.219)
C. Bounded innovation noise case: Alternative formulation
Lemma A.24: for a sequence of random variables z; € R, and j € {1,...,7}
T r—1 ; (27]') - 9—(r—1)
E|[]e| < ([TE[] E [22)] (A.220)
Jj=1 Jj=1

Proof A.22 (of Lemma[A24): We first apply Cauchy-Schwarz inequality E [H;Zl xj} < |E [HT :1:]}| =

E [(551) (H;ZQ %)} | < VE[z1],/E [H;ZQ wﬂ, and obtain

271
E|[[+| <E[2" E|[] (A221)
j=1 j=2
Then we apply Cauchy-Schwarz again
272 272
r g1 92 272 T 22) 2 (29 (277) r (22)
E|[[z| <E[3] E[xg )} E|[]! - E[a:j } E| [] < (A.222)
j=1 j=3 j=1 j=2+1

We repeat this process until we have

s r—2 2J (27j) or—2 r—2 27(7‘72)
E |z < HE{@ )} E[:ci,l e >} (A.223)
1 =1

Jj=



Then we apply the final Cauchy-Schwarz inequality and obtain the statement of the lemma
T r—2 1 (
2]
E H x| < E [:cg )}
j=1 j=1
r—1)

11
H { 21)} ‘B [wiwl)} a (A.225)

1
Lemma A.25: Let m = n, + ny,. If |e, (t)| < Ce, then

2*]') — o—(r—1) . o—(r—1)
E [xfil 1)} E [x? ﬂ (A.224)

BV ()~ Ex (D] < Gra (O Spen s (o) (el o ) (1226

A IICIIB A~ ¢ o0 _
where Gy, (f) 2 (M) and Gra(f) 2 (1+ IDH + MUPUCLY e [ Sgenlley 2 111+ 5272 1Co AL
Proof A.23 (of Lemma o with zoo (¢ ) yv(t) — (), and z;(t) = y(t) — y,(t|0), we start by applying triangle

inequalities
N-— " 1 V=l r
E[|Va(f) = Ly (/)II"] Z 1200 (1)1 — N1z (£)]* (N > llzee®? — |Zf(t)||2’> (A.227)
=0 t=0
X | NN r
B[V (f) =Ly (NI < 57 D2 D E Hyuzm M2 = llzs ()12 (A.228)
th=0 =0 |j=1
Now using the fact that |a® — b*| = |(a — b)(a + b)| = |a — b|(a + b), since a,b > 0, we get
R | NN r
E[|[Vi(f) = Ly (NI < 7 D - Z H|||Zoo M= llz (E) 1] (Zoo () + Iz (£5)1) (A.229)
t1=0 = j=1

We apply Cauchy-Schwarz, ie. E[XY] < |[E[XY]| < E[X2\/E[Y?], with X = []}_, [lzoo(t;)[| = [z (t;)]l|, and
Y =TT (lzeo (81 + llz (£5)1D),

N-1 N—-1 T

. . 1
E[[VN(f) = LN = 7 22 > Hlllzoo W =Nz DI B | TT Uzoo ()l + s ()1
ti=0  t,=0 j=1
(A.230)
For now let’s focus on E {H;Zl N1Zoo (E)1| = llzy (&)1l } by applying reverse triangle inequality we obtain
H zoo (t) | = llzs (&)1 | < E H 1Zco (t5) — 24 (£)II? (A.231)
For the ease of notation for the next step, let us define z; £ ||z (t;) — z;(¢;)||% then the quantity of interest is
H x; (A.232)
For the above quantity we can apply Lemma [A.24] which states
" i (21') (27]‘) r—1 27D
E|[[z| <[[E [a:j } E [a:Q >} (A.233)
j=1 j=1
From Lemma [A7] we also know that
o (MICIBLY g Ty
_ T rt
Ellze(t) —zr (O[] <4 ( — E u() (A.234)



Thus combining Lemma [A.24] and Lemma [A7] we get

- j+1 57

T S MClB Hy(t)] @72
E () — ) MEYIB)

T )~ 2501 sg < l ) 0
o (GBI o))
x 4%t (?) [ [u(t) (A.235)
with Lemma and Lemma we have
t ks

EH’M }S”Egenwl(cemr, a236)

thus we get
: T oz, (MICIIBI o 2
E | T] llzoo(t) — 2s(2)]? sH <77 (1= genll?™ (ccv/m)®™)
j=1 j=1

~ A ~ 2
. [ MC)IB . 2D
42 <'1f”i”> (1Sl ey L a237)

With some algebraic simplification we obtain the first term
M| ClIB| .
HHZoo J _Z )H2 S <ﬁ HzgenH( H 2t (A238)

Now for the second term E {H;Il (lzoo ()] + ||z¢ (tj)||)2:|, we apply the inequality of arithmetic-geometric means

T

B | [T (lzoety)ll + llzs (2, ZE[ I ()1 + [z (25)])*| (A239)

j=1
By Lemma [A.T1] we obtain

T

—ZE[Hzoo 4 s ()] < 2o 37 (B (ot 7] + B [z (15)177]) (A240)

j=1

By Lemma [A.8] and Lemma we obtain

~ N N 2r

22r—1 NS 7 P o M|BJIC| yO|I"

- ;(E[Hzm(mn ] + B [Jlzs(t;)ll ;<1+||D|+ﬁ E {u(t)} (A.241)
. MHBIIIICII Hym} o
=921+ ||D E A.242
<+|l I+ =% ) u(?) (A242)
with Lemma and Lemma we have

B{|[5]] ] < 1=l tcevmr (A28

we get

PSRN ~ 2r
. M||B|||C
_H oo 1)+ g 1)1)° | < <2||zgm||el<cem> <1+|D|+'{f”£'>> (A244)

Now taking (A.244) and ( ) back to (A230), we have



I+ llzs ()1)?

) 1 N-—1 N-—1
E[|Vi () - L (f D DI DINE) H|||zoo )| = Iz (£, \zoo
t1=0 t,.=0 j=1
N-—1 N-—1
1 M O B
<L ( 111 |> S enl ﬁQHW
t1=0 t,-=0
arse\
<2||Egen||l1(ce\/ﬁ) <1 + D[l + ﬁ)) (A.245)

22))

with G4(f) £ (Muléilgén) (1 41D+ MnlBJncu)
M|CIB|
VN (f) O] <ﬁ 1Egenlle (cev/m) | 20 Egenlle, (cev/m) | 1+ [ID] + 5
p N=l -1
At
N pRE Z [[57 (A240)
=0  t,=0j=1
Note that (Ziv 01 ﬁt) Zﬁ;é e i\i ;(1) A%, and by applying the sum of the geometric series we obtain
M| CIB| AN
—— | [Zgenlle, (cev/m) { 2[Zgenlle, (cev/m) | 1+ D] +
1—4N )
N = (A.247)
(N(l—v)

1 —
the statement of the

E[[Vi(f) = L (D] < (

<1, so with Gy 1(f) £ (%‘QB”)’ and Gyo(f) 2 (1 +|ID|| + MHBIIIICII)

Note that 1 —
lemma follows.
Lemma A.26: With notation as above the following holds
2”Z ean (Ce\/m) ~ r
X B oo (ATZeenl eV G o (f)
E| )\\VN(f)*ﬁN(fH] <1+ Gra(HIBgenller (ce Z ( il ' ) (A.248)
7l
r=1
_ _ >\2H2_;en”£1(ce\/7)c 2(f)
= (1= Gra()Zgenlles (cev/m)) + (A;f,l(f)”EgenH@l (cev/m)e 4
Proof A.24 (of Lemma [A13): with X = MVn(f) — Ln(f)]
—L o A 2 A" (2| Egenlles (cev/m) ~ "
AVN(H)=LN ()] = 2 — gen ity
B0 E 0] = 1+ 3 TRV - e < 1 3 T (APl ) o)
Lemma A.27 (Alternative bound using [35]): With probability at least 1 — §, the following holds
1 . 1
Wi Eppllf) S EpegVel) + 5| D) +ng + 0000 (A250)
with
r2(0N) = In By E[eMEN -] < 1nE,»w( 37 (Ge(N)+Ge1 () C*(AG(F)CH1) ) (A251)
where C' = ce/Ny + 1y
Gea(f) = [Dellz + Y (k + 1)[|Ce AL Ko |2
k=1
i €
N

In particular, limpy ;o Wy o(\, N) = 0 for any A > 0 and for Ay = /N, limy_, = Vr2(AN,N) =0
i =y(t) — ys(t). Then X,

Proof A.25 (Proof of Lemma [A27): For each f € F, consider X;

= Z areq(t — k
k=0



where

- _p. k=0
P eAR KL, k>0

By [36, Proposition 4.2] X, is a weakly dependent process in the terminology of [36], and || X;|| < G.(f)C and the coefficient
Ooo,n (1) satisfies 0o N (1) < 2G. 1 (f)C for all NN. Consider the function h(z1,...,zN5) = (2L—1+1) sz\il ||:]|3 defined on
X = [-L, L)Y, where L = 2G.(f)C. Then h is 1 — Lipschitz. Notice that \Vy (f) = %(2L + DA(X(0),...,X(N —1)).

Then
E[e/\(ﬁ(f)—VN(f))] — E[e%(2L+1)(E[h(X(O),---,X(N—l))]—h(X(0)7~--7X(N—1))]

and hence by [36, Theorem 6.6]
B[MEO VW] < oA QLAD(1Xolle 000, n (1) /2
where || Xo||oo is the smallest real number such that || Xg|| < ||Xo||oo With probability 1. By using the definition L, and the

facts that || X¢|| < Ge(f)C and 0 n(1) < 2G¢1(f)C the statement of the lemma follows.

E[e)\(ﬂ(f)*VN(f))] < 6%2(2L+1)2(HX0Hm+9m,N(1))2/2 < 6%2(4Ge(f)0+1)2(Gc(f)+2Ge,1)202/2 (A.252)

Proof A.26 (of Theorem[5.2): By applying Lemma [A.27] Lemma[A.26 and by applying the union bound as in Lemma
[AT9] we obtain, for A > 0, ¢ € (0, 1], with probability at least 1 — 2

Vp € Myt EpoL(f) <Epo,La(f) + 2 Dy (p|7m) + m i BiAN) + (A, N)] (A.253)

A ) 2
with

Ty (\,N) 29, Efmre%(4Ge(f)C-i-l)2(Ge(f)—i—2Ge,1)2C2 (A.254)

a _ _ A2 Zaenlley e o
Uo(\ V) 210 By (1= CralDlIEgenll (cev/im) + G (D Sgenlles (cor/m)e—=F———6x (A255)

Now with A £ 0.5\ < \ = 25\, we obtain the statement of the lemma: for \ > 0, 6 € (0, 1], then with probability at least
1-25

(A.256)

R 1 1 U, (A\N)+Ty(\,N
Vo € M s Bropllf) < Bpmpln(1)+ 3 [ Dic(plm) +n g o+ SRR 2 >]

with
)2 1n Efwe%2(496(f)c+1)2(Ge(f)Jr2Gc,1)QC2 (A.257)
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