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PAC-Bayesian bounds for learning LTI-ss systems with input from

empirical loss

Deividas Eringis*, John Leth, Zheng-Hua Tan, Rafal Wisniewski, Mihaly Petreczky

Abstract— In this paper we derive a Probably Approxilmately
Correct(PAC)-Bayesian error bound for linear time-invariant
(LTI) stochastic dynamical systems with inputs. Such bounds
are widespread in machine learning, and they are useful for
characterizing the predictive power of models learned from
finitely many data points. In particular, with the bound derived
in this paper relates future average prediction errors with the
prediction error generated by the model on the data used
for learning. In turn, this allows us to provide finite-sample
error bounds for a wide class of learning/system identification
algorithms. Furthermore, as LTI systems are a sub-class of
recurrent neural networks (RNNs), these error bounds could
be a first step towards PAC-Bayesian bounds for RNNs.

I. INTRODUCTION

Linear time invariant (LTI) state-space models have been

widely used in control and econometric applications to model

time-series and have rich literature on learning (classically

called identification)[1].

In this paper, we present PAC-Bayesian type bounds on

learning LTI systems from data generated by LTI system

driven by zero-mean, i.i.d., Gaussian or sub-Gaussian noise.

The Probably Approximately Correct (PAC)-Bayesian

framework, provides theoretical guarantees (with arbitrary

high probability) on the difference between learning from

infinite amount of data, and learning from finite empirical

data, see [2]–[8].

Motivation PAC and PAC-Bayesian bounds have been a

major tool for analyzing learning algorithms. They provide

bounds on the generalization error in terms of the empirical

error, in a manner which is independent of the learning

algorithm. Hence, these bounds can be used to analyze and

explain a wide variety of learning algorithms. Moreover, by

minimizing the error bound, new, theoretically well-founded

learning algorithms can be formulated. In particular, PAC-

Bayesian error bounds turned out to be useful for providing

non-vacuous error bounds for neural networks [9].

While there is a wealth of literature on PAC [10] and

PAC-Bayesian [2], [3], bounds for static models, much less

is known on dynamical systems.

Traditionally, the literature on LTI systems [1] has focused

on statistical consistency. More recently, several results have

appeared on finite-sample bounds for learning LTI systems,
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but they are valid only for specific learning algorithms or for

very limited subclasses [11]–[13],

Contribution In this paper we consider stochastic LTI

state-space representations (LTI systems for short) in innova-

tion form. In accordance with the standard practice in system

identification, we view stochastic LTI systems as predictors,

which take past inputs and outputs and generate predictions

for the current output. We assume that the data used for

learning (system identification) are generated by stochastic

LTI systems in innvation form too. Learning/identifying an

LTI system is then amounts to finding the best predictor, i.e.,

the predictor which results in the smallest prediction error for

the training data, i.e., in the smalled empirical loss However,

for decision making (fault detection,control, etc.), the quality

of the learned model is determined by the generalization

error, i.e., the average prediction error for future, unseen

data. The PAC-Bayesian bound of this paper says that with

a high probability (probability 1−δ), the generalization error

is smaller than the empirical loss plus a an error term. The

error term depends on the number of data points N and on

parameter (learning rate λ). In this paper we provide explicit

formulas for the error term. We show that the error term

converges to a constant as N → ∞. The constant depends

on the confidence level δ and the distance between prior

and posterior densities on models. If we assume that the

data used for learning is generated by an LTI system with

bounded noise, we can show that the error term converges

to 0 as N → ∞. The rate of convergence is O( 1√
N
), which

is consistent with most of finite-sample bounds available

in the literature for various, not necessarily LTI, models.

This suggests that the obtained error bound is likely to be

asymptotically sharp for bounded signals.

Related work The related literature can be divided into

the following categories.

Generalization bounds for RNNs. PAC bounds for RNN

were developed in [14]–[16] using VC dimension, and in

[16], [17] using Rademacher complexity, and in [18] us-

ing PAC-Bayesian bounds approach. However, all the cited

papers assume noiseless models, a fixed number of time-

steps, that the training data are i.i.d sampled time-series, and

the signals are bounded. In contrast, we consider (1) noisy

models, (2) prediction error defined on infinite time horizon,

(3) only one single time series available for training data, and

(4) unbounded signals. Moreover, several papers [14], [15],

[19] assume Lipschitz loss functions, while we use quadratic

loss function.

Finite-sample bounds for system identification of LTI

systems. Guarantees for asymptotic convergence of learning

http://arxiv.org/abs/2303.16816v1


algorithms is a classical topic in system identification [1].

Recently, several publications on finite-sample bounds for

learning linear dynamical systems were derived, without

claiming completeness [11], [13], [20]–[26]. First, all the

cited papers propose a bound which is valid only for models

generated by a specific learning algorithm. In particular,

these bounds do not relate the generalization loss with the

empirical loss for arbitrary models, i.e., they are not PAC(-

Bayesian) bounds. This means that in contrast to the results

of this paper, the bounds of the cited papers cannot be use

for analyzing algorithms others than for which they were de-

rived. Second, many of the cited papers do not derive bounds

on the infinite horizon prediction error. More precisely, [13],

[22], [25]–[27] provided error bounds for the difference of

the first T Markov-parameters of the estimated and true

system for a specific identification algorithm. However, in

order to characterize the infinite horizon prediction error, we

need to take T = ∞. For T = ∞ the cited bounds become

infinite, i.e., vacuous. In addition, in contrast to the present

paper, [13], [20], [26] deals only with the deterministic part

of the stochastic LTI, [25] deals only with the stochastic part.

PAC-Bayesian bounds for state-space representation.

In [28] learning of stochastic differential equations without

inputs was considered and it was assumed that several in-

dependently sampled time-series were available for learning.

In contrast, in this paper we deal with discrete-time systems

with inputs and the learning takes place from a single

time-series. In [29] learning of general Markov-chains was

considered, but the state of the Markov-chain was assumed

to be observable and no inputs were considered. The learning

problem of [29] is thus different from the one considered in

this paper.

In [30] PAC-Bayesian error bounds were developed for

autonomous LTI state-space systems without exogenous in-

put. In contrast to [30], in the current paper we consider

systems with exogenous inputs. Moreover, the error bound

of this paper is much tighter than that of [30]: in contrast

to [30], with the growth of the number of observations, the

error bounds of this paper converge either to zero (in the

case of bounded innovation noise) or to a constant involving

KL-divergence. Finally, the proof technique is completely

different from that of [30].

Paper Outline We start by defining the problem formu-

lation in Section II, where all the assumptions and impor-

tant quantities are defined. Then we will discuss the PAC-

Bayesian framework in Section III, then we will present the

main results of the paper in Section IV, then we will present

some auxiliary results for systems driven by bounded noise in

Section V, We will finish off with a short numerical example

in Section VI. Finally, we will have the conclusion in Section

VII.

II. PROBLEM FORMULATION

Notation and terminology

We occasionally use , to denote ”defined by”. Let F

denote a σ-algebra on the set Ω and P be a probability

measure on F. Unless otherwise stated all probabilistic

considerations will be with respect to the probability space

(Ω,F,P), and we let E(z) denote expectation of the stochas-

tic variable z. We use bold face letters to indicate stochastic

variables/processes. Each euclidean space is associated with

the topology generated by the 2-norm ‖ · ‖2, and the Borel

σ-algebra generated by the open sets. The induced matrix

2-norm is also denoted ‖ · ‖2. We say that a random variable

z taking values in R
n is essentially bounded, if for some

constant C > 0, ‖z‖2 < C holds with probability one.

A stochastic linear-time invariant (LTI) systems with in-

puts in state-space form [31, Chapter 17] is a dynamical

system of the form

x(t+ 1) = Ax(t) +Bu(t) + ν(t),

y(t) = Cx(t) +Du(t) + η(t)
(1)

defined for all t ∈ Z, where A,B,C,D are n × n,

n × nu, ny × n and ny × nu matrices respectively, A is

a Schur matrix (a square matrix with all its eigenvalues

inside the unit disk), ν,η are zero-mean Gaussian i.i.d

processes, u, x, are zero-mean stationary Gaussian processes,

u(t) and
[
η
T (t),νT (t)

]T
are independent, and x(t) and[

ν
T (t),ηT (t)

]T
are independent. The process x is called

the state process, ν is called the process noise and η is the

measurement noise. If B,D are absent from (1), then we say

that (1) is an autonomous stochastic LTI system

Let us fix stochastic processes y(t) ∈ R
ny , and u(t) ∈

R
nu , that share a time axis t ∈ Z, that is, for any t ∈ Z,

y(t) : Ω → R
ny ;ω 7→ y(t)(ω), and u(t) : Ω → R

nu ;ω 7→
u(t)(ω) are random vectors on (Ω,F,P). The goal is to

estimate y(t) from current and past values of u(t), for this

we need a structure connecting y(t) and u(t), thus we have

Assumption 2.1: Let y(t) and u(t) be generated by an

autonomous stochastic LTI system

x(t + 1) = Agx(t) +Kgeg(t), (2a)[
y(t)
u(t)

]
= Cgx(t) + eg(t) (2b)

where Ag ∈ R
n×n,Kg ∈ R

n×m, Cg ∈ R
m×n for n > 0,

m = ny+nu ≥ 2 and x, y and eg are stationary, zero-mean,

and jointly Gaussian stochastic processes. Furthermore, we

require that Ag and Ag−KgCg are Schur (all its eigenvalues

are inside the open unit circle), that eg(t) is white noise

uncorrelated with x(t−k), with covariance E[eg(t)e
T
g (t)] =

Qe, and that eg is the innovation process (see [31] for

definition) of
[
yT uT

]T
. We identify the system (2) with

the tuple Σgen , (Ag ,Kg, Cg, I);

Note: For learning, we assume to have the training data

set DN = {{y(s),u(s)}}N−1
s=0 , i.e. a single trajectory

of [yT (t),uT (t)]T , but no knowledge of the matrices

Ag,Kg, Cg and noise process eg . The system (2) only

defines the assumptions on the data generating process.

The goal is to use the past and present of u(t), or past

of y(t), to estimate y(t). Note that y and u are stationary

processes by [32, Theorem 1.4]. Moreover, from classical

theory of LTI systems it follows that y(t) and u(t), t ∈ Z are



essentially bounded if the noise eg(s) is essentially bounded

for all s ∈ Z

That is we wish to consider LTI predictors,

x̂(t+ 1) = Âx̂(t) + B̂u(t) + L̂y(t), x̂(0) = 0 (3a)

ŷ(t) = Ĉx̂(t) + D̂u(t) (3b)

where matrices Â, B̂, L̂, Ĉ, D̂ are of appropriate size, and Â
is Schur (all its eigenvalues are inside the unit disk).

Note: In this paper, we will allow a more general form

of predictors, where L̂ can be set to 0, i.e. we may wish

to estimate y(t) only from measurements u(t), when past

values of the process y(t) is not available. In order to

accommodate this let us define a stochastic process w(t) ∈
R

nw , by two cases

• w(t) =
[
yT (t) uT (t)

]T
, nw = ny + nu

• w(t) = u(t), nw = nu

Note that, one can define w(t), to consist of some of the

components of y(t), i.e. w(t) does not need to contain all

of y.

Class of predictors (hypotheses) In this paper, we will

be interested in the following hypothesis class, consisting of

predictors realizable by LTI systems.

Assumption 2.2 (Parameterised hypothesis class): The

hypothesis class F is a parametrized set of LTI predictors,

with Σ(θ) = (Â(θ), B̂(θ), Ĉ(θ), D̂(θ)):

x̂(t+ 1) = Âx̂(t) + B̂w(t), x̂(0) = 0, (4a)

fΣ(θ)({w(s)}ts=0) = Ĉx̂(t) + D̂w(t). (4b)

F = {fΣ(θ) | γ(Â(θ)) < 1, θ ∈ Θ}

with γ(Â(θ)) the spectral radius of Â(θ), i.e. the largest

modulus of eigenvalues of Â(θ). Set Θ ⊂ R
nθ is a compact

set, and Â(θ),B̂(θ), Ĉ(θ), D̂(θ) are continuous functions of

θ taking values in the sets of n̂ × n̂, n̂ × nw, ny × n̂ and

ny × nw matrices respectively. If w(t) = [yT (t),uT (t)]T ,

then D̂ = [0, D̂u] for some ny ×nu matrix D̂u, i.e., D̂w(t)
depends only on u(t)1.

We will identify the system (4) with the tuple (Â, B̂, Ĉ, D̂).
For the sake of notation, throughout the paper we will use

f , to denote fΣ(θ), for some arbitrary θ ∈ Θ.

Under assumption 2.2, we can use probability densities on

the set of predictors F . The latter will be essential for using

the PAC-Bayesian framework.

Next, we define the notions of empirical and generalization

loss for predictors which are realized by LTI systems.

Assumption 2.3 (Quadratic loss function):

We will consider quadratic loss functions ℓ : Rny × R
ny ∋

(y, y′) 7→ ‖y − y′‖22 = (y − y′)T (y − y′) ∈ [0,∞).
The empirical loss of a predictor for the data DN =
{y(t),w(t)}Nt=0 is defined as follows: we define the random

variable

ŷf (t | s) , f(w(s), . . . ,w(t))

1The latter assumption is necessary, since otherwise we would be using
the components of y(t) to predict y(t), which is not meaningful.

which represents the estimate of y(t) based on random vari-

ables {w(s), . . . ,w(t)} . The empirical loss for a predictor

f and processes (y,w) is defined by

L̂N (f) ,
1

N

N−1∑

i=0

ℓ(ŷf (i | 0),y(i)). (5)

The definition of the generalization loss is a bit more

involved. Namely, we are using varying number of inputs for

predictions and hence the expectation E[ℓ(ŷf (t | 0),y(t))]
depends on t. This will hold true even if the processes y and

w are stationary. Note that this issue is specific for state-

space models: autoregressive models always use the same

number of inputs to make a prediction, see Remark 2.1. In

this paper we will opt for looking at the case when the size

of the past used for the prediction is infinite. To this end, we

need the following result from [33].

Lemma 2.1 ([33]):

The limit ŷf (t) = lims→−∞ ŷf (t | s) exists in the mean-

square sense for all t, the process ŷf (t) is stationary, and

E[ℓ(ŷf (t),y(t))] = lims→−∞ E[ℓ(ŷf (t | s),y(t))].
This motivates us to introduce the quantity

L(f) = E[ℓ(ŷf (t),y(t))] = lim
s→−∞

E[ℓ(ŷf (t | s),y(t))]

which is called the generalization loss of the predictor f
when applied to process (y,w).

Intuitively, ŷf (t) can be interpreted as the prediction of

y(t) generated by the predictor f based on all (infinite) past

and present values of w. As stated in Lemma 2.1 we consider

the special case when ŷf (t) is the mean-square limit of

ŷf (t | s) as s → −∞. Clearly, for large enough t − s,

the empirical loss, is close to the generalization loss. In fact,

it is standard practice in learning dynamical systems [1] to

use L(f) as the measure of fitness of the predictor. With

these definitions in mind, the learning problem considered

in this paper can be stated as follows.

Problem 2.1 (Learning problem): Compute a predictor

f ∈ F from a sample DN = {y(t)(ω),w(t)(ω)}Nt=0 of the

random variables {y(t),w(t)}Nt=0 such that the generaliza-

tion loss L(f) is small.

Remark 2.1: It is known [1, Section 4.2] that the LTI

system (3) can be rewritten as an ARX model:

ŷf (t|s) =
n∑

i=1

γ̂iŷf (t− i|s) +
n−1∑

i=0

η̂iw(t− i) (6)

At a first glance this is similar to classical ARX predictors,

where ŷ(t) =
∑n

k=1 α̂ky(t − k) +
∑n−1

i=0 β̂iw(t− i) where

y is predicted based on the last n values of y and w.

However, in contrast to classical ARX models, in (6) we

do not use the past values of y, but the past values of the

prediction ŷf . This difference has significant consequences,

in particular, it means that the previous results [34] do not

apply. Note that [35], [36] studied autoregressive models

without inputs (nonlinear AR models), so those results are

not applicable either. In fact, the problem of learning LTI

systems with inputs, or, which is almost equivalent, learning

LTI predictors, is essentially equivalent to learning ARMA



models, and the latter is much more involved than learning

ARX models.

III. PAC-BAYESIAN FRAMEWORK

Below we present the adaptation of the PAC-Bayesian

framework for LTI systems. To this end, let BΘ be the σ-

algebra of Lebesque-measurable subsets of the parameter set

Θ ⊆ R
nθ , and m denote the Lebesque measure on R

nθ . We

then define

E
f∼ρ

g(f) ,

∫

θ∈Θ

ρ(θ)g(fΣ(θ))dm(θ) (7)

with ρ a probability density function on the measure space

(Θ, Bθ,m), and g : F → R a map such that Θ ∋ θ 7→ g(fθ)
is measurable and absolutely integrable. The essence of the

PAC-Bayesian approach is to prove that for any density π
on F , and any δ ∈ (0, 1],

P

({
ω ∈ Ω | ∀ρ̂ ∈ Mπ : E

f∼ρ̂
L(f) ≤ κ(ω)

})
> 1− δ, (8)

with

κ(ω) = E
f∼ρ̂

L̂N (f)(ω) + rN

Mπ the set of all absolutely continuous densities w.r.t π, and

rN = rN (π, ρ̂, δ) an error term. That is, the PAC-Bayesian

bound holds for every posterior ρ̂ in Mπ, simultaneously.

We may think of π as a prior distribution density function

and ρ̂ as any candidate to a posterior distribution on the

space of predictors. The inequality (8) says that the average

generalization loss for models sampled from the posterior

distribution is smaller than the average empirical loss for the

posterior distribution plus the error terms rN .

A learning algorithm can be thought of as fixing a prior

π and then choosing a posterior ρ̂ for which κ(ω) is small.

Moreover, κ(ω) can be viewed as a cost function involving

the empirical loss and the regularization term rN . The

learned model is either sampled from the posterior density

ρ̂, or it is chosen as the one with maximal likelihood w.r.t.

ρ̂. Inequality (8) then gives guarantees on the generalization

loss of the learned model. For more details on using PAC-

Bayesian bounds see [3] For (8) to be useful, the term rN
should converge to a small constant, preferably zero, as

N → ∞, and to be decreasing in δ. The most common

way of expressing the error term rN , is based on Donsker-

Varadhan’s change of measure [7, Theorem 3]:

rN =
1

λ

[
DKL(ρ̂‖π) + ln

1

δ
+Ψπ(λ,N)

]
, (9)

where λ > 0 and DKL(ρ̂ | π) , Ef∼ρ̂ ln
ρ̂(f)
π(f) is the KL-

divergence between π and ρ̂, and

Ψπ(λ,N) , lnEf∼πE[eλ(L(f)−L̂N (f))] (10)

That is, rN involves the KL-divergence and a free parameter

λ. The density which minimizes κ(ω), with rN from (9) is

known as the Gibbs-posterior [3] and it can be explicitly

computed, i.e.

ρGibbs(f) , Z−1π(f) exp(−λL̂N (f)), (11)

Z , Ef∼π exp(−λL̂N (f)).

The disadvantage of this approach is that it is difficult to

bound Ψπ(λ,N), since it involves bounding higher-order

moments

E[|L(f)− L̂N (f)|r], r ∈ N (12)

One can also use PAC-Bayesian bounds, in order to choose

the prior π or the hypothesis class F , s.t. the difference

between generalised loss and empirical loss is within some

acceptable level, i.e.

Ef∼ρ

(
L(f)− L̂N (f)

)
≤ rN (λ, π) ≤ ǫ (13)

then it is only a matter of choosing π, λ,F , s.t. rN (λ, π) ≤ ǫ,
after which one can proceed with more standard Bayesian

learning approach on just the empirical loss L̂N (f).
In the next section, we will apply a simple trick, which

will allow us to upper-bound higher-order moments.

IV. MAIN RESULTS

In this paper we derive PAC-Bayesian bounds (8) for LTI

systems. The main idea is to use the change of measure

inequality from [7, Theorem 3]. The major challenge is to

bound the corresponding moment generating function/higher-

order moments of (L(f)−L̂N (f)). However this brings some

technical challenges. Namely, the processes involved are not

i.i.d.. Moreover, they are not bounded, and the quadratic

loss function is not Lipschitz. In addition, the empirical loss

L̂N (f) is not an unbiased estimate of the generalization loss

L(f). This is specific to state-space representations, for auto-

regressive models considered in [35]–[37] this problem does

not occur. All these issues make it impossible to directly

apply existing techniques [35]–[37].

As the first step, temporarily we replace the empirical loss

L̂N (f) by

VN (f) ,
1

N

N−1∑

i=0

(y(i) − ŷf (i))
2 (14)

where the finite-horizon prediction ŷf (t | 0) is replaced

by the infinite horizon prediction ŷf (t) defined in Lemma

2.1. The advantage of VN (f) over L̂N (f) is that VN (f) is

an unbiased estimate of the generalization loss L(f), i.e.,

E[VN (f)] = L(f). Indeed, since y(t)− ŷf (t) is a stationary

process, E[‖y(i) − ŷf (i)‖22] = L(f) does not depend on

i, and hence E[VN (f)] = 1
N

∑N−1
i=0 E[‖y(i) − ŷf (i)‖22] =

L(f). hence, usual techniques for deriving error bounds

are easier to extend to VN (f) than to L̂N (f). Moreover,

, from Lemma B.7 in Appendix B of the supplementary

material, it follows that L̂N (f) − VN (f) converges to zero

as N → ∞ in the mean sense. In order to derive upper

bounds on the errors of the type (9), we will first derive

upper bounds of the type (9), for L(f)−VN (f), secondly we

will derive upper bounds for VN (f)− L̂N (f), then we will

combine them using union bound. Doing this might seem

counter-productive, however it is significantly easier to bound

moments, E[(L(f)− VN (f))r], and E[(VN (f)− L̂N (f))r]
For every predictor f we define the following constants.



Definition 4.1 (Constants Ḡf (f), Ge(f)): Let

f = (Â, B̂, Ĉ, D̂) be a predictor. Let Ag,Kg, Cg be

the matrices of the data generator from Assumption 2.1.

Define the matrices (Ae,Ke, Ce, De) as De = I − D̂w,

Ae =

[
Ag 0

B̂Cw Â

]
, Ke =

[
Kg

B̂w

]
, Ce =

[
(C1 − D̂Cw)

T

−ĈT

]T
,

where Cg =
[
CT

1 CT
2

]T
and C1 has ny rows and C2 has nu

rows; and (Cw , B̂w, D̂w) = (C2,
[
0 B̂

]
,
[
0 D̂

]
) if w =

u, and (Cw, B̂w, D̂w) = (Cg, B̂, D̂), if w =
[
yT uT

]T
.

Choose for all f ∈ F , M̂(f) > 1, and γ̂(f) ∈ [γ̂∗(f), 1),
such that ‖Âk‖2 ≤ M̂(f)γ̂k(f), with γ̂∗(Â) the spectral

radius of Â. With these definitions,

Ge(f)=‖(Ae,Ke, Ce, De)‖ℓ1,‖De‖2+
∞∑

k=0

‖CeA
k
eKe‖2

‖Σgen‖ℓ1 = 1 +
∞∑

k=0

‖CgA
k−1
g Kg‖2

Ḡgen = ‖Σgen‖2ℓ1µmax(Qe)

Ḡf (f) =

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)
M̂‖Ĉ‖‖B̂‖
(1− γ̂)1.5

The interpretation of the various terms appearing in Defini-

tion 4.1 is as follows.

Remark 4.1 (Interpretation of constants):

The matrices Ae,Ke, Ce, De represent the LTI system

driven by the innovation process eg of (yT ,wT )T , output

of which is y − ŷf , i.e.,

x̃(t+ 1) = Aex̃(t) +Keeg(t),

y(t) − ŷf (t) = Cex̃(t) +Deeg(t)
(15)

The term Ḡgen depends only on the data generator system

(2), and characterises the scaling of y,u
The term Ḡf (f) depends only the predictor f , and should

be interpreted similarly to ‖(Â, B̂, Ĉ, D̂)‖2ℓ1 .

Theorem 4.1: Let Mπ denote the set of all absolutely

continuous densities w.r.t π. Then for any density π on

hypothesis class F , any δ ∈ (0, 1], and

0 < λ <
(
sup
f∈F

max{8(nu + ny)ḠgenḠf (f),

6(nu + ny + 1)nyµmax(Qe)Ge(f)
2}
)−1

(16)

the following inequality holds with probability at least 1−2δ

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) + rN (λ,N),
(17)

with

rN (λ,N) ,
1

λ

[
DKL(ρ̂‖π) + ln

1

δ
+ Ψ̂π(λ,N)

]
(18)

Ψ̂π(λ,N) ,
1

2

(
Ψ̂π,1(λ,N) + Ψ̂π,2(λ,N)

)
(19)

Ψ̂π(λ,N) ≥ Ψπ(λ,N) = lnEf∼πE[eλ(L(f)−L̂N (f))]

and

Ψ̂π,1(λ̃, N) , lnEf∼π

(
1 +

1

N
C1(f, λ)

)
(20)

Ψ̂π,2(λ̃, N) , lnEf∼π

(
1 +

1√
N

C2(f, λ)

)
(21)

C1(f, λ) ,
2(m+ 1)!

(
6λnyµmax(Qe)Ge(f)

2
)2

(1− 6(m+ 1)λnyµmax(Qe)Ge(f)2)
(22)

C2(f, λ) ,
8(m!)λḠgenḠf (f)

1− 8λmḠgenḠf (f)
(23)

For proof of Theorem 4.1, see Proof A.17, in the Appendix.

Note that, as N → ∞ the PAC-Bayesian error rN →
1
λ

(
DKL(ρ|π) + ln

(
1
δ

))
. That is, irrespective of ρ, π, the

error rN ≥ 1
λ ln

(
1
δ

)
. Usually, one chooses λ = λ(N) as

an increasing function of N , which then allows the PAC-

Bayesian error to converge to 0. However, since by Theorem

4.1, λ is bounded by a constant, we can not control the term
1
λ ln

(
1
δ

)
, and rN > 0 always.

Remark 4.2: Theorem 4.1, holds under assumption 2.1,

for any distribution of eg(t), as long as

• eg(t) ∈ R
m is zero-mean, i.i.d.,

• E
[
‖eg(t)‖2r

]
≤ 2rµmax(Qe)

r(m+ r − 1)!,
• σ(r) ≤ 3rµmax(Qe)

r(m+ r − 1)!,

with

σ(r) = sup
t,k,j

E [‖e(t, k, j)‖r2] ,

e(t, k, j) , E[eg(t− k)eTg (t− j)]− eg(t− k)eTg (t− j)

That is, Theorem 4.1 holds, for eg(t), zero mean, i.i.d. with

any sub-gaussian distribution.

V. BOUNDED CASE

If we drop the assumption that eg(t) has a Gaussian

distribution, and only assume that eg(t) is bounded, we get

quite straight-forward PAC-Bayesian bounds.

Assumption 5.1: eg(t) is a zero mean i.i.d. stochastic

process, with arbitrary distribution, but for all components

eg,i(t) of eg(t) |eg,i(t)| ≤ ce, for some ce > 0.

Theorem 5.1: Let Mπ denote the set of all absolutely

continuous densities w.r.t π. Under assumption 5.1 it holds

true that for any density π on hypothesis class F , any

δ ∈ (0, 1], and λ > 0 the following inequality holds with

probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f)+r̄N (λ,N) (24)

with

r̄N (λ,N) ,
1

λ

[
DKL(ρ||π) + ln

1

δ
+ Ψ̂ce,π(λ,N)

]

(25)

Ψ̂ce,π(λ,N) ,
1

2

(
Ψ̂ce,π,1(λ,N) + Ψ̂ce,π,2(λ,N)

)
(26)

Ψ̂ce,π,1(λ,N) , lnEf∼π

(
1 +

1

N
eλGgen,1Ge(f)

2

)
(27)

Ψ̂ce,π,2(λ,N) , lnEf∼π

(
1 +

1√
N

eλGgen,2Ḡf (f)

)
(28)



and

Ggen,1 , 8c2eny(ny + nu) (29)

Ggen,2 , 4‖Σgen‖2ℓ1c2e(ny + nu) (30)

For proof of Theorem 5.1, see Corollary A.3, in the Ap-

pendix. Note that, in this case λ is not bounded, and as such

we can choose λ = λ(N) an increasing function of N , in

order to control the term 1
λ(N) ln δ

−1. More specifically one

can choose

λ(N) =
ln
√
N

supf∈F max{Ggen,1Ge(f)2, Ggen,2Ḡf (f)}
,

(31)

for which, it can be shown that λ−1(N)Ψπ,ce(λ(N), N) →
0, and λ−1(N) ln δ−1 → 0. If one considers ρ independently

of λ, then λ−1(N)DKL(ρ̂‖π) → 0, however if one consid-

ers Gibbs posteriors (11), which do depend on λ, then it

is hard to say what will happen with λ−1(N)DKL(ρ̂‖π).
Simulations seem to indicate that if λ(N) is any reasonable

increasing function of N , then λ(N) will converge to some

problem dependant constant.

The bound above has all the desired properties, but its rate

of convergence to zero as N → +∞ is very slow. In fact,

using [36], the results of Theorem 5.1 can be sharpened as

follows.

Theorem 5.2: Let Mπ denote the set of all absolutely

continuous densities w.r.t π. Under assumption 5.1 it holds

true that for any density π on hypothesis class F , any

δ ∈ (0, 1], and λ > 0 the following inequality holds with

probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f)+r̃N (λ,N) (32)

with

r̃N (λ,N) ,
1

λ

[
DKL(ρ||π) + ln

1

δ
+ Ψ̃ce,π(λ,N)

]

(33)

Ψ̃ce,π(λ,N) ,
1

2

(
Ψ̃1(λ,N) + Ψ̃2(λ,N)

)
(34)

Ψ̃1(λ,N) , lnEf∼π

(
1− C1,2(f) + C1,2(f)e

λ
N

C1,1(f)
)

(35)

Ψ̃2(λ,N) , lnEf∼π

(
e

λ2

N
C2(f)

)
(36)

and, with C , ce
√
nu + ny ,

C1,1(f) , 2‖Σgen‖ℓ1CḠf,2(f) (37)

C1,2(f) , Ḡf,1(f)‖Σgen‖ℓ1C (38)

C2(f) , 8(Ge(f) +Ge,1(f))
2C2(4Ge(f)C + 1)2 (39)

Ge,1 , ‖De‖2 +
∞∑

k=0

(k + 1)‖CeA
k
eKe‖2 (40)

For proof of Theorem 5.2, see Proof A.26, in the Appendix.

If λN =
√
N is chosen, then the error bound r̄N (λN ) above

converges to zero as N → ∞ at a rate O( 1√
N
).

VI. NUMERICAL EXAMPLE

For the sake of illustration let us assume that data is

generated by

x(t+ 1) =

[
0.16 −0.3
0 −0.05

]
x(t) +

[
0.33 −0.75
0 −0.09

]
eg(t)

[
y(t)
u(t)

]
=

[
1 1
0 1

]
x(t) + eg(t),

Following the two theorems in the paper, we will consider

two cases

• Unbounded innovation noise: eg(t) ∼ N (0, Qe),

Qe =

[
0.054 0.018
0.018 0.248

]
(41)

• Bounded innovation noise: eg(t) is distributed accord-

ing to zero-mean truncated gaussian, s.t. ce = 1, and

E[eg(t)e
T
g (t)] ≈ Qe (42)

We will assume that the predictors are fully parameterised,

i.e. for the case of w(t) = u(t)

Â(θ) =

[
θ1 θ2
θ3 θ4

]
B̂(θ) =

[
θ5
θ6

]

Ĉ(θ) =
[
θ7 θ8

]
D̂(θ) =

[
θ9
]

for the case of w(t) = [yT (t),uT (t)]T

Â(θ) =

[
θ1 θ2
θ3 θ4

]
B̂(θ) =

[
θ10 θ5
θ11 θ6

]

Ĉ(θ) =
[
θ7 θ8

]
D̂(θ) =

[
0 θ9

]

Thus, with Σ(θ) = (Â(θ), B̂(θ), Ĉ(θ), D̂(θ)), we will define

our hypothesis class to be

F = {fΣ(θ)|γ(Â(θ)) < 1, Ḡf (f) < 10, θ ∈ R
11}

The prior is given by

π(f) = Zπ exp(−Ḡf (f)) (43)

with Zπ the normalisation term. This prior will act as

regularisation, penalising predictors with high ℓ1 norms. We

will use the Gibbs posterior

ρ(f |N) = Zρπ(f) exp(−λ(N)L̂N (f)) (44)

In order to compute the numerical value of rN , we can use

Markov-Chain Monte-Carlo methods, which means that we

only need to be able to evaluate

π̂(f) = exp(−Ḡf (f)) ∝ π(f) (45)

ρ̂(f) = π̂(f) exp(−λL̂N (f)) ∝ ρ(f) (46)

More precisely one can approximate rN , by only being able

to evaluate π̂(f) and β(f) , ρ̂(f)
π̂(f) ∝

ρ(f)
π(f)

In Figure 1 we see the convergence of the error term,

for the case of bounded noise. Note that the proposed

function λ(N) is close to numerically optimal (blue line

in Figure 1), asymptotically λ(N) ∝ ln
√
N , seem to be

optimal, one could try to find a less conservative scaling

g(F) < supf∈F max{Ggen,1Ge(f)
2, Ggen,2Ḡf (f)}. For
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Fig. 1. Numerical simulation of both cases (bounded and unbounded
noise), solid lines depict case of w = u, dashed lines show case of
w = [yT ,uT ]T , λ∗ is found by numerical optimisation, i.e. λ∗ =
argminλ rN (λ,N), the black horizontal line denotes a vacuous bound
for the bounded noise case, i.e. any bounds above that line are vacuous

the proposed PAC-Bayesian bounds to be useful, the bounds

should convergence faster than O( 1
ln

√
N
), since in most

applications collecting N = 1010 data points is not feasible.

Note that for N ≤ 460, for this system Theorem 5.1, yields

vacuous bounds, i.e. r̄N ≥ 2(C supf∈F Ge(f))
2. However

for Theorem 5.2, only for N ≤ 64, is the bound vacuous.

For the case of unbounded innovation noise, as stated

before we see in Figure 1 that it converges to a constant.

Unfortunately, since λ is bounded not much can be done.

However, since the noise is unbounded it is difficult to

determine if the bound is vacuous.

VII. CONCLUSION

In this paper we have derived two PAC-Bayesian error

bounds for stochastic LTI systems with inputs. For data

generated by an LTI system with sub-gaussian noise, we

see that the difference between empirical and generalised

loss is bounded from below, which intuitively should not

be the case. Thus, more work needs to be done, to obtain

less conservative bounds, or use a difference approach, i.e.

one can derive PAC-Bayesian type bounds based on different

change of measure inequalities.

For data generated by an LTI system with bounded innova-

tion noise, we have that the difference between empirical and

generalised loss will convergence to 0, slowly at the rate of

O( 1
ln

√
N
). That is the problem of minimising the empirical

loss, becomes equivalent to minimising the generalised loss,

at the aforementioned rate.

Future research will be directed towards extending these

results to more general state-space representations and using

the results of the paper for deriving oracle inequalities [3].
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APPENDIX

A. Proofs

In this section we provide the proofs of theorem 4.1 and 5.1 under the assumptions stated in the main text. To do so we

first prove a series of lemmas.

Lemma A.1: For random variable eg(t) ∼ N (0, Qe), the following holds

E[‖eg(t)‖r2] ≤ µmax(Qe)
r
2E[‖z(t)‖r2]

z(t) ∼ N (0, I),

where Qe = E[eg(t)e
T
g (t)], and µmax(Qe) denotes the maximal eigen value of Qe.

Proof A.1 (Proof of Lemma A.1): First, note z(t) = Q
− 1

2
e eg(t), and

‖eg(t)‖22 = eTg (t)eg(t) = zT (t)Q
1
2
e Q

1
2
e z(t) = zT (t)Qez(t)

therefore

‖eg(t)‖22 ≤ µmax(Qe)‖z(t)‖22
‖eg(t)‖r2 ≤ µmax(Qe)

r
2 ‖z(t)‖r2

E[‖eg(t)‖r2] ≤ µmax(Qe)
r
2E[‖z(t)‖r2]

Finally, note that z(t) ∼ N (0, I).
Lemma A.2: If z(t) ∼ N (0, Im), then

E[‖z(t)‖r2]2 ≤ 4((m+ r − 1)!)

Proof A.2 (Proof of Lemma A.2): First, notice that the distribution of ‖z(t)‖2 =
√∑m

i=1 z
2
i (t) is chi- distribution, as

such

E[‖z(t)‖r2] = 2
r
2
Γ(m+r

2 )

Γ(m2 )
(A.47)

We will use mathematical induction to prove the lemma.

For r = 0, lemma holds, since

E[‖z(t)‖02]2 =

(
2

0
2
Γ(m+0

2 )

Γ(m2 )

)2

= 1 ≤ 4(m− 1)!, ∀m ∈ N. (A.48)

for r = 1, lemma holds, as

E[‖z(t)‖12] = 2
1
2
Γ(m+1

2 )

Γ(m2 )
.

Notice that, for scalar x ∼ N (0, 1)

E[|x|k] = 2
k
2
Γ(k+1

2 )√
π

It is also known that

E[|x|k] =
{
(k − 1)!!

√
2
π , k odd

(k − 1)!!, k even

therefore,

2
k
2
Γ(k+1

2 )√
π

=

{
(k − 1)!!

√
2
π , k odd

(k − 1)!!, k even

Applying this to k = m and k = m− 1, we obtain

2
m
2
Γ(m+1

2 )√
π

=

{
(m− 1)!!

√
2
π , m odd

(m− 1)!!, m even

2
m−1

2
Γ(m2 )√

π
=

{
(m− 2)!!

√
2
π , (m− 1) odd, (m even)

(m− 2)!!, (m− 1) even, (m odd)



Now notice,

E[‖z(t)‖12] = 2
1
2
Γ(m+1

2 )

Γ(m2 )
=

2
m
2
Γ(m+1

2 )√
π

2
m−1

2

Γ(m2 )√
π

=
(m− 1)!!

(m− 2)!!
cm

cm =

{√
2
π , m even

√
π
2 , m odd

notice that cm ≤ 2 for all m, and therefore

E[‖z(t)‖12] ≤ 2
(m− 1)!!

(m− 2)!!
≤ 2(m− 1)!! (A.49)

Then

E[‖z(t)‖12]2 ≤ 4((m− 1)!!)2

Note that ((m−1)!!)2 ≤ m!. We can see that by contradiction: assume that ((m−1)!!)2 ≥ m!. Notice that m! = m!!(m−1)!!
and hence ((m−1)!!)2 ≥ m! implies (m−1)!! ≥ m!!. As (m−1)!! must be less than m!! we have a contradiction. Therefore

((m− 1)!!)2 ≤ m! holds and we have

E[‖z(t)‖12]2 ≤ 4m!.

That is, we have shown that for r = 0 and r = 1 Lemma A.2 holds.

Now suppose that for all k ≥ 2 and for all 0 ≤ r ≤ k

2
r
2
Γ(m+r

2 )

Γ(m2 )
≤ 4(m+ r − 1)!, (A.50)

We will show that (A.50) holds for r = k + 1 too. To this end, notice that

Γ

(
m+ k

2

)
= Γ

(
m+ k − 2

2
+ 1

)
=

m+ k − 2

2
Γ

(
m+ k − 2

2

)

Using this relation we obtain
(
2

k
2
Γ(m+k

2 )

Γ(m2 )

)2

=

((
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)(
2
m+ k − 2

2

))2

=

(
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)2(
2
m+ k − 2

2

)2

.

(A.51)

Now k − 2 ∈ [0, k], so we can apply to it the induction hypothesis. That is, for r = k − 2, (A.50) holds, i.e.,
(
2

r
2
Γ(m+r

2 )

Γ(m2 )

)
≤ 4(m+ r − 1)! = 4(m+ k − 3)!.

and therefore
(
2

k
2
Γ(m+k

2 )

Γ(m2 )

)2

≤ 4(m+ k − 3)!

(
4
(m+ k − 2)2

4

)

= 4(m+ k − 3)!(m+ k − 2)(m+ k − 2).

Using (m+ k − 2) ≤ (m+ k − 1), it follows that

(
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)2(
2
m+ k − 2

2

)2

≤ 4(m+ k − 3)!(m+ k − 2)(m+ k − 2) ≤ 4(m+ k − 1)!

Substituting the last inequality into (A.51), it follows that (A.50) holds for r = k + 1.

Lemma A.3: For random variable z ∼ N (0, Im), the even moments of ‖z‖2 are bounded by

E[‖z‖2r2 ] ≤ 2r(m+ r − 1)!



Proof A.3 (Proof of Lemma A.3): Clearly ‖z‖2 has the chi distribution,

E[‖z‖2r2 ] = 2
2r
2
Γ(m+2r

2 )

Γ(m2 )
= 2r

Γ(m2 + r)

Γ(m2 )

Γ
(m
2

+ r
)
= Γ

(m
2

+ (r − 1) + 1
)
=
(m
2

+ (r − 1)
)
Γ
(m
2

+ (r − 1)
)

=
(m
2

+ (r − 1)
)(m

2
+ (r − 2)

)
. . .

m

2
Γ
(m
2

)

E[‖z‖2r2 ] = 2r
(
m
2 + (r − 1)

) (
m
2 + (r − 2)

)
. . . m

2 Γ
(
m
2

)

Γ
(
m
2

)

notice m
2 ≤ m, then

E[‖z‖2r2 ] ≤ 2r
(m+ r − 1)!

m!
≤ 2r(m+ r − 1)!

Combining Lemmas (A.1 and A.2), we obtain the following lemma.

Lemma A.4: Let r ∈ N

E[‖eg(t)‖2r2 ] ≤ µmax(Qe)
r2r(m+ r − 1)!

Combining Lemmas (A.1 and A.3), we obtain the following lemma.

Lemma A.5: Let r ∈ {1, 3, 5, . . .}
E[‖eg(t)‖r2] ≤ 2µmax(Qe)

r
2

√
(m+ r − 1)!

Lemma A.6: Let z(t) be any stationary process, and r ∈ N, then for a stochastic process s(t) =
∑∞

k=0 αkz(t− k), with∑∞
k=0 ‖αk‖ ≤ +∞, the following holds

E[‖s(t)‖r] ≤
( ∞∑

k=0

‖αk‖
)r

E[‖z(t)‖r] (A.52)

Proof A.4 (of Lemma A.6):

E[‖s(t)‖r] = E

[
‖

∞∑

k=0

αkz(t − k)‖r
]
≤ E

[( ∞∑

k=0

‖αk‖‖z(t− k)‖
)r]

= E

[ ∞∑

k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

‖αki
‖

r∏

i=0

‖z(t− ki)‖
)]

=

∞∑

k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

‖αki
‖E
[

r∏

i=0

‖z(t− ki)‖
])

(A.53)

By the inequality of arithmetic and geometric means

r∏

i=0

‖z(t− ki)‖ ≤ 1

r

r∑

i=1

‖z(t− ki)‖r (A.54)

then

E

[
r∏

i=0

‖z(t− ki)‖
]
≤ E

[
1

r

r∑

i=1

‖z(t− ki)‖r
]
=

1

r

r∑

i=1

E [‖z(t− ki)‖r] (A.55)

By assumption z(t) is stationary, therefore E[‖z(t− ki)‖r] = E[‖z(t)‖r], i.e. E[‖z(t)‖r] does not depend on ki, and so we

obtain the statement of the lemma

E[‖s(t)‖r] ≤ E[‖z(t)‖r]
∞∑

k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

‖αki
‖
)

=

( ∞∑

k=0

‖αk‖
)r

E[‖z(t)‖r] (A.56)

Lemma A.7: Let r ∈ N, then with notation as above the following holds

E[‖z∞(t)− zf (t)‖r] ≤ γ̂rt

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.57)

Proof A.5 (of Lemma A.7): Notice that the process s(t) = z∞(t)− zf (t) = ŷf (t|0)− ŷf (t) can be expressed as:

s(t) =

(
t∑

k=1

ĈÂk−1B̂w(t− k) + D̂w(t)

)
−
( ∞∑

k=1

ĈÂk−1B̂w(t− k) + D̂w(t)

)
(A.58)

= −
∞∑

k=t+1

ĈÂk−1B̂w(t− k) (A.59)



in the case of w(t) = u(t)

s(t) = −
∞∑

k=t+1

ĈÂk−1B̂u(t− k) =

∞∑

k=0

αk,t(s, 1)

[
y(t− k)
u(t− k)

]
(A.60)

with

αk,t(s, 1) =

{[
0 −ĈÂk−1B̂

]
, k ≥ t+ 1

0, k < t+ 1
(A.61)

In the case of w(t) =
[
yT (t) uT (t)

]T

s(t) = −
∞∑

k=t+1

ĈÂk−1B̂

[
y(t − k)
u(t− k)

]
=

∞∑

k=0

αk,t(s, 2)

[
y(t− k)
u(t− k)

]
(A.62)

with

αk,t(s, 2) =

{
−ĈÂk−1B̂, k ≥ t+ 1

0, k < t+ 1
(A.63)

Notice that in both cases we can upper-bound with the same quantity ‖αk,t(s, 1)‖ ≤ ‖αk,t(s)‖, and ‖αk,t(s, 2)‖ ≤ ‖αk,t(s)‖
with

‖αk,t(s)‖ =

{
‖ĈÂk−1B̂‖, k ≥ t+ 1

0, k < t+ 1
(A.64)

Since w(t) is a stationary process, and by assumption predictors are stable, i.e. all eigenvalues of Â are inside unit circle,

thus
∑∞

k=0 ‖αk,t(s)‖ ≤ +∞, ∀t ≥ 0, we apply Lemma A.6, and obtain

E[‖s(t)‖r] = E[‖z∞(t)− zf (t)‖r] ≤
( ∞∑

k=0

‖αk,t(s)‖
)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.65)

≤
( ∞∑

k=t+1

‖Ĉ‖‖Âk−1‖‖B̂‖
)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.66)

with ‖Âk‖ ≤ M̂γ̂k, for some M > 1 and γ̂ ∈ [γ̂∗, 1), where γ̂∗ is the spectral radius of Â, then with a sum of geometric

series, we get the statement of the lemma

E[‖z∞(t)− zf (t)‖r] ≤
(
M̂‖Ĉ‖‖B̂‖ γ̂t

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

. (A.67)

Lemma A.8: Let r ∈ N, then with notation as above the following holds

E [‖z∞(t)‖r] ≤
(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.68)

Proof A.6 (of Lemma A.8): Notice that z∞(t) = y(t) − ŷf (t) can be expressed as

In the case of w(t) = u(t),

z∞(t) = y(t) −
∞∑

k=1

ĈÂk−1B̂u(t− k)− D̂u(t) =

∞∑

k=0

αk(z∞, 1)

[
y(t− k)
u(t− k)

]
(A.69)

with

αk(z∞, 1) =





[
I −D̂

]
, k = 0[

0 −ĈÂk−1B̂
]
, k > 0

(A.70)

in the case of w(t) = [yT (t),uT (t)]T

z∞(t) = y(t) −
∞∑

k=1

ĈÂk−1B̂

[
y(t − k)
u(t− k)

]
− D̂

[
y(t)
u(t)

]
=

∞∑

k=0

αk(z∞, 2)

[
y(t− k)
u(t− k)

]
(A.71)



Recall that in this case, we assume D̂ = [0, D̂u], note that ‖D̂‖ = ‖D̂u‖ and thus

αk(z∞, 2) =

{[
I −D̂u

]
, k = 0

−ĈÂk−1B̂, k > 0
(A.72)

Note that in both cases we can upper-bound with the same quantity, i.e. ‖αk(z∞)‖ ≤ ‖αk(z∞)‖, and ‖αk(z∞, 2)‖ ≤
‖αk(z∞)‖, with

‖αk(z∞)‖ ≤
{
1 + ‖D̂‖, k = 0

‖ĈÂk−1B̂‖, k > 0
(A.73)

Since, in both cases,
∑∞

k=0 ‖αk(z∞)‖ ≤ +∞, due to stability of the predictor, and
[
yT (t) uT (t)

]T
is stationary, we apply

Lemma A.6, to both cases, and upper bound by (A.73), to obtain an upper-bound for both cases:

E [‖z∞(t)‖r] ≤
( ∞∑

k=0

‖αk(z∞, 1)‖
)4

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.74)

≤
(
‖I‖+ ‖D̂‖+

∞∑

k=1

‖ĈÂk−1B̂‖
)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.75)

≤
(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.76)

Lemma A.9: Let r ∈ N, then with notation as above, the following holds

E [‖zf (t)‖r] ≤
(
‖I‖+ ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.77)

Proof A.7 (of Lemma A.9): Notice that the process zf (t) = y(t) − ŷ(t|0) can be expressed as:

In the case of w(t) = u(t)

zf (t) = y(t) −
t∑

k=1

ĈÂk−1B̂u(t− k)− D̂u(t) =

∞∑

k=0

αk(zf , 1)

[
y(t − k)
u(t− k)

]
(A.78)

with

αk(zf , 1) =





[
I −D̂

]
, k = 0[

0 −ĈÂk−1B̂
]
, 0 < k ≤ t

0, k > t

(A.79)

In the case of w(t) = [yT (t),uT (t)]T ,

zf (t) = y(t) −
t∑

k=1

ĈÂk−1B̂

[
y(t − k)
u(t− k)

]
− D̂

[
y(t)
u(t)

]
=

∞∑

k=0

αk(zf , 2)

[
y(t− k)
u(t− k)

]
(A.80)

with

αk(zf , 2) =





[
I 0

]
− D̂, k = 0

−ĈÂk−1B̂, 0 < k ≤ t

0, k > t

(A.81)

Note that for both cases we can upper-bound by the same quantity ‖αk(zf , 1)‖ ≤ ‖αk(zf )‖, and ‖αk(zf , 2)‖ ≤ ‖αk(zf )‖,

with

‖αk(zf )‖ =





1 + ‖D̂‖, k = 0

‖ĈÂk−1B̂‖, 0 < k ≤ t

0, k > t

(A.82)



Since by assumption predictors are stable, we apply Lemma A.6 and obtain

E [‖zf (t)‖r] ≤
( ∞∑

k=0

‖αk(zf )‖
)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.83)

≤
(
‖I‖+ ‖D̂‖+

t∑

k=1

‖ĈÂk−1B̂‖
)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.84)

≤
(
‖I‖+ ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

t∑

k=1

γ̂k−1

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.85)

=

(
‖I‖+ ‖D̂‖+ M̂‖B̂‖‖Ĉ‖1− γ̂t

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.86)

Notice that γ̂t > 0, ∀t, thus we obtain the statement of the lemma

E [‖zf (t)‖r] ≤
(
‖I‖+ ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

. (A.87)

Lemma A.10: Let r ∈ N, then with notation as above, the following holds.

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

≤ ‖Σgen‖rℓ1Gr(eg) (A.88)

with

‖Σgen‖ℓ1 = ‖I‖+
∞∑

k=1

‖CgA
k−1
g Kg‖ (A.89)

Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (nu + ny +

r
2 − 1)!, r is even

2µmax(Qe)
r
2

√
(nu + ny + r − 1)!, r is odd

(A.90)

Proof A.8 (of Lemma A.10): Note that

[
y(t)
u(t)

]
can be expressed as

[
y(t)
u(t)

]
=

∞∑

k=1

CgA
k−1
g Kgeg(t− k) + eg(t) =

∞∑

k=0

αk(y,w)eg(t− k) (A.91)

with e(t) stationary, we apply Lemma A.6 to get

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

≤
( ∞∑

k=0

‖αk(y,w)‖
)r

E [‖eg(t)‖r] (A.92)

Let us denote ‖Σgen‖ℓ1 =
∑∞

k=0 ‖αk(y,w)‖, the ℓ1 norm of the generative system. Furthermore we can apply Lemma A.4

and Lemma A.5 to obtain,

E[‖eg(t)‖r2] ≤ Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (nu + ny +

r
2 − 1)!, r is even

2µmax(Qe)
r
2

√
(nu + ny + r − 1)!, r is odd

with this we have the statement of the lemma.

Lemma A.11: Let r ∈ N, and r ≥ 0, then for a, b ∈ R the following holds

(a+ b)2r ≤ 22r−1a2r + 22r−1b2r (A.93)

Proof A.9 (of Lemma A.11):

(a+ b)2r = 22r
1

22r
(a+ b)2r = 22r

(
1

2
(a+ b)

)2r

(A.94)

since φ(x) = x2r is convex for r ≥ 0, we have by definition of convexity

(
1

2
(a+ b)

)2r

= φ

(
a+ b

2

)
≤ 1

2
φ(a) +

1

2
φ(b) (A.95)

thus we obtain the statement of the lemma

(a+ b)2r ≤ 22r

2
(a2r + b2r) = 22r−1(a2r + b2r) (A.96)



Lemma A.12: Let r ∈ N, then with notation as above, the following holds

E[‖VN (f)− L̂N (f)‖r] ≤ (nu + ny + r − 1)!√
N

(
4ḠgenḠf (f)

)r
(A.97)

with

Ḡf (f) =

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)
M̂‖Ĉ‖‖B̂‖
(1− γ̂)

3
2

(A.98)

Ḡgen = ‖Σgen‖2ℓ1µmax(Qe) (A.99)

Proof A.10: with z∞(t) = y(t) − ŷf (t), and zf (t) = y(t) − ŷf (t|0), we start by applying triangle inequalities

E[‖VN (f) − L̂N (f)‖r] = E

[∣∣∣∣∣
1

N

N−1∑

t=0

‖z∞(t)‖2 − ‖zf (t)‖2
∣∣∣∣∣

r]
≤ E

[(
1

N

N−1∑

t=0

∣∣‖z∞(t)‖2 − ‖zf (t)‖2
∣∣
)r]

(A.100)

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

E




r∏

j=1

∣∣‖z∞(tj)‖2 − ‖zf (tj)‖2
∣∣

 (A.101)

Now using the fact that |a2 − b2| = |(a− b)(a+ b)| = |a− b|(a+ b), since a, b ≥ 0, we get

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖| (‖z∞(tj)‖ + ‖zf (tj)‖)


 (A.102)

We apply Cauchy-Schwarz, i.e. E[XY ] ≤ |E[XY ]| ≤
√
E[X2]

√
E[Y 2], with X =

∏r
j=1 |‖z∞(tj)‖ − ‖zf (tj)‖|, and

Y =
∏r

j=1 (‖z∞(tj)‖ + ‖zf (tj)‖),

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√√E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2



√√√√√E




r∏

j=1

(‖z∞(tj)‖ + ‖zf (tj)‖)2



(A.103)

For now let’s focus on E

[∏r
j=1 |‖z∞(tj)‖ − ‖zf (tj)‖|2

]
, by applying reverse triangle inequality we obtain

E




r∏

j=1

|‖z∞(t)‖ − ‖zf (t)‖|2

 ≤ E




r∏

j=1

‖z∞(t)− zf (t)‖2

 (A.104)

now we apply the inequality of arithmetic-geometric means

E




r∏

j=1

‖z∞(t)− zf (t)‖2

 ≤ 1

r

r∑

j=1

E[‖z∞(t)− zf (t)‖2r] (A.105)

by applying Lemma A.7, we obtain the first term

E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2

 ≤

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]
1

r

r∑

j=1

γ̂2rtj (A.106)

Now for the second term E

[∏r
j=1 (‖z∞(tj)‖ + ‖zf (tj)‖)2

]
, we apply the inequality of arithmetic-geometric means

E




r∏

j=1

(‖z∞(tj)‖+ ‖zf (tj)‖)2

 ≤ 1

r

r∑

j=1

E

[
(‖z∞(tj)‖+ ‖zf (tj)‖)2r

]
(A.107)

By Lemma A.11, we obtain

1

r

r∑

j=1

E

[
(‖z∞(tj)‖+ ‖zf (tj)‖)2r

]
≤ 22r−1

r

r∑

j=1

(
E
[
‖z∞(tj)‖2r

]
+E

[
‖zf (tj)‖2r

])
(A.108)



By Lemma A.8 and Lemma A.9, we obtain

22r−1

r

r∑

j=1

(
E
[
‖z∞(tj)‖2r

]
+E

[
‖zf (tj)‖2r

])
≤ 22r

r

r∑

j=1

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.109)

= 22r

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.110)

Now taking (A.244) and (A.106) back to (A.230), we have

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√√E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2



√√√√√E




r∏

j=1

(‖z∞(tj)‖+ ‖zf (tj)‖)2



≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√
(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]
1

r

r∑

j=1

γ̂2rtj

·

√√√√22r

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.111)

E[‖VN (f)− L̂N (f)‖r] ≤ 2r

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

· 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√1

r

r∑

j=1

γ̂2rtj (A.112)

Note that we can write

1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√1

r

r∑

j=1

γ̂2rtj =
1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

φ(
1

r

r∑

j=1

γ̂2rtj ) (A.113)

thus we can apply Jensen’s inequality for concave function φ(x) =
√
x, i.e. φ

(
1

‖S‖
∑

i∈S xi

)
≥ 1

‖S‖
∑

i∈S φ(xi), thus we

obtain

1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√1

r

r∑

j=1

γ̂2rtj ≤

√√√√ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

1

r

r∑

j=1

γ̂2rtj (A.114)

Now by commuting the sums we get

√√√√ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

1

r

r∑

j=1

γ̂2rtj =

√√√√1

r

r∑

j=1

1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

γ̂2rtj (A.115)

now notice that γ̂2rtj only depend on one sum, for which we can use the sum of geometric series, after which the same

term will be repeated N r−1 times, therefore

√√√√1

r

r∑

j=1

1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

γ̂2rtj =

√√√√1

r

r∑

j=1

N r−1

N r

1− γ̂2rN

1− γ̂2r
=

1√
N

√
1− γ̂2rN

1− γ̂2r
(A.116)

since γ̂2rN ≥ 0, and (1− γ̂)
r
2 ≤ (1− γ̂2r)

1
2 , since

(1− γ̂)
r
2 ≤ ((1− γ̂r)(1 + γ̂r))

1
2 (A.117)

1 ≤ (1 + γ̂r) (A.118)



we obtain

E[‖VN (f)− L̂N (f)‖r] ≤ 2r√
N

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r(
M̂‖Ĉ‖‖B̂‖
(1 − γ̂)

3
2

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.119)

We can apply Lemma A.10, to get

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]
≤ ‖Σgen‖2rℓ1G2r(eg) (A.120)

since 2r is always even, then

G2r(eg) = 2rµmax(Qe)
r(nu + ny + r − 1)! (A.121)

and with this we obtain the statement of the lemma

E[‖VN (f)− L̂N (f)‖r] ≤ 22r√
N

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r (
M̂‖Ĉ‖‖B̂‖
(1− γ̂)

3
2

)r

· ‖Σgen‖2rℓ1µmax(Qe)
r(nu + ny + r − 1)! (A.122)

with some algebraic manipulation we get

E[‖VN (f)−L̂N (f)‖r] ≤ (nu + ny + r − 1)!√
N

(
4

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)
M̂‖Ĉ‖‖B̂‖
(1− γ̂)

3
2

‖Σgen‖2ℓ1µmax(Qe)

)r

(A.123)

Lemma A.13: With notation as above for 0 < λ < 1
4nwḠgenḠf (f)

following holds

E[eλ|VN (f)−L̂N (f)|] ≤ 1 +
(ny + nu)!√

N

4λḠgenḠf (f)

1− 4λ(ny + nu)ḠgenḠf (f)
(A.124)

Proof A.11 (of Lemma A.13): with X = λ|VN (f)− L̂N (f)|

E[eλ(VN (f)−L̂N (f))] = 1 +

∞∑

r=1

λr

r!
E[|VN (f)− L̂N (f)|r] ≤ 1 +

∞∑

r=1

λr

r!

(nu + ny + r − 1)!√
N

(
4ḠgenḠf (f)

)r
(A.125)

Furthermore, with nw = nu + ny

(nw + r − 1)!

r!
= nw!

nw + 1

2

nw + 2

3
. . .

nw + r − 1

r

and as nw+r−1
r ≤ nw, for all r ≥ 1, then

(nw + r − 1)!

r!
≤ nw! (nw)

r−1
= nw!

(nw)
r

nw
=

nw!

nw
(nw)

r
= (nw − 1)!(nw)

r.

this allows us to write

E[eλ(VN (f)−L̂N (f))] ≤ 1 +
(nw − 1)!√

N

∞∑

r=1

(
4λnwḠgenḠf (f)

)r
(A.126)

the infinite sum is absolutely convergent if

4λnwḠgenḠf (f) < 1

that means that

0 < λ <
1

4nwḠgenḠf (f)
(A.127)

under this condition we can write

E[eλ(VN (f)−L̂N (f))] ≤ 1 +
(nw − 1)!√

N

4λnwḠgenḠf (f)

1− 4λnwḠgenḠf (f)
= 1 +

nw!√
N

4λḠgenḠf (f)

1− 4λnwḠgenḠf (f)
(A.128)

Lemma A.14: Let yν(t), ŷf,ν(t), ŷf,ν(t|s) ∈ R
1 denote the ν’th component of y(t), ŷf (t), ŷf (t|s) respectively,

Lν(f) , E[(ŷf,ν(t)− yν(t))
2] = lim

s→−∞
E[(ŷf,ν(t|s)− yν(t))

2] (A.129)

VN,ν(f) ,
1

N

N−1∑

t=0

(ŷf,ν(t)− yν(t))
2 (A.130)



and let σ(r), be such that the following holds.

σ(r) ≥ sup
t,k,l

E[‖e(t, k, l)‖r2] (A.131)

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k 6= j
(A.132)

Then the raw moments are bounded

E[(Lν(f)−VN,ν(f))
r ] ≤ 1

N
σ(r)4(r − 1)Ge(f)

2r (A.133)

Proof A.12 (Proof of Lemma A.14): The prediction error can be expressed as

(yν(t)− ŷf,ν(t)) =
∞∑

k=0

αkeg(t− k)

with

αk = αk(ν) =

{
Deν , k = 0

CeνA
k−1
e Ke, k > 0

where Deν = 1νDe, and Ceν = 1νCe denote the ν’th row of matrices De, Ce respectively. Then generalised loss Lν(f)
for component ν is expressed as

Lν(f) = E[(yν(t)− ŷf,ν(t))
2]

= E


trace



( ∞∑

k=0

αkeg(t− k)

)( ∞∑

k=0

αkeg(t− k)

)T





=

∞∑

k=0

αkQeα
T
k

and infinite horizon prediction loss is

VN,ν(f) =
1

N

N−1∑

t=0

(yν(t)− ŷf,ν(t))
2

Lν(f)− VN,ν(f) =
1

N

N−1∑

t=0




∞∑

k=0

αkQeα
T
k −

∞∑

k=0

∞∑

j=0

αkeg(t− k)eg(t− j)αT
k




=
1

N

N−1∑

t=0

∞∑

k=0

∞∑

j=0

αke(t, k, j)α
T
j

e(t, k, j) =

{
trace(Qe)− eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k 6= j

For ease of notation let us define

z(t, k, j) = αke(t, k, j)α
T
j

then

E[(Lν(f)− VN,ν(f))
r]

=
1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

∞∑

k1,j1=0

· · ·
∞∑

kr ,jr=0

E

[
r∏

l=1

z(tl, kl, jl)

]

Note that, with i.i.d. innovation noise eg(t), if

tr − kr /∈ {ti − ki, ti − ji}r−1
i=1

∧ tr − jr /∈ {ti − ki, ti − ji}r−1
i=1

or similarly

{tr − kr, tr − jr} ∩ {ti − ki, ti − ji}r−1
i=1 = ∅ (A.134)



then z(tr, kr, jr) is independent of z(ti, ki, ji). Moreover, notice that E(z(tr , kr, jr)] = 0. Hence, if (A.134), it holds that

E

[
r∏

l=1

z(tl, kl, jl)

]
= E

[
r−1∏

l=1

z(tl, kl, jl)

]
E[z(tr, kr, jr)]︸ ︷︷ ︸

=0

= 0. (A.135)

Let us denote

Z = {ti − ki + kr, ti − ji + kr, ti − ki + jr, ti − ji + jr}r−1
i=1 .

Then using (A.135) for those {tl, kl, jl}rl=1 which satisfy (A.134), it follows that

E[(Lν(f)− VN,ν(f))
r] =

1

N r

N−1∑

t1=0

· · ·
N−1∑

tr−1=0

∞∑

k1,j1=0

· · ·
∞∑

kr ,jr=0

∑

tr∈Z
E

[
r∏

l=1

z(tl, kl, jl)

]
. (A.136)

Note that

E

[
r∏

l=1

z(tl, kl, jl)

]
≤
∣∣∣∣∣E
[

r∏

l=1

z(tl, kl, jl)

]∣∣∣∣∣ ≤ E

[
r∏

l=1

|z(tl, kl, jl)|
]
.

Let us focus on |z(ti, ki, ji)|:

|z(tl, kl, jl)| ≤ ‖αkl
‖2‖αjl‖2‖e(tl, kl, jl)‖2

E

[
r∏

l=1

|z(tl, kl, jl)|
]
≤

r∏

l=1

‖αkl
‖2‖αjl‖2E

[
r∏

l=1

‖e(tl, kl, jl)‖2
]

Then using Arithmetic Mean-Geometric Mean Inequality, [38] we have

E

[
r∏

l=1

‖e(tl, kl, jl)‖
]
≤ 1

r

r∑

l=1

E[‖e(tl, kl, jl)‖r2] (A.137)

Now, let σ(r), be such that the following holds.

σ(r) ≥ sup
t,k,l

E[‖e(t, k, l)‖r2] (A.138)

Then, 1
r

∑r
l=1 E[‖e(tl, kl, jl)‖r2] ≤ σ(r) and then from (A.137) it follows that

E

[
r∏

l=1

|e(tl, kl, jl)|
]
≤ σ(r) (A.139)

Combining this with (A.136), it follows that

E[(Lν(f)− VN,ν(f))
r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr−1=0

∞∑

k1,j1=0

· · ·
∞∑

kr ,jr=0

∑

tr∈Z
σ(r)

r∏

l=1

‖αkl
‖2‖αjl‖2 (A.140)

and the quantity σ(r)
∏r

l=1 ‖αkl
‖2‖αjl‖2 does not depend on tr. Moreover

∑

tr∈Z
σ(r)

r∏

l=1

‖αkl
‖2‖αjl‖2 ≤ σ(r)

r∏

l=1

‖αkl
‖2‖αjl‖2|Z|,

where |Z| is the cardinality of the set Z . Note |Z| ≤ 4(r − 1), therefore

∑

tr∈Z
σ(r)

r∏

l=1

‖αkl
‖2‖αjl‖2 ≤ σ(r)

r∏

l=1

‖αkl
‖2‖αjl‖24(r − 1),

Combining the latter inequality with (A.140), it follows that

E[(Lν(f)− VN,ν(f))
r ] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)

∞∑

k1,j1=0

· · ·
∞∑

kr ,jr=0

r∏

l=1

‖αkl
‖2‖αjl‖2 (A.141)



Now notice

Ge,ν(f)
2r =

( ∞∑

k=0

‖αk‖2
)2r

=




∞∑

k,j=0

‖αk‖2‖αj‖2




r

=

∞∑

k1,j1=0

· · ·
∞∑

kr ,jr=0

r∏

l=1

‖αkl
‖2‖αjl‖2

therefore we obtain

E[(Lν(f)− VN,ν(f))
r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)Ge,ν(f)
2r

≤ 1

N r
N r−1σ(r)4(r − 1)Ge,ν(f)

2r

≤ 1

N
σ(r)4(r − 1)Ge,ν(f)

2r

and since

‖αk(ν)‖ =

{
‖1νDe‖ ≤ ‖De‖, k = 0

‖1νCeA
k−1
e Ke‖ ≤ ‖CeA

k−1
e Ke‖, k > 0

then

Ge,ν ≤ Ge = ‖De‖+
∞∑

k=1

‖CeA
k−1
e Ke‖ (A.142)

and since 2r > 1 we obtain the statement of the lemma

E[(Lν(f)− VN,ν(f))
r] ≤ 1

N
σ(r)4(r − 1)Ge(f)

2r (A.143)

Lemma A.15: with notation as above the following holds

E[(L(f)− VN (f))r] ≤ nr
y

N
σ(r)4(r − 1)Ge(f)

2r (A.144)

Proof A.13 (of Lemma A.15): By definition

L(f) = E[(y(t)− ŷf (t))
T (y(t) − ŷf (t))] =

ny∑

ν=1

E[(yν(t)− ŷf,ν(t))
2] =

ny∑

ν=1

Lν(f) (A.145)

VN (f) =
1

N

N−1∑

t=0

(y(t) − ŷf (t))
T (y(t) − ŷf (t)) =

ny∑

ν=1

1

N

N−1∑

t=0

(yν(t)− ŷf,ν(t))
2 =

ny∑

ν=1

VN,ν(f) (A.146)

(A.147)

then

E[(L(f)− VN (f))r ] = E

[( ny∑

ν=1

Lν(f)− VN,ν(f)

)r]
=

ny∑

ν1

· · ·
ny∑

νr

E

[
r∏

i=1

(Lνi(f)− VN,νi(f))

]
(A.148)

Then using Arithmetic Mean-Geometric Mean Inequality, [38], we get
∏r

i=1(Lνi (f) − VN,νi(f)) ≤ 1
r

∑r
i=1(Lνi (f) −

VN,νi(f))
r, and thus

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑

i=1

E [(Lνi (f)− VN,νi(f))
r ] (A.149)

From Lemma A.14, we have E[(Lν(f)− VN,ν(f))
r] ≤ 1

N σ(r)4(r − 1)Ge(f)
2r, thus

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑

i=1

1

N
σ(r)4(r − 1)Ge(f)

2r (A.150)

=
nr
y

N
σ(r)4(r − 1)Ge(f)

2r (A.151)



Lemma A.16: let m = nu + ny, then for r ≥ 2, the quantity

σ(r) = max {(µmax(Qe)
r4(m+ r − 1)!), (µmax(Qe)

r3r(m+ r − 1)!)} = µmax(Qe)
r3r(m+ r − 1)!

satisfies

σ(r) ≥ sup
t,k,l

E[‖e(t, k, l)‖r2]
Proof A.14 (Proof of Lemma A.16): Recall that

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k 6= j

First let us take the case when k 6= j. Then

E[‖e(t, k, l)‖r2] = E[‖ − eg(t− k)eTg (t− j)‖r2]
Again as eg(t) is i.i.d. we have

E[‖e(t, k, l)‖r2] ≤ E[‖eg(t− k)‖r2]E[‖eg(t− j)‖r2]
and due to stationarity of eg(t), we have E[‖eg(t− k)‖r2] = E[‖eg(t− j)‖r2], therefore

E[‖e(t, k, l)‖r2] ≤ E[‖eg(t)‖r2]2

and again due to stationarity of eg(t), the moments do not depend on t, and using Lemma A.5 we obtain

σ(r) ≥ µmax(Qe)
r4((m+ r − 1)!) ≥ E[‖e(t, k, l)‖r2]2

Now let us take the case when k = j. Then

E[‖e(t, k, l)‖r2] = E[‖Qe − eg(t− k)eTg (t− k)‖r2]
≤ E[(‖Qe‖2 + ‖eg(t)‖22)r]

= E




r∑

j=0

(
r
j

)
‖Qe‖r−j

2 ‖eg(t)‖2j2




=

r∑

j=0

(
r
j

)
‖Qe‖r−j

2 E‖eg(t)‖2j2 ]

As Qe is a positive definite matrix,‖Qe‖2 = µmax(Qe), and hence

E[‖e(t, k, l)‖r2] ≤
r∑

j=0

(
r
j

)
µmax(Qe)

r−jE‖eg(t)‖2j2 ]

using Lemma A.4 we obtain

E[‖e(t, k, l)‖r2] ≤
r∑

j=0

(
r
j

)
µmax(Qe)

r−jµmax(Qe)
j2j(m+ j − 1)!

≤ µmax(Qe)
r

r∑

j=0

(
r
j

)
2j(m+ j − 1)!.

Since for j ≤ r, (m+ j − 1)! ≤ (m+ r − 1)!, hence

E‖e(t, k, l)‖2r2 ] ≤ µmax(Qe)
r(m+ r − 1)!

r∑

j=0

(
r
j

)
2j

Notice 3r = (1 + 2)r =
∑r

j=0

(
r
j

)
2j , hence

E‖eg(t, k, l)‖2r2 ] ≤ µmax(Qe)
r3r(m+ r − 1)!

Hence,

σ(r) = max {µmax(Qe)
r4(m+ r − 1)!,

µmax(Qe)
r3r(m+ r − 1)!} .



As we are interested in moments higher or equal to two, i.e. r ≥ 2, then

σ(r) = µmax(Qe)
r3r(m+ r − 1)!.

Lemma A.17: For λ ≤
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

, the moment generating function is bounded

E

[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1− 3(m+ 1)λnyµmax(Qe)Ge(f)2)
(A.152)

Proof A.15 (Proof of Lemma A.17): We can bound the moment generating function via series expansion. First note that

E[L(f)− VN (f)] = 0, and hence

E

[
eλ(L(f)−VN (f))

]
= 1 + λE[L(f)− VN (f)] +

∞∑

r=2

λr

r!
E[(L(f)− VN (f))r].

Then using Lemma A.15 we get

E

[
eλ(L(f)−VN (f))

]
≤ 1 +

∞∑

r=2

λr

r!

nr
y

N
σ(r)4(r − 1)Ge(f)

2r (A.153)

Now using Lemma A.16 we obtain

E

[
eλ(L(f)−VN (f))

]
≤ 1 +

1

N

∞∑

r=2

(m+ r − 1)!

r!
4(r − 1)

(
3nyλµmax(Qe)Ge(f)

2
)r

Notice that 4(r − 1) ≤ 2r, for r ∈ N. Furthermore

(m+ r − 1)!

r!
= m!

m+ 1

2

m+ 2

3
. . .

m+ r − 1

r

and as m+r−1
r ≤ m+1

2 , for all r ≥ 2, then

(m+ r − 1)!

r!
≤ m!

(
m+ 1

2

)r−1

= m!

(
m+1
2

)r
m+1
2

= 2
m!

m+ 1

(
m+ 1

2

)r

.

Hence, we can derive the following inequality:

E

[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

m!

m+ 1

∞∑

r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

.

Notice that if

|3(m+ 1)λnyµmax(Qe)Ge(f)
2| < 1,

then the infinite sum
∑∞

r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

is absolutely convergent, and

∞∑

r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

=

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)2

1− 3(m+ 1)λnyµmax(Qe)Ge(f)2

To sum up, if

λ ≤
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

.

then

E

[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

m!

m+ 1

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)2

1− 3(m+ 1)λnyµmax(Qe)Ge(f)2

≤ 1 +
2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1 − 3(m+ 1)λnyµmax(Qe)Ge(f)2)
.

Lemma A.18: For measurable functions X(f), Y (f) on F , With probability at least 1− δ, the following holds

∀ρ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψπ(λ,N)

]
, (A.154)

with

Ψπ(λ,N) = lnEf∼πE[eλ(X(f)−Y (f))] (A.155)



Proof A.16 ( of Lemma A.18): Let us apply the Donsker & Varadhan variational formula to the function λ(X(f)−Y (f))
it then follows that

sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)−KL(ρ̂‖π)) = lnEf∼πe

λ(X(f)−Y (f)), (A.156)

In particular,

esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π)) = elnEf∼πe
λ(X(f)−Y (f))

= Ef∼πe
λ(X(f)−Y (f)) (A.157)

and hence

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π))] = E[Ef∼πe
λ(X(f)−Y (f))] = (A.158)

Ef∼πE[eλ(X(f)−Y (f))] = eΨπ(λ,N)

with

Ψπ(λ,N) = lnEf∼πE[eλ(X(f)−Y (f))] (A.159)

Hence,

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π)]e−Ψπ(λ,N) = 1 (A.160)

Since

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π)]e−Ψπ(λ,N) =

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π)−Ψπ(λ,N)] (A.161)

it follows that

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂‖π))−Ψπ(λ,N)] = 1 (A.162)

By Chernoff’s bound applied to the random variable X = supρ̂(λEf∼ρ̂(f)− λEf∼ρ̂Y (f)−KL(ρ̂‖π))−Ψπ(λ,N) it then

follows that for any a > 0

P(X ≥ a) ≤ E[eX ]

ea
≤ e−a

By choosing a = ln 1
δ , it follows that

P(X ≥ ln
1

δ
) ≤ δ

and hence,

P(X ≤ ln
1

δ
) ≥ 1− δ

By substituting the definition of X and regrouping the terms, it then follows that

P(sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)−KL(ρ̂‖π)) ≤ ln

1

δ
+Ψπ(λ,N)) ≥ 1− δ

Note that

{ω | sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)(ω)−KL(ρ̂‖π)) ≤ ln

1

δ
+Ψπ(λ,N)} =

{ω | ∀ρ̂ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f)(ω) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψπ(λ,N)

}

and hence it then follows that with probability at least 1− δ, the following holds

∀ρ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψπ(λ,N)

]
, (A.163)

Corollary A.1: By Lemma A.18, and Lemma A.17, for 0 < λ ≤ inff∈F
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

, with Mπ,

denoting the set of all absolutely continuous probability densities w.r.t. π, then with probability at least 1− δ, the following

holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ̂π,1(λ,N)

]
, (A.164)



with

Ψ̂π,1(λ,N) , lnEf∼π

(
1 +

2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1 − 3(m+ 1)λnyµmax(Qe)Ge(f)2)

)
(A.165)

Corollary A.2: By Lemma A.18, and Lemma A.13, for 0 < λ ≤ inff∈F
(
4nwḠgenḠf (f)

)−1
, with Mπ, denoting the

set of all absolutely continuous probability densities w.r.t. π, then with probability at least 1− δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂VN (f) ≤ Ef∼ρ̂L̂N (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ̂π,2(λ,N)

]
, (A.166)

with

Ψ̂π,2(λ,N) , lnEf∼π

(
1 +

(ny + nu)!√
N

4λḠgenḠf (f)

1− 4λ(ny + nu)ḠgenḠf (f)

)
(A.167)

Lemma A.19: For

0 < λ̃ ≤ 1

2

(
sup
f∈F

max{3(m+ 1)nyµmax(Qe)Ge(f)
2, 4nwḠgenḠf (f)}

)−1

(A.168)

with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
1

λ̃

[
KL(ρ̂‖π) + ln

1

δ
+

Ψ̂π,2(2λ̃, N) + Ψ̂π,1(2λ̃, N)

2

]
(A.169)

with

Ψ̂π,1(2λ̃, N) = Ψπ,1(λ̃, N) = lnEf∼π


1 +

2

N

(m+ 1)!
(
6λ̃nyµmax(Qe)Ge(f)

2
)2

(1− 6(m+ 1)λ̃nyµmax(Qe)Ge(f)2)


 (A.170)

Ψ̂π,2(2λ̃, N) = Ψπ,2(λ̃, N) = lnEf∼π

(
1 +

(ny + nu)!√
N

8λ̃ḠgenḠf (f)

1− 8λ̃(ny + nu)ḠgenḠf (f)

)
(A.171)

Proof A.17: we have

P (ω ∈ S1) ≥ 1− δ (A.172)

P (ω ∈ S2) ≥ 1− δ (A.173)

with

S1 , {ω ∈ Ω|∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ̂π,1(λ,N)

]
} (A.174)

S2 , {ω ∈ Ω|∀ρ ∈ Mπ : Ef∼ρ̂VN (f) ≤ Ef∼ρ̂L̂N (f) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ̂π,2(λ,N)

]
} (A.175)

with Ā denoting the complementary set of A, i.e. Ā = Ω \A

P (ω ∈ S̄1) < δ (A.176)

P (ω ∈ S̄2) < δ (A.177)

(A.178)

Thus by union bound we get

P
(
ω ∈ (S̄1 ∪ S̄2)

)
< 2δ (A.179)

and thus

P (ω ∈ (S1 ∩ S2)) ≥ 1− 2δ (A.180)

with this we can write: with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
2

λ

[
KL(ρ̂‖π) + ln

1

δ
+

Ψ̂π,2(λ,N) + Ψ̂π,1(λ,N)

2

]
(A.181)



In order to bring this to a more common way of writing PAC-Bayesian bounds, let us define λ̃ = 0.5λ ↔ λ = 2λ̃, thus we

can write, for

0 < λ̃ ≤ 1

2

(
sup
f∈F

max{3(m+ 1)nyµmax(Qe)Ge(f)
2, 4nwḠgenḠf (f)}

)−1

(A.182)

with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
1

λ̃

[
KL(ρ̂‖π) + ln

1

δ
+

Ψ̂π,2(2λ̃, N) + Ψ̂π,1(2λ̃, N)

2

]
(A.183)

with

Ψ̂π,1(2λ̃, N) = Ψπ,1(λ̃, N) = lnEf∼π


1 +

2

N

(m+ 1)!
(
6λ̃nyµmax(Qe)Ge(f)

2
)2

(1− 6(m+ 1)λ̃nyµmax(Qe)Ge(f)2)


 (A.184)

Ψ̂π,2(2λ̃, N) = Ψπ,2(λ̃, N) = lnEf∼π

(
1 +

(ny + nu)!√
N

8λ̃ḠgenḠf (f)

1− 8λ̃(ny + nu)ḠgenḠf (f)

)
(A.185)

B. Bounded noise

In this section we state the lemmas and proofs associated with bounded innovation noise case.

Lemma A.20: Let eg(t) ∈ E ⊂ R
ny+ny , be a zero mean, independant, and bounded stochastic process, s.t. |eg,i(t)| ≤ ce,

∀i ∈ {1, . . . , nu+ ny}, i.e eg,i(t) is the i’th component of eg(t)

E[‖eg(t)‖r] ≤
(
ce
√
ny + nu

)r
(A.186)

Proof A.18:

E[‖eg(t)‖r] = E







√√√√
nu+ny∑

i=1

e2g,i(t)




r
 ≤




√√√√
nu+ny∑

i=1

c2e




r

=

(√
(nu + ny)c2e

)r

=
(
ce
√
ny + nu

)r
(A.187)

Lemma A.21: Let eg(t) ∈ E ⊂ R
ny+ny , be a zero mean, independant, and bounded stochastic process, s.t. |eg,i(t)| ≤ ce,

∀i ∈ {1, . . . , nu+ ny}, i.e eg,i(t) is the i’th component of eg(t)

σ(r) =
(
2c2e(ny + nu)

)r ≥ sup
t,k,l

E[‖e(t, k, l)‖r2] (A.188)

e(t, k, l) = E[eg(t− k)eTg (t− l)]− eg(t− k)eTg (t− l) (A.189)

Proof A.19: First let us take the case when k 6= j. Then, due to independance of eg(t), we have E[eg(t−k)eg(t−j)] = 0,

and thus

E[‖e(t, k, l)‖r2] = E[‖ − eg(t− k)eTg (t− j)‖r2]
Again as eg(t) is i.i.d. we have

E[‖e(t, k, l)‖r2] ≤ E[
(
‖eg(t− k)‖2‖eTg (t− j)‖2

)r
] ≤ E[‖eg(t− k)‖r2]E[‖eg(t− j)‖r2]

and due to stationarity of eg(t), we have E[‖eg(t− k)‖r2] = E[‖eg(t− j)‖r2], therefore

E[‖e(t, k, l)‖r2] ≤ E[‖eg(t)‖r2]2

and again due to stationarity of eg(t), the moments do not depend on t, and using Lemma A.20 we obtain

∀k 6= j, E[‖e(t, k, l)‖r2] ≤
(
c2e(ny + nu)

)r

Now let us take the case when k = j. Then

E
[
‖E[eg(t− k)eTg (t− l)]− eg(t− k)eTg (t− l)‖r

]
≤ E

[(
‖E[eg(t− k)eTg (t− l)]‖+ ‖eg(t− k)eTg (t− l)‖

)r]
(A.190)

By convexity (a+ b)r = 2r 1
2r (a+ b)r = 2r

(
1
2 (a+ b)

)r ≤ 2r−1(ar + br), we obtain

E[‖e(t, k, l)‖r2] ≤ 2r−1
(
E
[
‖E[eg(t− k)eTg (t− l)]‖r

]
+E

[
‖eg(t− k)eTg (t− l)‖r

])
(A.191)

= 2r−1
(
‖E[eg(t− k)eTg (t− l)]‖r +E

[
‖eg(t− k)eTg (t− l)‖r

])
(A.192)

≤ 2r−1
(
E[‖eg(t− k)eTg (t− l)‖r] +E

[
‖eg(t− k)eTg (t− l)‖r

])
≤ 2rE

[
‖eg(t)‖2r

]
(A.193)



Again by using Lemma A.20, we obtain

∀k = j E[‖e(t, k, l)‖r2] ≤
(
2c2e(ny + nu)

)r
(A.194)

Thus we obtain the statement of the lemma

∀t, k, j E[‖e(t, k, l)‖r2] ≤ max{
(
c2e(ny + nu)

)r
,
(
2c2e(ny + nu)

)r} =
(
2c2e(ny + nu)

)r
(A.195)

Lemma A.22: With notation as above, with |eg,i| ≤ ce, the following holds

E[eλ(L(f)−VN (f))] ≤ 1 +
1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

(A.196)

Proof A.20: By power series, and E[L(f)− VN (f)] = 0, we have

E[eλ(L(f)−VN (f))] = 1 +
∞∑

r=2

λr

r!
E[(L(f)− VN (f))r] (A.197)

Now by Lemma A.15, and Lemma A.21, and 4(r − 1) ≤ 2r we have

E[(L(f)− VN (f))r ] ≤ 1

N
(4c2eny(ny + nu)Ge(f)

2)r (A.198)

Thus,

E[eλ(L(f)−VN (f))] ≤ 1 +
1

N

∞∑

r=2

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (A.199)

now since λ4c2eny(ny + nu)Ge(f)
2 ≥ 0, then

1 +
1

N

∞∑

r=2

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (A.200)

≤ 1 +
1

N

∞∑

r=0

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (A.201)

= 1 +
1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

(A.202)
Lemma A.23: With notation as above, with |eg,i| ≤ ce, the following holds

E[eλ(VN (f)−L̂(f))] ≤ 1 +
1√
N

e2λGf (f)‖Σgen‖2
ℓ1

c2e(ny+nu) (A.203)

with

Gf (f) ,

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)(
M̂‖Ĉ‖‖B̂‖
(1− γ̂)

3
2

)
(A.204)

Proof A.21: By power series, we have

E[eλ(VN (f)−L̂(f))] ≤ E[eλ|VN (f)−L̂(f)|] = 1 +
∞∑

r=1

λr

r!
E[|VN (f)− L̂(f)|r] (A.205)

For the terms E[|VN (f)− L̂N (f)|r], we reuse the proof of Lemma A.12, and continue from (A.119), i.e.

E[‖VN(f)− L̂N (f)‖r] ≤ 2r√
N

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r (
M̂‖Ĉ‖‖B̂‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]√

1

1− γ̂2r
(A.206)

Note that

(1− γ̂)
r
2 ≤

(
1− γ̂2r

) 1
2 (A.207)

it is easy to see since for γ̂ ∈ [0, 1), the following holds

(1− γ̂)
r ≤ 1− γ̂2r = (1− γ̂r)(1 + γ̂r) (A.208)

1 ≤ 1 + γ̂r (A.209)

This allows us to simplify the expression to

E[‖VN (f)− L̂N (f)‖r] ≤ 2r√
N

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)r (
M̂‖Ĉ‖‖B̂‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
](

1√
1− γ̂

)r

(A.210)



Now, from Lemma A.6, we get

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]
≤ ‖Σgen‖2rℓ1E[‖eg(t)‖2r] (A.211)

by lemma A.20, we get

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]
≤
(
‖Σgen‖2ℓ1c2e(ny + nu)

)r
(A.212)

Thus, with Gf (f) ,
1√
1− γ̂

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1−γ̂

)(
M̂‖Ĉ‖‖B̂‖

1−γ̂

)

E[‖VN(f)− L̂N (f)‖r] ≤ 1√
N

(
2Gf (f)‖Σgen‖2ℓ1c2e(ny + nu)

)r
(A.213)

Thus

E[eλ|VN (f)−L̂(f)|] ≤ 1 +
1√
N

∞∑

r=1

1

r!

(
2λGf (f)‖Σgen‖2ℓ1c2e(ny + nu)

)r
(A.214)

≤ 1 +
1√
N

e2λGf (f)‖Σgen‖2
ℓ1

c2e(ny+nu) (A.215)

and therefore the statement of the lemma holds.

Corollary A.3: By lemma A.18, lemmas A.22,A.23, and by applying a union bound, we obtain, for λ > 0, δ ∈ [0, 1), the

set of absolutely continuous probability density functions Mπ w.r.t. π, the following holds with probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
1

λ

[
DKL(ρ||π) + ln

(
1

δ

)
+ Ψ̂ce,π(λ,N)

]
(A.216)

with

Ψ̂ce,π(λ,N) ,
1

2

(
Ψ̂ce,π,1(λ,N) + Ψ̂ce,π,2(λ,N)

)
(A.217)

Ψ̂ce,π,1(λ,N) , lnEf∼π

(
1 +

1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

)
(A.218)

Ψ̂ce,π,2(λ,N) , lnEf∼π

(
1 +

1√
N

e2λGf (f)‖Σgen‖2
ℓ1

c2e(ny+nu)

)
(A.219)

C. Bounded innovation noise case: Alternative formulation

Lemma A.24: for a sequence of random variables xj ∈ R, and j ∈ {1, . . . , r}

E




r∏

j=1

xj


 ≤




r−1∏

j=1

E

[
x
(2j)
j

](2−j)


E

[
x(2r−1)
r

]2−(r−1)

(A.220)

Proof A.22 (of Lemma A.24): We first apply Cauchy-Schwarz inequality E

[∏r
j=1 xj

]
≤ |E

[∏r
j=1 xj

]
| =

|E
[
(x1)

(∏r
j=2 xj

)]
| ≤

√
E [x2

1]

√
E

[∏r
j=2 x

2
j

]
, and obtain

E




r∏

j=1

xj


 ≤ E

[
x2
j

]2−1

E




r∏

j=2

x2
j



2−1

(A.221)

Then we apply Cauchy-Schwarz again

E




r∏

j=1

xj


 ≤ E

[
x2
1

]2−1

E

[
x
(22)
2

]2−2

E




r∏

j=3

x
(22)
j



2−2

=
2∏

j=1

E

[
x
(2j)
j

](2−j)

E




r∏

j=2+1

x
(22)
j



2−2

(A.222)

We repeat this process until we have

E




r∏

j=1

xj


 ≤

r−2∏

j=1

E

[
x
(2j)
j

](2−j)

E

[
x
(2r−2)
r−1 x(2r−2)

r

]2−(r−2)

(A.223)



Then we apply the final Cauchy-Schwarz inequality and obtain the statement of the lemma

E




r∏

j=1

xj


 ≤

r−2∏

j=1

E

[
x
(2j)
j

](2−j)

E

[
x
(2r−1)
r−1

]2−(r−1)

E

[
x(2r−1)
r

]2−(r−1)

(A.224)

=

r−1∏

j=1

E

[
x
(2j)
j

](2−j)

E

[
x(2r−1)
r

]2−(r−1)

(A.225)

Lemma A.25: Let m = ny + nu. If |eg(t)| < ce, then

E[‖VN (f)− L̂N (f)‖r] ≤ Ḡf,1(f)‖Σgen‖ℓ1(ce
√
m)

(
2‖Σgen‖ℓ1(ce

√
m)

N
Ḡf,2(f)

)r

(A.226)

where Ḡf,1(f) ,
(

M̂‖Ĉ‖‖B̂‖
1−γ̂

)
, and Ḡf,2(f) ,

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1−γ̂

)
1

1−γ̂ ‖Σgen‖ℓ1 , ‖I‖+∑∞
k=1 ‖CgA

k−1
g Kg‖.

Proof A.23 (of Lemma A.25): with z∞(t) = y(t) − ŷf (t), and zf (t) = y(t) − ŷf (t|0), we start by applying triangle

inequalities

E[‖VN (f) − L̂N (f)‖r] = E

[∣∣∣∣∣
1

N

N−1∑

t=0

‖z∞(t)‖2 − ‖zf (t)‖2
∣∣∣∣∣

r]
≤ E

[(
1

N

N−1∑

t=0

∣∣‖z∞(t)‖2 − ‖zf (t)‖2
∣∣
)r]

(A.227)

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

E




r∏

j=1

∣∣‖z∞(tj)‖2 − ‖zf (tj)‖2
∣∣

 (A.228)

Now using the fact that |a2 − b2| = |(a− b)(a+ b)| = |a− b|(a+ b), since a, b ≥ 0, we get

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖| (‖z∞(tj)‖ + ‖zf (tj)‖)


 (A.229)

We apply Cauchy-Schwarz, i.e. E[XY ] ≤ |E[XY ]| ≤
√
E[X2]

√
E[Y 2], with X =

∏r
j=1 |‖z∞(tj)‖ − ‖zf (tj)‖|, and

Y =
∏r

j=1 (‖z∞(tj)‖ + ‖zf (tj)‖),

E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√√E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2



√√√√√E




r∏

j=1

(‖z∞(tj)‖ + ‖zf (tj)‖)2



(A.230)

For now let’s focus on E

[∏r
j=1 |‖z∞(tj)‖ − ‖zf (tj)‖|2

]
, by applying reverse triangle inequality we obtain

E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2

 ≤ E




r∏

j=1

‖z∞(tj)− zf (tj)‖2

 (A.231)

For the ease of notation for the next step, let us define xj , ‖z∞(tj)− zf (tj)‖2, then the quantity of interest is

E




r∏

j=1

xj


 (A.232)

For the above quantity we can apply Lemma A.24, which states

E




r∏

j=1

xj


 ≤

r−1∏

j=1

E

[
x
(2j)
j

](2−j)

E

[
x(2r−1)
r

]2−(r−1)

(A.233)

From Lemma A.7, we also know that

E[‖z∞(t)− zf (t)‖r] ≤ γ̂rt

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

(A.234)



Thus combining Lemma A.24 and Lemma A.7, we get

E




r∏

j=1

‖z∞(tj)− zf (tj)‖2

 ≤

r−1∏

j=1

γ̂2tj

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
(2j+1)

] 1

2j

× γ̂2tr

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
(2r)
] 1

2r−1

(A.235)

with Lemma A.10, and Lemma A.20, we have

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

≤ ‖Σgen‖rℓ1(ce
√
m)r, (A.236)

thus we get

E




r∏

j=1

‖z∞(tj)− zf (tj)‖2

 ≤

r−1∏

j=1

γ̂2tj

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2 (
‖Σgen‖2

j+1

ℓ1 (ce
√
m)2

j+1
)2−j

· γ̂2tr

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2 (
‖Σgen‖2rℓ1 (ce

√
m)2r

)2−(r−1)

, (A.237)

With some algebraic simplification we obtain the first term

E




r∏

j=1

‖z∞(tj)− zf (tj)‖2

 ≤

(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2

‖Σgen‖2ℓ1(ce
√
m)2

r∏

j=1

γ̂2tj , (A.238)

Now for the second term E

[∏r
j=1 (‖z∞(tj)‖ + ‖zf (tj)‖)2

]
, we apply the inequality of arithmetic-geometric means

E




r∏

j=1

(‖z∞(tj)‖+ ‖zf (tj)‖)2

 ≤ 1

r

r∑

j=1

E

[
(‖z∞(tj)‖+ ‖zf (tj)‖)2r

]
(A.239)

By Lemma A.11, we obtain

1

r

r∑

j=1

E

[
(‖z∞(tj)‖+ ‖zf (tj)‖)2r

]
≤ 22r−1

r

r∑

j=1

(
E
[
‖z∞(tj)‖2r

]
+E

[
‖zf (tj)‖2r

])
(A.240)

By Lemma A.8 and Lemma A.9, we obtain

22r−1

r

r∑

j=1

(
E
[
‖z∞(tj)‖2r

]
+E

[
‖zf (tj)‖2r

])
≤ 22r

r

r∑

j=1

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.241)

= 22r

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

)2r

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
2r
]

(A.242)

with Lemma A.10, and Lemma A.20, we have

E

[∥∥∥∥
[
y(t)
u(t)

]∥∥∥∥
r]

≤ ‖Σgen‖rℓ1(ce
√
m)r, (A.243)

we get

E




r∏

j=1

(‖z∞(tj)‖+ ‖zf (tj)‖)2

 ≤

(
2‖Σgen‖ℓ1(ce

√
m)

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

))2r

(A.244)

Now taking (A.244) and (A.106) back to (A.230), we have



E[‖VN (f)− L̂N (f)‖r] ≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√√E




r∏

j=1

|‖z∞(tj)‖ − ‖zf (tj)‖|2



√√√√√E




r∏

j=1

(‖z∞(tj)‖+ ‖zf (tj)‖)2



≤ 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

√√√√
(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)2

‖Σgen‖2ℓ1(ce
√
m)2

r∏

j=1

γ̂2tj

·

√√√√
(
2‖Σgen‖ℓ1(ce

√
m)

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

))2r
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with Gf (f) ,
(

M̂‖Ĉ‖‖B̂‖
1−γ̂

)(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1−γ̂

)

E[‖VN (f)− L̂N (f)‖r] ≤
(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)
‖Σgen‖ℓ1(ce

√
m)

(
2‖Σgen‖ℓ1(ce

√
m)

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

))r

· 1

N r

N−1∑

t1=0

· · ·
N−1∑

tr=0

r∏

j=1

γ̂tj (A.246)

Note that
(∑N−1

t=0 γ̂t
)r

=
∑N−1

t1=0 · · ·
∑N−1

tr=0

∏r
j=1 γ̂

tj , and by applying the sum of the geometric series we obtain

E[‖VN (f)− L̂N (f)‖r] ≤
(
M̂‖Ĉ‖‖B̂‖

1− γ̂

)
‖Σgen‖ℓ1(ce

√
m)

(
2‖Σgen‖ℓ1(ce

√
m)

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1− γ̂

))r

·
(

1− γ̂N

N(1− γ̂)

)r

(A.247)

Note that 1 − γ̂N ≤ 1, so with Ḡf,1(f) ,
(

M̂‖Ĉ‖‖B̂‖
1−γ̂

)
, and Ḡf,2(f) ,

(
1 + ‖D̂‖+ M̂‖B̂‖‖Ĉ‖

1−γ̂

)
1

1−γ̂ the statement of the

lemma follows.

Lemma A.26: With notation as above the following holds

E[eλ|VN (f)−L̂N (f)|] ≤ 1 + Ḡf,1(f)‖Σgen‖ℓ1(ce
√
m)

∞∑

r=1

(
λ
2‖Σgen‖ℓ1

(ce
√
m)

N Ḡf,2(f)
)r

r!
(A.248)

= (1− Ḡf,1(f)‖Σgen‖ℓ1(ce
√
m)) + Ḡf,1(f)‖Σgen‖ℓ1(ce

√
m)eλ

2‖Σgen‖ℓ1 (ce
√

m)

N
Ḡf,2(f)

Proof A.24 (of Lemma A.13): with X = λ|VN (f)− L̂N (f)|

E[eλ(VN (f)−L̂N (f))] = 1 +
∞∑

r=1

λr

r!
E[|VN (f)− L̂N (f)|r] ≤ 1 +

∞∑

r=1

λr

r!

(
2‖Σgen‖ℓ1(ce

√
m)

N
Ḡf,2(f)

)r

(A.249)

Lemma A.27 (Alternative bound using [35]): With probability at least 1− δ, the following holds

∀ρ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
DKL(ρ̂‖π) + ln

1

δ
+Ψπ,2(λ,N)

]
, (A.250)

with

Ψπ,2(λ,N) = lnEf∼πE[eλ(L(f)−VN (f))] ≤ lnEf∼π

(
e

λ2

2N (Ge(f)+Ge,1(f))
2C2(4Ge(f)C+1)2

)
(A.251)

where C = ce
√
nu + ny

Ge,1(f) = ‖De‖2 +
∞∑

k=1

(k + 1)‖CeA
k−1
e Ke‖2

In particular, limN→∞ Ψπ,2(λ,N) = 0 for any λ > 0 and for λN =
√
N , limN→

1
λN

Ψπ,2(λN , N) = 0.

Proof A.25 (Proof of Lemma A.27): For each f ∈ F , consider Xt = y(t) − ŷf (t). Then Xt

Xt =

∞∑

k=0

αkeg(t− k),



where

αk =

{
De, k = 0

CeA
k−1
e Ke, k > 0

By [36, Proposition 4.2] Xt is a weakly dependent process in the terminology of [36], and ‖Xt‖ ≤ Ge(f)C and the coefficient

θ∞,N (1) satisfies θ∞,N(1) < 2Ge,1(f)C for all NN. Consider the function h(x1, . . . , xN ) = 1
(2L+1)

∑N
i=1 ‖xi‖22 defined on

X = [−L,L]N , where L = 2Ge(f)C. Then h is 1−Lipschitz. Notice that λVN (f) = λ
N (2L+1)h(X(0), . . . ,X(N − 1)).

Then

E[eλ(L(f)−VN (f))] = E[e
λ
N

(2L+1)(E[h(X(0),...,X(N−1))]−h(X(0),...,X(N−1))]

and hence by [36, Theorem 6.6]

E[eλ(L(f)−VN (f))] ≤ e
λ2

N
(2L+1)2(‖X0‖∞+θ∞,N(1))2/2

where ‖X0‖∞ is the smallest real number such that ‖X0‖ ≤ ‖X0‖∞ with probability 1. By using the definition L, and the

facts that ‖Xt‖ ≤ Ge(f)C and θ∞,N(1) < 2Ge,1(f)C the statement of the lemma follows.

E[eλ(L(f)−VN (f))] ≤ e
λ2

N
(2L+1)2(‖X0‖∞+θ∞,N(1))2/2 ≤ e

λ2

N
(4Ge(f)C+1)2(Ge(f)+2Ge,1)

2C2/2 (A.252)

Proof A.26 (of Theorem 5.2): By applying Lemma A.27, Lemma A.26, and by applying the union bound as in Lemma

A.19, we obtain, for λ > 0, δ ∈ (0, 1], with probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
2

λ

[
DKL(ρ|π) + ln

1

δ
+

Ψ1(λ,N) + Ψ2(λ,N)

2

]
(A.253)

with

Ψ1(λ,N) , lnEf∼πe
λ2

2N (4Ge(f)C+1)2(Ge(f)+2Ge,1)
2C2

(A.254)

Ψ2(λ,N) , lnEf∼π

(
(1 − Ḡf,1(f)‖Σgen‖ℓ1(ce

√
m)) + Ḡf,1(f)‖Σgen‖ℓ1(ce

√
m)eλ

2‖Σgen‖ℓ1 (ce
√

m)

N
Ḡf,2(f)

)
(A.255)

Now with λ̃ , 0.5λ ↔ λ = 2λ̃, we obtain the statement of the lemma: for λ̃ > 0, δ ∈ (0, 1], then with probability at least

1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
1

λ̃

[
DKL(ρ|π) + ln

1

δ
+

Ψ1(λ̃, N) + Ψ2(λ̃, N)

2

]
(A.256)

with

Ψ1(λ̃, N) , lnEf∼πe
λ̃2

N
2(4Ge(f)C+1)2(Ge(f)+2Ge,1)

2C2

(A.257)

Ψ2(λ̃, N) , lnEf∼π

(
(1− Ḡf,1(f)‖Σgen‖ℓ1(ce

√
m)) + Ḡf,1(f)‖Σgen‖ℓ1(ce

√
m)e

λ̃
N

8‖Σgen‖ℓ1
(ce

√
m)Ḡf,2(f)

)
(A.258)
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