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RESEARCH ARTICLE
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The strong societal demand to reduce pesticide use and adaptation to climate change challenges the 
capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain 
meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits 
related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a 
local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood 
weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived 
apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing 
technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated 
with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well 
as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in 
characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total 
canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These 
variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than 
models obtained with the exposed leaf area estimated from images and the destructive pruning weight 
measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically 
induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of 
grapevines in the vineyard.

Introduction

To meet the challenge of adaptation to climate change and the 
global demand for grapevine varieties resistant to diseases, the 
number of grapevine genotypes under evaluation is unprece-
dented and the need for high-throughput phenotyping meth-
ods continuously increases [1]. Several teams are developing 
high-throughput phenotyping systems for this purpose [2,3].

Estimating grapevine growth-related traits is mandatory 
to appropriately describe the effects of training systems [4,5], 
management techniques [6–8], environmental conditions [9], 
or genotypic effects for both rootstocks [10–12] and scions 
varieties [13].

Grapevine photosynthetic capability is primarily determined 
by leaf area. A reduced leaf-to-sink ratio can reduce the sugar 
concentration in berries at harvest [14,15], delay the dates of 
véraison [16], and impair fruit set and the number of berries 
per cluster [17]. Leaf area is also a variable requested for esti-
mating the evaporative demand of the plants [18]. Canopy den-
sity can also assist in characterizing the microclimate around 

the clusters and the possible impact of fungal diseases [4,19], 
and, more recently, in fine-tuning the pesticide dosage [20].

Several methods were proposed to estimate leaf area for the 
grapevine [21], but they are usually time consuming and difficult 
to use when a lot of factor levels, as in genetic studies, are to be 
compared. To characterize grapevine growth capabilities, meas-
uring pruning weight is a popular method because it requires 
only pruning shears and scales. However, it remains time con-
suming when hundreds of genotypes are to be characterized.

Multi-spectral and hyperspectral cameras onboard unmanned 
aerial vehicles (UAVs) and satellites enabled the estimation of 
vineyards' architectural parameters [22], leaf area index [23], or 
leaf biochemical constituents [24]. Additionally, in situ optical 
systems—mainly RGB cameras and multispectral and hyperspec-
tral sensors—were also developed to retrieve different phenotypic 
traits with great detail. At the canopy scale, Diago et al. [25] devel-
oped an automatic method to classify horizontal RGB images 
of vines predicting plant leaf area and fruit load and also to esti-
mate indices such as NDVI (normalized difference vegetation 
index) and water stress [26]. At the leaf scale, different empirical 

Citation: Chedid E, Avia K, Dumas V, 
Ley L, Reibel N, Butterlin G, 
Soma M, Lopez-Lozano R, Baret F, 
Merdinoglu D, et al. LiDAR Is Effective 
in Characterizing Vine Growth and 
Detecting Associated Genetic Loci. 
Plant Phenomics 2023;5:Article 
0116. https://doi.org/10.34133/
plantphenomics.0116

Submitted 29 November 2022  
Accepted 30 October 2023  
Published 17 November 2023

Copyright © 2023 Elsa Chedid 
et al.  Exclusive licensee Nanjing 
Agricultural University. No claim 
to original U.S. Government Works. 
Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org on A

pril 15, 2024

https://doi.org/10.34133/plantphenomics.0116
mailto:eric.duchene@inrae.fr
https://doi.org/10.34133/plantphenomics.0116
https://doi.org/10.34133/plantphenomics.0116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fplantphenomics.0116&domain=pdf&date_stamp=2023-11-17


Chedid et al. 2023 | https://doi.org/10.34133/plantphenomics.0116 2

approaches were proposed, relating spectral indices with traits 
associated with plant water status [27,28] or biotic stress [29]. 
More recently, computer vision techniques have been successfully 
applied to detect disease symptoms on vine leaves [30,31].

High-throughput methods were also used to access param-
eters of responses to water shortage [32] or to describe grape 
bunch architecture. A striking example is the characterization 
of more than 1,500 genotypes to identify QTLs for bunch archi-
tecture using a 3-dimensional (3D) scanner [33].

The use of LiDAR (light imaging detection and ranging) opti-
cal devices has progressively gained attraction in close-range 
phenotyping during the last decade [34]. Active LiDAR-based 
sensors provide an explicit 3D description of the canopy observed. 
This technology is highly relevant in the case of vineyards 
where an accurate description of the actual 3D architecture is 
necessary to estimate light interception and other downstream 
eco-physiological processes such as canopy-level photosynthe-
sis or evapotranspiration [35]. The work conducted by Arnó 
et al. [36] was one of the first studies to use a ground LiDAR-based 
system to estimate architectural traits in vineyards. In such a 
study, different canopy architectural indicators obtained from 
LiDAR point clouds such as height, cross-sectional area, canopy 
volume, and tree area index were used to derive a leaf area index 
with satisfactory results. Later studies have explored as well the 
use of LiDAR sensors to estimate plant architectural traits, such 
as leaf inclination or orientation [37], to provide a sensor-based 
assessment of winter pruning weight [3,9] or trunk volumes [38].

The LiDAR technology has been already applied to describe 
genotype–phenotype relationships for canopy height response 
to temperature in wheat [39], to identify QTLs explaining can-
opy height in maize [40], and more recently for apple tree archi-
tecture [41]. However, the use of LiDAR sensors to describe 
the variability of plant vigor associated with genetic factors has 
never been exploited for the grapevine.

The main goal of the present study was to evaluate the per-
formance of phenotypic traits estimated from ground LiDAR 
sensors data to unravel phenotype–genotype associations in a 
biparental progeny. We estimated canopy volume in summer 
and wood volume in winter from LiDAR-based measurements. 
The estimation of winter wood volume from LiDAR sensors 
was compared with destructive measurements of pruning 
weight. Canopy volume at véraison estimated from LiDAR 
sensors was compared against estimates of exposed leaf area 
(ELA), derived from RGB images. We employed a SPAD-502 
device to assess how genetic variations in leaf chlorophyll con-
tent could elucidate the growth potential of the studied geno-
types, knowing the linear correlations between chlorophyll 
concentrations in the leaves, SPAD-502 measurements, and 
vine biomass production [42],

Quantitative trait loci (QTL) detection was carried out to 
identify genomic regions associated with the genetic variabil-
ity of the destructive—pruning weight—and nondestructive 
observations of canopy and wood volume, ELA, and leaf chlo-
rophyll content and, then, assess the ability of each variable 
to detect genetic factors associated to plant vigor.

Material and Methods
The experimental and technical design of the study is presented 
in Fig. 1.

Plant material and experimental design
Progeny from a cross between 2 grapevine interspecific hybrids, 
IJ119 (FRA038_PRO_HYB50001Col119) and Divona (VIVC 
26503), was cultivated in the INRAE vineyard in Colmar, 
France. Both parents carry resistance genes to downy and pow-
dery mildew.

Fig. 1. Overview of the experimental and technical design of the study.
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Vines were grafted on the Selektion Oppenheim 4 (SO 
4) rootstock (VIVC 11473) in 2015, planted in the field in 
2016, and trained with a double Guyot system on a vertical 
shoot positioning system at a planting density of 4,200 plants 
per ha. Plants were not irrigated. All the vines were trellised 
and trimmed on the same date to control the whole canopy 
architecture.

The plants were distributed in 11 rows, with 1.7-m spacing 
between rows and 1.4 m between plants. A set of 209 offspring 
of the IJ119 × Divona progeny, the parents, and the control 
variety Vitis vinifera cv. Chardonnay were planted according 
to a randomized complete 2-block design. Each genotype was 
represented by one elementary plot of 3 plants in each block. 
The control variety, Chardonnay, was represented by 6 ele-
mentary plots of 3 plants per block. Each block included 
finally 220 elementary plots (209 genotypes from the prog-
eny, 6 Chardonnay, one for each parent, and 3 as duplicates 
of 3 genotypes to avoid empty plots in the experiment, and not 
used in the study).

The soil, deeper than 90 cm, is classified by the World Reference 
Base for soil resources (https://www.fao.org/3/i3794en/I3794en.
pdf) as “Bathyfluvic Calcaric Cambisol (Loamic)” with a loamy 
texture (>67%).

Ground-truth data winter pruning weight
In winter, after leaf (BBCH 97) and before the beginning of bud 
swelling (BBCH 01) [43], we measured the fresh weight of 
pruning wood per elementary plot in the field. This was done 
on 2021 February 18, for both blocks 1 and 2, and only on block 
1 on 2022 February 9. Block 2 did not receive any phytosanitary 
protection during the 2021 growing season to evaluate the 
resistance to diseases in the field. As a result, susceptible geno
types were severely affected, and measuring their pruning 
weight was meaningless. For the statistical analysis and QTL 
detection, only the genotypes with at least 2 adult productive 
plants in each of the 2 blocks were considered. The results are 
expressed as pruning fresh weight per plant (g.plant−1).

RGB image-based retrieval of the ELA
The method used was already described [13]. In brief, digital 
images were taken manually by a pedestrian with a Canon 700D 
camera fitted with a Sigma 12-mm focal lens using a blue cur-
tain as a background. In 2019, only the central plant of each 
elementary plot in block 1 was photographed. In 2020 and 2021, 
all the plants in block 1 were photographed. An ImageJ script 
was then used to calculate the ratio between “green” and “non-
green” pixels for each picture. The final score was the percentage 
of foliage covering the area analyzed (FC). Figure 2A shows an 
example of images taken on a 3-plant plot of Chardonnay. An 
elementary plot may include some vegetative parts of the neigh-
boring plants. This is a limitation of the study, which can induce 
some lack of accuracy of the results for all the methods, except 
for manual weighing of the pruning wood.

ELA, expressed in m2 per plant, was then calculated accord-
ing to Carbonneau [44] as ELA = D × FC × S, where S is a 
constant calculated with the parameters of canopy geometry. 
S = 2.05 with our training system (width = 0.3 m, H = 1.40 , 
S = W + 1.25H for full sun). D is the distance between plants 
(1.40 m), and FC is the estimate for foliage coverage. Images 
were taken on 2019 August 2, 2020 August 4, and 2021 July 22, 
around véraison time (BBCH 85).

Phenotyping apparent canopy and winter wood 
volume based on LiDAR point clouds
LiDAR data acquisition
Point clouds of grapevine plants were obtained using the LiDAR 
technology. Two SICK LMS4000 LiDAR sensors were installed 
on a frame mounted on a tractor (Fig. 3). The vertical distance 
between the 2 LiDAR sensors was 0.7 m to capture the full can-
opy. The SICK LMS4000 LiDAR can retrieve information from 
0.7 to 3 m and has an angular scanning range of 70° and a scan-
ning frequency of 600 Hz. The angular resolution is 0.0833°. The 
tractor operated at a speed of about 2 km.h−1. The start and stop 
of LiDAR acquisitions were automatically set at the beginning 

Fig. 2. Images and point clouds for an elementary plot of Chardonnay. (A) Assembly of 3 photos taken on 2020 August 4. (B) Point cloud reconstructed from LiDAR sensors 
on 2020 August 5 (véraison). (C) Point cloud before pruning (2021 February 9). (D) Point cloud after pruning (2021 March 17).

D
ow

nloaded from
 https://spj.science.org on A

pril 15, 2024

https://doi.org/10.34133/plantphenomics.0116
https://www.fao.org/3/i3794en/I3794en.pdf
https://www.fao.org/3/i3794en/I3794en.pdf


Chedid et al. 2023 | https://doi.org/10.34133/plantphenomics.0116 4

and the end of each of the 440 elementary plots using the posi-
tions recorded by the Real Time Kinematik (RTK) Global 
Positioning System (GPS). Data were obtained for the 2 sides of 
each row. To limit the effects of neighboring plants, LiDAR data 
acquisition was triggered only 25 cm after the GPS signal of 
entering an elementary plot.

Several campaigns were performed: on 2020 August 5, 
around véraison (BBCH85) (block 1 only), on 2021 February 9 
(before pruning), on 2021 March 17 (after pruning), around 
véraison (BBCH 85) in 2021 (August 30), and before (February 8) 
and after (March 8) pruning in 2022. An example of point clouds 
collected from LiDAR sensors in summer and winter (before 
and after pruning) is given in Fig. 2B to D.

Computing apparent volumes from 3D point clouds
Point clouds were generated from the GPS coordinates, the 
known distance between the GPS antenna and the 2 LiDAR 
sensors, and the sensor–target distance measured by the 
LiDAR, all contained in an HDF5 file for each elementary 
plot. Point clouds were then converted to a “.las” format and 
visualized with the CloudCompare software version 2.11.1 
(www.cloudcompare.org) when necessary.

LiDAR point clouds were then processed to remove the 
soil and background impacts as well as the overlapping area 
covered by the 2 LiDAR instruments. The 3D point cloud 
scenes were divided either into 10-mm voxels for canopy data 
and 5 mm for pruning wood data. This size was chosen to 
minimize the volumes of the files while keeping a resolution 
adapted to the size of the organs to characterize (leaves and 
shoots). The voxels containing at least one beam impact were 
then classified as “vine,” whereas those voxels not containing 
any impact were considered empty. The classified voxel scenes 
were then split into 3 equal zones corresponding, respectively, 
to the 3 vines present in each elementary plot (example in 
Fig. 4).

Only elementary plots with at least 2 productive adult plants 
were kept for statistical analyses. Four values for the number 

of voxels classified as “vine” were available per plant: for the 
upper and the lower LiDAR sensor, and each side of the plant 
(north and south). Values for the upper and lower LiDAR 
sensor were added to obtain a single value for each side of 
the row.

The apparent volume for each plant for each side of the row 
was then computed as:

where Vi is the apparent volume for plant i (expressed in L.plant−1), 
Nv,i is the number of voxels classified as “vine” in the area occupied 
by plant i, and s is the voxel size, in L. Volumes were not calculated 
by plot because some elementary plots did not contain 3 adult 
plants. In the LiDAR acquisitions taken at véraison, the apparent 
volume corresponds to the total canopy volume (including leaves 
and woody parts).

The objective was to compare pruning weights to data 
obtained from LiDAR sensors. We consequently sought to 
estimate, using the LiDAR sensors, the volume of wood 
removed from the plants. As suggested [3,45], the pruning 
wood volume was calculated as the difference between the 
whole plant volume retrieved from the acquisitions in winter 
before pruning minus the plant volume retrieved from the 
acquisitions after pruning. Only some small portions of wires 
visible after pruning were masked by the shoots before prun-
ing (Fig. 2C and D). All the volumes calculated following this 
approach are probably slightly overestimating the actual can-
opy volumes as a voxel is considered full when containing a 
single impact. Moreover, the contribution of metallic wires 
to LiDAR impacts was considered negligible in summer (Fig. 
2B) and neutralized by the subtraction approach used for 
winter data. For these reasons, we prefer to use the term 
“apparent volume” to name LiDAR-derived volumes. Biases 
cannot be excluded. For example, wires are more visible in 
low-vigor genotypes, leading to an overestimation of appar-
ent canopy volume. Such a bias would reduce genetic varia-
bility and lower the power of QTL detection. Anyhow, we 
hypothesized that the apparent volumes realistically describe 
the phenotypic differences.

Vi = Nv,i ∗ s

GPS antenna

Data acquisition system

LiDAR 1
Control tablet

LiDAR 2

Fig.  3.  Overview of the system carrying the LiDAR sensors. The vertical distance 
between the LiDAR sensors was 0.70 m (RGB images for this study were obtained 
manually).

Fig. 4. Example of a voxelized point cloud. Elementary plot 32305, genotype 1424S, 
bottom LiDAR sensor, north side of the row, before pruning. 2020/21 winter.
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Sensor-based measurement of the total leaf 
chlorophyll content
The total chlorophyll content of the leaves was assessed with a 
Konica-Minolta SPAD-502 Chlorophyll Meter (Konica-Minolta 
Inc., Tokyo, Japan). Three consecutive sets (one set by plant) of 
5 measures were taken on 5 different leaves midway up the north 
face of the canopy. The 3 means of the 5 measures per plant were 
used for statistical analysis. Measures were performed on 2020 
June 4 (BBCH65) and 2021 August 25 (BBCH85).

Statistical analyses and heritabilities
Statistical analyses were performed with R version 4.1.0 [46]. 
Heritabilities of the means can be defined as H2 = σg

2/(σg
2 + 

σe
2), where σg

2 is the genetic variance and σe
2 is the environ-

mental variance. When data were obtained on 2 blocks (prun-
ing weight and LiDAR data in February and March 2021), 
σg

2 and σe
2 were directly extracted from analyses of variance 

(ANOVAs). However, data from block 2 were not available 
in 2021 because this block was not protected against foliar 
diseases. To allow meaningful comparisons among all the 
datasets, we chose to calculate the heritabilities only on block 
1 using the 6 control plots of Chardonnay planted across this 
block. If σt

2 is the variance observed over all the genotypes 
from the progeny in block 1 and σe

2 is the variance among 
the 6 plots of Chardonnay, we calculated broad-sense herit-
abilities as H2 = (σt

2 − σe
2)/σt

2. If applicable, the best linear 
unbiased predictors were extracted from ANOVAs during 
the process.

Genotyping and genetic map construction
Genomic DNA was extracted from young expanding leaves 
of 249 genotypes grown in the greenhouse using the Qiagen 
DNeasy 96 Plant Kit (Qiagen S.A., Courtaboeuf, France) as 
described by the supplier. Following quality control, DNA 
samples were analyzed with genotyping by sequencing (GBS), 
a method used to unravel single-nucleotide polymorphisms 
(SNPs) [47]. DNA from each genotype was digested by the 
ApeKI restriction enzyme to obtain DNA fragments of 100 
base pairs (bp). After the ligation of polymerase chain reac-
tion adapters and barcodes, DNA fragments from 96 geno-
types were pooled together to form GBS banks that were 
sequenced on an Illumina HiSeq4000 platform (paired-end, 
2 × 100 bp).

The reads were aligned on the V. vinifera “PN40024.v4” 
reference genome [48] using BWA-MEM (Burrows-Wheeler 
Aligner) [49].

SNP calling was performed using the gstacks command of 
Stacks v2 pipeline [50]. The output file in Joinmap format was 
filtered to only keep the most informative and reliable markers. 
SNPs with more than 10% missing data, with non-Mendelian 
segregation (χ2 test at P = 0.05) or not consistent with the geno
type of the parents, were discarded.

Parental and average genetic maps were constructed using 
Lep-Map3 [51]. The ParentCall2 module of Lep-MAP3 was used 
to call parental genotypes, the SeparateChromosomes2 module 
was used to split the markers into 19 linkage groups (at LOD 
36), and the OrderMarkers2 module was used to order the mark-
ers within each linkage group using 30 iterations per group, and 
finally computing genetic distances. The phased output data were 
converted into R/qtl format (4way-cross) for R software [52].

Before QTL detection, redundant markers were removed 
using the findDupMarkers command in R/qtl.

QTL detection
QTL detection was performed on the consensus map with the 
R/qtl software [52] using the multiple imputation method 
(“draws” = 64) and the one-dimension scan command scanone. 
LOD (logarithm of odds; that evaluates the likelihood of the 
presence of a QTL) significances were ensured with permutation 
tests (1,000 permutations). QTL models that combine the addi-
tive effects of relevant loci, including interactions when signifi-
cant, were constructed step by step after the refinement of the 
QTL position (refineqtl) and the search for supplementary 
QTLs (addqtl). The LOD score and the percentage of variance 
explained by a QTL in a QTL model were assessed with ANOVAs 
using type III sums of squares (fitqtl). The fitqtl command also 
provides the overall LOD value and the percentage of variance 
explained by the complete QTL model. The confidence intervals 
were calculated as Bayesian credible intervals (bayesesint) with 
a probability of coverage of 0.95. As the position of markers is 
included in the names of the markers, using the “expand to 
marker = true” option allowed direct access to the physical posi-
tions of the confidence intervals in the PN40024.v4 reference 
genome [53]. The LinkageMapView package [54] was used for 
drawing QTL positions on the consensus genetic map.

Results

Validation of LiDAR-derived canopy and wood 
volumes to assess vine growth
The relationships between LiDAR-derived canopy volumes 
against ELA and pruning weight for the 2020/2021 growing 
season are presented in Fig. 5. The apparent canopy volume at 
véraison is strongly correlated with the ELA measured from 
digital photographs (R2 = 0.79), which is considered the refer-
ence methodology to measure this trait in the field. In the 
2021/2022 growing season, the correlation is also high (R2 = 
0.69; Fig. 6) but analyses of covariance show that the mathe-
matical relationships between apparent canopy volumes and 
ELA are not the same for the 2 growing seasons (Table S1). The 
correlation between years was better with LiDAR data than 
with digital images (0.52 versus 0.42; Fig. 6), which suggests 
that our method of image analysis is less reproducible, presum-
ably due to uncontrolled lighting conditions.

Similarly, apparent pruning wood volume derived from LiDAR 
point clouds is positively correlated with destructive measure-
ments of pruning fresh weight (R2 = 0.59 and 0.46 in 2020/2021 
and 2021/2022, respectively; Figs. 5B and 6). However, the rela-
tionship between the apparent wood volume estimated with 
LiDAR data and the weight tends to be weaker as the values 
increase (Fig. 5B). The linear model describing this relationship 
is different in the years 2020 and 2021 (Table S2). Figure 6 also 
shows that the correlations between apparent canopy and wood 
volume, both derived from LiDAR, are stronger (0.43 < R2 < 0.59) 
that the ones observed between ELA and pruning weight (0.24 < 
R2 < 0.27). We have no convincing explanation for the better cor-
relations between pruning weights between the 2 seasons (R2 = 
0.56) than for apparent wood volumes (R2 = 0.48). A weak but 
significant opposition between the chlorophyll content and the 
ELA was observed in 2020 (Table S3).
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Heritability of direct and sensor-based measurements 
of vine growth and chlorophyll content
All the traits, except ELA 2019 and 2021, did satisfy the criteria 
of normality according to a Shapiro–Wilk test (Fig. 7 and Table 
S4). The statistics for all the ground-truth and LiDAR-based 
measurements (ELA, pruning weight, canopy, and wood appar-
ent volumes) for the Chardonnay cultivar in block 1, the parent 
genotypes, and the progeny are presented in Table 1.

The parents were significantly different for at least 1 year for 
all traits, except for chlorophyll content. Divona was more vig-
orous than IJ119 for canopy parameters.

Considering the 2 seasons, LiDAR-derived traits on plant 
growth, apparent wood volume, and apparent canopy volume 
presented high and stable heritabilities (Table 1). Heritability was 
above 0.79 for the apparent pruning wood volume, and above 
0.66 for the total canopy volume at véraison. The ELA presented 
a high heritability only in 2019 (0.84) but was substantially lower 
in the years 2020 and 2021 (0.44 and 0.16, respectively). Similarly, 
the heritability of the actual pruning weight was quite variable 
depending on the year: 0.33 in 2020 and 0.89 in 2021.

The heritability of leaf chlorophyll content was also high 
(0.69 in 2020 and 0.93 in 2021), comparable, in terms of genetic 
variance explained, to the apparent volume of pruning wood.

Genetic maps and detection of QTLs for canopy 
volume and pruning wood
Genetic information from 249 genotypes of the population was 
used for the construction of 2 parental maps and one consensus 
map, which all display 19 linkage groups and a high marker density 
of 0.1 cM between markers, on average. The consensus map, with 
a total length of 1,017.3 cM, contains 28,274 SNP. The female map 
has 19,935 SNPs with a total genetic length of 1,110.1 cM, and the 
male map has 20,134 SNPs covering 1,177 cM. Genetic and phys-
ical distances of markers in the maps are highly correlated (r > 
0.97, Spearman correlation test). After removing redundant mark-
ers, the genetic files used for QTL detection contained 1,582, 1,803, 
and 4,473 SNPs for the female, male, and consensus map, respec-
tively. Detailed information is provided in Table S5 and Fig. S1.

QTLs detected for canopy features were highly significant 
(Table 2 and Fig. 8). For the ELA estimated on digital images, 
only a QTL on chromosome 1 was significant for the 3 growing 
seasons. QTLs on chromosomes 3, 10, and 19 were detected for 
one season only. With LiDAR data, QTLs for apparent canopy 
volume on chromosomes 1 and 10 were detected in both 2020 
and 2021. They had higher LOD scores than QTLs for ELA, and 
the complete QTL models (Table 4) explained approximately 
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28% and 44% of the total variance in 2020 and 2021, respec-
tively, which was higher than for ELA.

QTLs for the chlorophyll content on chromosomes 7 and 13 
did not colocalize with QTLs for the canopy volume, suggesting 
that the genetic factors controlling the chlorophyll content of 
the leaves are independent of genetic factors controlling growth 
capabilities in our context.

In 2021 (2020 growing season), apparent wood volumes, esti-
mated with LiDAR data, and actual pruning wood weights were 
under the control of common QTLs on chromosomes 1, 5, and 
18 (Table 3 and Fig. 8). Additional QTLs for apparent wood vol-
ume were detected on chromosomes 3 and 19 and an additional 
QTL for pruning weight on chromosome 8 (Table 3 and Fig. 8).
The overall variance explained by these QTLs reached 48% for 
the apparent wood volume and 37% for the pruning weight, 
which is in both cases very satisfactory (Table 4).

In 2022 (2021 growing season), the total percentages explained 
by the QTLs, for both apparent wood volume and pruning weight, 
were lower than in 2021, around 29%. Two QTLs for pruning 
weight, on chromosomes 1 and 18, were already detected in 2021, 
but this was only the case for the QTL on chromosome 1 for the 
apparent wood volume.

Regardless of the methods used, only the QTL on chromo-
some 1 is stable, detected over 2 growing seasons, both in win-
ter and in summer.

Considering the objective of the study, the heritabilities of 
the traits and the detection of QTLs show that the use of LiDAR 

technology to estimate the volume of the grapevine canopy in 
summer and the volume of dormant tissue volume in winter is 
suitable for genetic studies and is more powerful than previ-
ously used methods.

Discussion

Reliability of LiDAR-derived volume indicators to 
identify genetic differences in vine growth
The reliability and relevance of LiDAR-derived apparent vol-
umes for characterizing vine vigor will be ultimately validated 
if we can show that these variables are useful for analyzing 
variation in agronomic traits such as total biomass production, 
yield level, or whole canopy transpiration. At this stage, vali-
dation is based on correlations with other variables, heritabil-
ities, and, finally, power for QTL detection.

First, we showed significant correlations, although some-
times moderate, of LiDAR-derived apparent volumes with 
ground-truth indicators such as ELA or pruning weight (Fig. 
6). More importantly, heritabilities calculated with LiDAR-
derived indicators were more stable than those calculated with 
ground-truth variables. As shown in Table 1, the apparent 
pruning wood volume, as estimated with LiDAR sensors, 
shows a consistently high heritability (H2 ≈ 0.8) in both the 
2020 and 2021 years. Similarly, the heritabilities of the apparent 
canopy volume at véraison are relatively high and consistent 
across years (H2 = 0.79 in 2020, H2 = 0.66 in 2021). These 

Fig. 6. Diagram showing the coefficients of determination R2 between relevant variables. All the relationships were statistically significant at least at P < 0.001. PW, pruning 
weight; ELA, exposed leaf area calculated from RGB images. Green, variables for the canopy in summer; yellow, variables for the dormant tissues in winter.
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results show that both LiDAR-derived indicators are more rel-
evant for characterizing genetic differences in vine growth than 
ELA and destructive pruning weight for which heritability was 
low (below 0.4) in at least one of the seasons. Although leaf 
chlorophyll content also has high heritability in both seasons 
(H2 = 0.69 in 2020, H2 = 0.93 in 2021), it is poorly correlated 
with ELA (Table S1). This suggests that chlorophyll content, 
as estimated with the Konica-Minolta SPAD 502 chlorophyll 
meter, is probably the expression of a different functional trait 
(see the next section).

Two factors may explain the greater reliability of the apparent 
canopy volume compared to ELA for characterizing genetic differ-
ences in growth. The first one is that the LiDAR system provides a 
proxy to the actual canopy volume through the identification of 3D 
voxels containing leaves and stems, whereas the ELA from RGB 

images is based only on an estimation of row porosity. Of course, 
canopy sampling by LiDAR beams may be subjected to occlusions 
and overlap between plant organs [55] that may bias the retrieval 
of the true canopy volume. But, in our experimental plan, the 
LiDAR acquisitions were conducted on both sides of the rows, 
which should have minimized this effect. In addition, because the 
manual process is time consuming, the porosity estimates from the 
digital images were only collected from one side of the rows. This 
made the estimates less accurate. The manual method for image 
acquisition and processing we used was quite simple but time con-
suming. We did not use the RGB cameras embedded in the system 
(Fig. 3) because we could not control the illumination conditions 
and remove the background, which is still challenging [56]. We 
plan to control the scenes with flashes to compare the LiDAR data 
with high-throughput RGB imagery.
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The second factor is that the segmentation of RGB images 
can be influenced by lightning conditions, which can vary 
between the beginning and end of hundreds of shots. Therefore, 
the thresholds used during the segmentation process may not 
provide the same results depending on the skylight. This could 
explain why the heritability of ELA was low (0.16) in 2021, 
mainly due to a higher variance of Chardonnay data than in 
previous seasons. In contrast, LiDAR is an active device not 
very sensitive to natural lighting conditions. In addition, LiDAR 
processing requires only minimal parametrization—the voxel 
size and the number of hits to classify a voxel as canopy—to 
compute the apparent volumes, ensuring the repeatability of 
measurements, across dates and years.

We cannot definitively conclude that LiDAR sensors are more 
relevant than images to characterize grapevine growth parameters. 
RGB images can also provide information on leaf area and yield 
[25] and, when using stereo vision software, can also generate 3D 
point clouds [57]. Images are of interest not only for the identifi-
cation of objects as small as berries but also for information about 
the color of the canopy. Indeed, one of the goals of canopy char-
acterization is to estimate not only leaf area but also its global 
photosynthetic capacity, and LiDAR sensors alone cannot achieve 
this goal. Calculations of indices such as NDVI or GNDVI (green 
normalized difference vegetation index) with multispectral cam-
eras and estimation of the water status of the plant by thermogra-
phy [26] will add significance to estimates of light interception by 
the canopy.

For dormant tissues, the heritability of apparent pruning 
volume obtained with LiDAR was higher than that of pruning 
weight. The low heritability of pruning weight in 2020 (H2 = 0.33; 

Table 1), when compared to that of the apparent pruning wood 
volume (H2 = 0.83), could be partially explained by differences in 
dry matter content. The dry matter content of the shoots may 
indeed vary according to the variety, environmental conditions, 
and the level of reserves in the plants [58].

The correlations between LiDAR-estimated apparent wood 
volumes and pruning weights (R2 = 0.59 in 2020 and R2 = 0.46 
in 2021) are lower than those reported by Siebers et al. [3] 
(R2 > 0.92), Tagarakis et al. [9] (R2 = 0.65, in 2010, R2 = 0.69 
in 2011), or Moreno et al. [45] (R2 = 0.75). These authors, 
however, established the relationships only for one variety, 
and the data presented by Tagarakis et al. [9] do not allow us 
to conclude whether the slopes were identical for the 2 vin-
tages studied. When studying 2 varieties, Sauvignon Blanc 
and Syrah over 2 vintages, Anastasiou et al. [59] concluded 
that the relationships between LiDAR-derived volumes and 
pruning weights were more accurate for Syrah than for 
Sauvignon blanc. The most appropriate method of data acqui-
sition, as well as the accuracy of the relationships, was also 
different between the 2 vintages, without a clear explanation. 
The hypothesis that the linear equations between LiDAR-
derived volume and pruning weight are genotype specific 
could explain the overall lower accuracy in our case. We can 
propose 2 hypotheses to be tested: (a) differences in wood 
density between varieties and (b) a different contribution of 
the main stems and the laterals to the pruning wood according 
to the variety.

Pruning wood estimates can also be obtained by digital images 
[60,61], but in both studies, the coefficients of correlation obtained 
after an automatic process were lower than with a manual process. 

Table 1. Descriptive statistics, heritabilities of the traits, and differences between the 2 parents

Trait Vintage Progeny Chardonnay H2 a Divona IJ119 P valueb

n Min. Mean Max. Var. Mean Var. mean Mean

Exposed leaf 
area 
(m2.plant−1)

2019 177 0.99 1.96 2.59 0.12 1.70 0.02 0.84 2.56 1.47 NA

2020 204 1.35 1.93 2.46 0.04 1.94 0.02 0.44 1.86 1.71 0.51

2021 206 1.57 2.14 2.57 0.05 2.04 0.04 0.16 2.33 1.84 <0.001

Chlorophyll 
content (unit 
less)

2020 204 242.0 316.8 403.8 854.5 298.4 268.3 0.69 281.7 293.0 0.60

2021 208 233.9 320.7 375.2 713.1 327.3 51.3 0.93 280.8 268.3 0.62

Apparent 
canopy 
volume at 
véraison 
(L.plant−1)

2020 184 220.2 365.6 483.4 1,850.8 345.8 393.3 0.79 329.7 284.0 0.03

2021 172 214.4 305.4 390.7 1,334.1 269.9 455.9 0.66 305.9 298.3 0.85

Apparent 
pruning wood 
volume 
(L.plant−1)

2020 197 1.54 3.59 5.75 0.727 3.04 0.122 0.83 3.36 2.60 0.001

2021 199 2.15 4.96 8.15 1.13 3.51 0.113 0.79 3.37 2.68 NA

Pruning fresh 
weight 
(g.plant−1)

2020 197 200 709 1,466 44,316 700 29,777 0.33 500 533 0.73

2021 201 240 677 1,390 41,879 523 4,426 0.89 341 345 NA

aHeritability.bFor the difference between the 2 parents. *P < 0.05, **P < 0.01, ***P < 0.001. NA, data on one block only.
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Controlling the illumination as well as removing the background, 
either by taking images at night [61] or by using stereo vision [60], 
remains challenging. Our results indicate, anyhow, that dormant 
tissue volumes are better descriptors of the genetic differences 
in vigor than weights, which may be more influenced by the 
environment.

The apparent volumes extracted from LiDAR data in winter 
and in summer rely on relatively simple methods. We believe 
that the methodology we used is sufficient if the goal is to 
describe growth variability across a panel of genotypes in relative 
terms, but LiDAR analyses could still be improved using indices 
such as tree area index [36] or alpha-shape volumes [45,62]. To 
compute absolute volumes [63] or to derive plant leaf area, either 
physical methods based on the analysis of canopy transmittance 
from LiDAR beams [55] or empirical models [64] should be 
used.

Future studies should evaluate the suitability of more advanced 
LiDAR point cloud analysis methods for the segmentation of 
individual shoots on plants and the computation of shoot-scale 
traits such as shoot diameter or inclination angle, which can pro-
vide a deeper insight into the genetic determinants of grapevine 
vigor and plant architecture.

Identifying QTL associated with vigor in a  
vine progeny using non-destructive  
canopy measurements
GBS is a now commonly used technology for unraveling the 
genotype–phenotype relationships for the grapevine. Our 
genetic parental maps have similar lengths and marker num-
bers, above 1,000, than recently published data [65–68]. The 
main difference is that we used in this study a consensus map 
calculated with LepMap3. This map finally enclosed more than 

4,773 markers while staying compact (1,017.3 cM). Analyzing 
the origin of some specific features of our maps is not in the 
scope of this article.

The progeny used in this work proved very well adapted to 
seek the genetic determinants of grapevine vigor. Indeed, all the 
traits under study segregated in this progeny and we identified 
loci in the grapevine genome associated with these variations 
in both growing seasons: a QTL on chromosome 1, for all the 
traits, except chlorophyll content, an additional QTL on chro-
mosome 10 for the apparent canopy volume, a QTL for pruning 
wood weight on chromosome 18, and a QTL for chlorophyll 
content on chromosome 7. Several other loci, on chromosomes 
3, 5, 8, 9, 13, and 19, had less reproducible effects. These QTL 
should be confirmed with a third year of data, but we provide 
here preliminary insights into the genetic determinism of grape-
vine vigor.

We detected a QTL for the chlorophyll content of the leaves 
on chromosome 7. In the results of Bert et al. [69], who identified 
a reproducible QTL for SPAD measurements on chromosome 1, 
this locus is never mentioned. SPAD-502 measurements are well 
correlated to the level of nitrogen nutrition and growth parame-
ters when considering a single variety [42]. However, while the 
relationship between SPAD-502 measurements and actual meas-
urements of leaf chlorophyll concentration may be unique, the 
relationship between SPAD-502 measurements and leaf nitrogen 
concentrations is cultivar dependent [42]. The lack of colocaliza-
tion of the QTL for SPAD-502 measurements with the other 
growth-related traits may indicate that leaf chlorophyll concen-
tration, despite its variability, never limited growth capabilities, 
regardless of genotype. Indirectly, this also suggests that nitrogen 
nutrition was not a limiting factor in our study. Data acquisition 
with the Konica-Minolta SPAD-502 was performed manually, 
but the detection of genetic variation in chlorophyll concentrations 
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and associated loci is a positive signal for the development of a 
high-throughput multispectral imaging system that could pro-
vide us with indices related to leaf photosynthetic activity.

For growth parameters, a QTL on chromosome 1 was found 
whatever the growing season, the method used, or the period of 
measurement (summer or winter). Differences in QTL detection 
between winter and summer data were expected: genetic varia-
tions of internode length [70] can induce variations in the number 
of leaves, and leaf area, for the same shoot length. Differences 
between growing seasons can also result from a limiting factor, 
like water availability, more or less revealing the genotypic suscep-
tibility. A deeper analysis of the genes in the confidence intervals 
of the QTL will be conducted to propose candidate genes that 
could explain the genetic variations of the traits. A QTL for prun-
ing weight, for one season, was already detected on chromosome 
1 in a Riesling × Gewurztraminer progeny [71]. The confidence 
interval of this QTL (6,527,798 to 20,729,170 bp in the PN40024.
v4 genome) overlaps with the confidence intervals of the QTL we 
detected for the canopy on the same chromosome (Table 2 and 
Fig. 1). QTLs related to plant growth were detected in progenies 
used as rootstocks [12,70], but comparisons with our results would 
not be relevant.

One of the main outcomes of our study is that LiDAR sen-
sors are more powerful for deciphering the genetic determinism 
of grapevine growth parameters than reference methods. For 
the canopy, the LOD scores for apparent volumes were higher 
in both 2020 and 2021, but, more importantly, the total per-
centage of variance explained by the models varied between 
21.8 and 27.0 % for ELA, in 2020 and 2021, respectively, whereas 
it reached 27.8% and 44.3% in 2020 and 2021, respectively, for 
apparent volumes calculated from point clouds (Table 4). The 
same conclusion can be drawn from the pruning wood QTL 
(Table 3), with up to 47.6% of the variance explained by LiDAR 
technology versus 37.0% for pruning weight in 2020.

An important question is whether monitoring vine vigor 
in winter is necessary to describe genetic variations in vine 

growth. Pruning weight has traditionally been used as an 
indicator because it is easy to measure. However, the most 
important traits to consider in genetic studies are those that 
describe the ability of the canopy to synthesize sugars and 
those that are related to the light environment and microcli-
mate around the grapes. Describing the canopy in summer 
using traditional methods, including digital pictures, is time 
consuming and was rarely performed on collections of genetic 
variants [13]. With high-throughput methods such as auto-
mated LiDAR acquisition, the kinetics of canopy development 
between flowering and harvest are accessible. In addition to 
its interest for QTL detection, the dynamics of light intercep-
tion from high-throughput methods could be introduced into 
biomass production models. Ultimately, integration into berry 
sugar concentration models may help to unravel the genetic 
origins of variations in berry sugar content. Meanwhile, the 
data obtained in this work will be integrated into the analysis 
of genetic variation in sugar accumulation observed in this 
progeny.

Conclusion

Our main objective was to validate the use of LiDAR sensors for 
high-throughput phenotyping of grapevine growth-related traits. 
The LiDAR-derived apparent volumes at véraison—total canopy 
volume—and in winter—pruning wood volume—showed high 
and more stable heritabilities than ELAs measured from images 
and destructive measurements of the pruning weight. They were 
further validated by powerful QTL detection. These results high-
light the reliability of LiDAR-derived traits for characterizing 
genetic differences in grapevine growth, which can be used instead 
of traditional low-throughput methods. Our study also opens new 
perspectives for high-throughput phenotyping of grapevines in 
the vineyard to describe not only genetic variation but also the 
effects of environmental conditions, training systems, or manage-
ment techniques.

Table 4. Summary of QTL results

Season Vintage Trait Chromosomes Overall LOD %Var

Summer 2020 Exposed leaf area 1,10 10.91 21.8

Apparent canopy 
volume at véraison

1,10 12.3 27.8

Chlorophyll content 7,7,13 14.31 27.6

2021 Exposed leaf area 1,3,19 14.04 27.0

Apparent canopy 
volume at véraison

1,10,9,5 21.86 44.3

Chlorophyll content 7 5.06 10.6

Winter 2020 Pruning weight 1,5,8,18 19.79 37.0

Apparent pruning 
wood volume

1,3,5,18,19 27.66 47.6

2021 Pruning weight 1,9,18 14.75 28.8

Apparent pruning 
wood volume

1,9,10 14.54 28.6
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