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 

 
Abstract— Rescheduling process consists in ordering in the 

time all production orders in response to disruptions for 

optimizing a criterion. When the disruption is due to orders 

arrival, the heavy weight orders fit into the schedule forcing the 

low weight ones to wait. Therefore, the low weight orders may 

not run. For dealing with this issue, in this paper, we propose to 

reschedule with time dependent variable weights. Indeed, the 

longer the task remains in the system, the more its weight 

increases. A single machine rescheduling problem is treated 

with orders arriving over time. In the predictive phase, a MILP 

model is implemented to solve a scheduling problem with the 

Total Weighted Waiting Time (TWWT) as an objective. In the 

reactive phase, when a new order arrives, a MILP is 

regenerated solving the new problem with the TWWT and the 

stability as an objective. Experimental results discuss the 

impact of increasing the jobs weight and its relationship with 

the system performance and the resolution time.  

 

Keywords— Rescheduling; time dependent variable weights; 

single machine; predictive-reactive strategy; waiting time; 

stability. 

I. INTRODUCTION AND LITERATURE REVIEW 

Using new technological tools, the customers have the 
possibility to create, at any time, an order. These practices 
change have an impact on the companies’ organization. 
Indeed, the companies must quickly react for revising the 
schedule in response to the new orders arrival. Hence, 
rescheduling process is necessary. Rescheduling is defined as 
a revision of an established schedule in response to new 
orders arrivals or any process disruption [1,2]. In 
rescheduling literature, the authors have been interested on 
different types of disruptions, such as the arrival of new 
orders [3,4], resources unavailability [5,6,7], job 
disappearance [8], raw materials lack [9,10].  

For measuring the performance of the schedule, many 
efficiency criteria are often considered in rescheduling 
problem. such as the Makespan [11,12,13], tardiness [14,15], 
total flow time [16], and maximum lateness [17]. However, 
other authors have studied weighted criteria like the total 
weighted completion times [18,19], the total weighted 
tardiness [20], or the total weighted waiting time [21,22,23]. 
The integration of the weight into the performance measure 
consists of prioritizing the important orders. At each time a 
new heavy weight order arrives, it is fit into the schedule 

 
1Université de Strasbourg, ICUBE CNRS 7357 Strasbourg, France 
2Université de Lorraine, LGIPM F-57000 Metz, France 
* Corresponding author 

 

forcing the low weight ones to wait. Thus, the low weight 
orders wait too much before being executed or they will 
never be executed.  

Most of cited works were not interested on this issue 
although it causes customer dissatisfaction. Differently from 
existing works, in this paper, we consider the Total Weighted 
Waiting Time (TWWT) for measuring the efficiency of the 
schedule and we propose to reschedule with time dependent 
variable weights. Indeed, the longer the task remains in the 
system, the more its weight increases. The waiting time of an 
order is the period during which this order has waited in front 
of workstation before it is carried out [24]. In industrial 
workshop, the waiting time measures waiting of the task in 
front of workstation, and the weight can represent the 
customer’s priority. In hospital environment, the waiting time 
can be regarded as the delay between the patient’s arrival and 
his actual treatment, and the weight is the emergency level. 
Thus, so as not to the low weight patients become constantly 
shifted, it is necessary to increase their weights as function of 
their effective waiting time. In rescheduling literature, Guo et 
al. [25] is among the first authors who studied the waiting 
time on scheduling systems. They are interested on 
rescheduling problem on a single resource for minimizing the 
total of the waiting times of the tasks, considering the original 
loads and release time.  

Efficiency criterion measures the performance of the 
schedule. However, in dynamic cases, other kind of criteria 
can be assumed such as the stability criterion. This latter 
assesses the orders deviation [26]. Several authors have been 
interested in the stability criterion [27,28,29]. For example, 
Pfeiffer et al. [30] use two penalties for assessing the 
instability of the schedule. In first, they use the jobs starting 
times deviation, which is the deviation between jobs starting 
time in the planned schedule and the new one. In second, 
they use the deviation of the starting time from the actual 
date. In our systems, as we use a weighted criterion, we 
regard the Total Weighted Completion Time Deviation 
(TWCTD) as a stability criterion. This latter assesses the 
deviation of the weighted completion times between the 
planned schedule and the re-planned one (after the 
disruption). Indeed, with a heavy weight, it will be difficult to 
deviate the order, which prevents delaying a rush order.  

Two rescheduling strategies are existing in the literature 
[31]. The first is completely reactive, referred to as dynamic 
scheduling, it consists of dynamically constructing the 
schedule using dispatching rules when a new order arrives. It 
uses the actual information and dispatching rules to decide 
the order of the job in the list [32]. The second is predictive-
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reactive strategy. This latter consists of creating a first 
schedule and regenerating, at each time a disruption appears, 
a new schedule [1]. Several authors have already used this 
approach for rescheduling. For instance, Bahroun et al. [33] 
use a predictive-reactive approach to reschedule the tasks in a 
single resource rescheduling problem. Thanks to tentative 
information, the authors construct a feasible schedule. Then, 
in the reactive phase, they built new schedules at each time a 
disruption occurs.  

In this paper, we investigate a single resource 
rescheduling problem, the disruption is due to arrival of new 
orders. To reschedule the orders in the resource, a predictive-
reactive strategy is implemented. In the predictive step, an 
initial schedule is constructed for optimizing TWWT. In the 
reactive step, when a new order arrives, the data of the 
problem is updated, and a new schedule is generated, 
simultaneously optimizing the efficiency criterion TWWT and 
the stability criterion TWCTD.  

For describing this problem, a MILP model is formulated. 
The novelty of this model is that it introduces a new concept 
in the rescheduling problems which is the integration of the 
dynamic weights. While the orders are not executed, their 
weights increase. This behavior allows to consider the low 
weight earliest orders thanks to increasing their priorities as 
function of time. In the scheduling literature, very few works 
are interested on this issue [34]. The paper contributes on 
operational research by:  

- Introducing a single machine rescheduling problem with 
time dependent variable weights. This helps the low weight 
orders to be planned.  

- Implementing a MILP model and a predictive-reactive 
strategy for rescheduling the orders with the objective of 
optimizing the efficiency and the stability of the schedule.  

- Discussing the impact of increasing the jobs weight and 
its relationship with the system performance.  

The rest of the article is organized as follows. In chapter 
II, we describe the problem. In chapter III, we formulate the 
MILP model. In chapter IV, we discuss the experimental 
results. In the final chapter, we conclude and provide some 
perspectives. 

II. PROBLEM DESCRIPTION 

We consider n orders that are available to be scheduled in 

a single resource. For each order j, we define a release date rj, 

a weight wj, and a duration pj. The waiting time Wj of the 

order j is the difference between its release date rj and its 

starting time Sj, Wj = Sj - rj. When the execution of the order j 

starts, it will be proceeded without preemption to completion 

time Cj. Cj =Sj + pj. Thus, the waiting time is also defined as 

Wj = Cj - pj - rj.  

The predictive-reactive strategy consists, in the 

predictive step, of generating an initial schedule which 

optimizes the TWWT, i.e., , defined as the 

efficiency criterion. During the production, a new order may 

arrive. This latter will be combined with the not yet executed 

orders to form a set N’. In the reactive step, we generate a 

new schedule for optimizing the TWWT combined with 

TWCTD as a stability criterion, i.e. , with 

Coj the original completion time of order j when it is 

scheduled for the first time. As the objective of the reactive 

step is to optimize the efficiency and the stability, we 

introduced a coefficient β as a weight of each part of the 

objective function, i.e.,  

. 

Time dependent variable weights  

The proposed weight equation is given by                           

, the weight becomes a function of 

time wjt, release date rj and the index μ. When the order 

waits for a long time, the difference between the actual date t 

and release rj date becomes large. Consequently, the value of 

wjt increases. We have added one to the difference so as not 

to obtain zero weight when t = rj. The index μ regulates the 

weight effect, we assume that its value is between 0 and 1 to 

get relatively small weight increasing values. When μ = 0, 

the orders’ weights are static and does not depend on the 

time. When μ = 1, the weight augmentation becomes too 

large. If μ exceeds 1, the weight value will increase 

excessively. Thus, . The objective functions of the 

predictive and reactive phases are respectively described by 

Equation (1) and Equation (2):  

                  (1) 

   (2) 

Algorithm 1 describes the predictive-reactive strategy 

adopted in our approach. 

Algorithm 1: 

Initialize data 

Solve the initial problem    

While (t  ≤  T) do 

If (γ(t) = 1) then 

  Update problem data and constraints 

  Solve the new problem 

 

End-if  

End-do 

 

The algorithm browses iteratively the horizon time T. At 

each time t, it checks the state of γ(t). This latter is a binary 

variable, it gives a value 1 if a new order arrives and 0 

otherwise. 

      (3) 

If γ(t) = 1, the algorithm updates the problem data and 

constraints. Then, it solves the new rescheduling problem. 

III. MILP FORMULATION 

In this section, we formulate a MILP model for describing 
the problem of TWWT minimization with time dependent 
variable weights. The MILP formulation consists of assigning 
orders to positions. It is provided by [22] for a single machine 
rescheduling problem, we then adapted it to match time 
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dependent variable weights. Thus, in predictive phase, the 
parameters, the decision variables, and the constraints are 
given by:  

Parameters:  
N:  set of orders {1, 2, ..., n} 
K:  set of positions {1, 2, ..., n} 
j:   index of order, j =1, 2, ..., n 
k:   index of position, k =1, 2, ..., n 
wj0:  weight of order j at time 0 
rj:  release date of order j  
pj:  duration of order j  
μ:  weight index 

bigM:  large value,  

 

Decision variables:  

 

CPk: completion time of position k. 

SPk: starting time position k. 

Cj: completion time of order j. 

Wj:  waiting time of order j. 

Objective function:  

s.t: 

                (4) 

               (5) 

             (6) 

      (7) 

          (8) 

      (9) 

       (10) 
              (11) 

                  (12) 

                (13) 

             (14) 

 

Equations’ description:  

Equations (4) and (5) grant a unique match between 

order and position. Equation (6) ensures starting time of 

position k to be greater than or equal to its release date. 

Equation (7) stands for precedence between the positions. 

Equation (8) calculates the position completion time. 

Equations (9) and (10) calculate the order completion time. 

Equation (11) calculates orders waiting time. Equations (12) 

and (13) are non-negativity constraints. Equation (14) fixes 

xjk domain of variation. 

After the arrival of a new order, we combine the new 

order with the not yet executed orders to form a set N’. 

 

Updated parameters: 

t:    disruption date 

N’:   set of updated orders {1, 2, ..., n’} 

K’:   set of updated positions {1, 2, ..., n’} 

j:    index of order, j =1, 2, ..., n’ 

k:    index of position, k =1, 2, ..., n’ 

Coj:   original completion time of order j, calculated when j 

is scheduled for the first time. 

xojk:  variable assigning order j to position k in the last 

schedule. 

wjt:  weight of order j at time t 
β:   efficiency-stability weight. 

 

Updated constraints: 

After the disruption occurrence, we use the constraints 

described in the equations (4) until (14) with the updated 

parameters. As well, the constraint (15), which allows saving 

the in-course sequence: 

       (15) 

 

Equation (15) makes the order in the same position if its 

execution is started. 

 

Decision variables: 

We use the same decision variable as the one used 

before. The new objective consists in optimizing the 

efficiency and stability: 

 

IV. EXPERIMENTAL RESULTS 

The solver FICO Xpress IVE is used for programming 

the MILP model. The latter has been performed accordingly 

to Algorithm 1 on Core i7 2.90 GHz laptop. In Section A, a 

description of the instances’ generation. 

A. Instances generation  

  Table 1 Parameter values generation 

Parameters Values 

T 48 ut 
wj0 ~ U (1,5) ut 

pj ~ U (1,4) ut 

rj ~ U (0,2) ut 

 

The instances used in this study have been randomly 

generated accordingly to Table 1. They can be adapted for 

real applications. We have assumed that 1 unit of time (ut) is 

equivalent to 10 minutes. Thus, the simulation has been 

carried out over 8h, representing the factory opening time. 

T = 8h = 480 min = 48 ut. wj0 is the weight value of order j at 

t = 0, it varies from 1 to 5. wj0 values were generated 

following a discrete uniform distribution. It is assumed that 

the weight represents 5 customer priorities. The duration pj 

is regarded as the product manufacturing duration, it varies 

following a discrete uniform distribution between 1 to 4 ut. 

At time t = 0, we generate rj following a discrete uniform 

distribution with a parameter between 0 to 2 ut. The value of 

γ(t) is also randomly generated using the Bernoulli 

distribution, giving at each date t, a value 1 with a 

probability ψ and 0 with a probability 1 - ψ. In the 

experiment, ψ is varied according to different values.  

B. Example of calculation 

In Table 2, values parameters for 5 orders are given.  
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Table 2 Orders’ information 

 Order 1 Order 2 Order 3 Order 4 Order 5 
pj 1 4 3 2 2 

rj 0 0 1 0 1 

wj0 1 5 1 3 2 

 

The result of TWWT minimization provided by Xpress 

IVE is  with the sequence 4-2-5-1-3. 

Table 3 presents the solution details, Sj and Cj are 

respectively the starting and completion time of order j. 

 

Table 3 Solution of initial problem 

 Order 4 Order 2 Order 5 Order 1 Order 3 

Sj 0 2 6 8 9 
Cj 2 6 8 9 12 

 

We can conclude that WSPT consisting in scheduling by 

ascending order of pj /wj0 is optimal for this problem.  

Now, we assume that 2 orders arrive when the sequence 

is running, order 6 at time 2 and order 7 at time 3. It is 

assumed that μ = 0.5. The new orders’ information after the 

arrival of order 6 and order 7 are respectively given in 

Tables 4 and 5. 

 

Table 4 Orders’ information after the arrival of order 6 

 
Order  

1 

Order 

2 

Order 

3 

Order 

4 

Order 

5 

Order 

6 

pj 1 4 3 2 2 1 
rj 0 0 1 0 1 2 

wj2 1.73 8.66 1.41 5.19 2.82 5 

 

Table 5 Orders’ information after the arrival of order 7 

 
Order 

1 

Order 

2 

Order 

3 

Order 

4 

Order 

5 

Order 

6 

Order 

7 

pj 1 4 3 2 2 1 1 
rj 0 0 1 0 1 2 3 

wj3 2 10 1.73 12 3.46 7.07 1 

 

In this example, we assumed that β = 1, the stability 

criterion is not considered. The results of f2 minimization 

after the arrival of order 6 and order 7 are respectively given 

in Tables 6 and 7. 

 

Table 6 Solution responding to order 6 arrival 

 
Order  

4 
Order 

6 
Order 

2 
Order 

5 
Order 

1 
Order 

3 

Sj 0 2 3 7 9 10 

Cj 2 3 7 9 10 13 

 

In Table 6, Order 6 arrives at time t = 2. Order 4 has 

already begun its execution; it has kept the same position. 

The rest of jobs have been combined with Order 6 to form 

N’. The solution gives f2 = 59.56. 

 

  Table 7 Solution responding to order 7 arrival 

 
Order 

4 

Order 

6 

Order 

2 

Order 

5 

Order 

1 

Order 

7 

Order 

3 

Sj 0 2 3 7 9 10 11 
Cj 2 3 7 9 10 11 14 

 

In Table 7, Order 7 arrives at time t = 3. Order 4 and 

Order 6 have already begun their execution, they kept the 

same position. The rest of jobs have been combined with 

Order 7 to form N’. The solution gives f2 = 81.87. We can 

remark that WSPT rule is respected in these solutions when 

β = 1.  

The weights increase helps Order 1 to be planned before 

Order 7 since , instead of what could 

happen in the static weight case when . 

C. Impact of the weight variation on the flowtime 

To evaluate the impact of the weight variation on the 

orders’ flowtime within the system, we assess the Mean 

Flowtime (MF) and Standard Deviation of the Flowtime 

(SDF), varying μ from 0 to 1. The flowtime Fj of order j 

measures the time difference between the release date rj and 

the completion time Cj, how long the order stays in the 

system, Fj = Cj - rj. Thus, the mean flow time calculates the 

average of the flowtime depending on the number of the 

orders, . More, the standard 

deviation of the flowtime measures the dispersion of 

flowtime values around MF. 

The study is established for 10 different instances. Each 

instance starts with 5 initial orders. Then, new orders arrive 

with a probability ψ = 0.8. The 10 instances are tested for 

different values of β to measure the impact of β on MF. In 

our simulation, the variation of β starts from 0.5 since under 

this value TWWT becomes negligible, that is not realistic. 

Thus,  and . Table 8 presents the 

averages of MF and SDF for the tested instances. 

Table 8 Variation of MF and SDF in function of μ and β  

μ 
β = 0.5 β = 0.75 β = 1 

MF SDF MF SDF MF SDF 

0 8 4.49 8 4.49 8 4.83 

0.1 8 4.49 8 4.49 8 4.83 

0.2 8 4.49 8 4.49 8 4.49 
0.3 8 4.49 8 4.49 8 4.49 

0.4 8 4.49 8 4.49 8 4.49 
0.5 8 4.49 8 4.49 8 4.49 

0.6 8.3 4.21 8 4.49 8 4.49 

0.7 8.3 3.74 8 4.49 8 4.49 
0.8 8.4 3.65 8 4.49 8 4.49 

0.9 8.4 3.65 8.3 3.74 8 4.49 

1 8.4 3.65 8.3 3.74 8 4.49 

The increase of μ increases MF value. However, SDF 

decreases. SDF is the dispersion around the mean flowtime, 

its value decreases since the values of Fj approach each 

other. We can conclude that the increase of μ helps the low 

weight orders to be planned. 

Moreover, the augmentation of β makes it difficult to 

decrease SDF since the new orders are, systematically, 

scheduled in the last position as the stability of the schedule 

becomes important. In this case, a high value of μ is needed 

to help the low weight orders to be planned. In conclusion, 

for helping the low weight orders to be planned, we need a 

high value of the index μ when the efficiency-stability 

weight β is large. 
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D. Impact of the weight variation on the objectives 

In this subsection, we study the impact of the index μ on 

both objectives. Thus, for different values of μ, we calculate 

TWWT, TWCTD and f2. These values are calculated with the 

initial order weight to ensure the comparability. We also 

calculate the deviation rate from the static weight case. The 

tests are performed for the same instances as those presented 

in Section C. Fixing the value of β on 0.5, different values of 

ψ are tested. Table 9 presents the variation of the objectives 

in function of μ and ψ. 

Table 9 Variation of the objectives in function of μ and ψ  

μ 
ψ =0.2 ψ =0.5 ψ =0.6 

a b c D a b c d a b c d 

0 93 15 54 0 236 31 133,5 0 384 72 228 0 

0.1 93 15 54 0 236 31 133,5 0 384 72 228 0 

0.2 93 15 54 0 236 31 133,5 0 475 63 269 15 

0.3 93 15 54 0 236 31 133,5 0 529 58 293,5 22 

0.4 93 15 54 0 248 29 138,5 4 614 34 324 30 

0.5 93 15 54 0 270 20 145 8 652 26 339 33 

0.6 105 9 57 5 288 13 150,5 11 670 15 342,5 33 

0.7 114 7 60,5 11 285 16 150,5 11 670 15 342,5 33 

0.8 118 5 61,5 12 285 16 150,5 11 742 8 375 39 

0.9 118 5 61,5 12 345 6 175,5 24 742 8 375 39 

1 118 5 61,5 12 345 6 175,5 24 745 7 376 39 

a: TWWT, b: TWCTD, c: f2, d: deviation rate from static weight (%) 

The value of the stability criterion, TWCTD decreases 

when μ increases. The proposed formula helps the system 

stability since it forces the orders to keep the same positions. 

As the stability becomes more important, the schedule 

efficiency reduces, which explains the increase of TWWT 

with μ, especially when the schedule is more disrupted. f2 

increases also with μ, especially when ψ = 0.6. Fig.1 depicts 

this behavior. 

 

Fig. 1 Variation of f2 in function of μ and ψ 

The decision maker must choose a value of the index μ in 

function of its priority. We have performed other tests with 

ψ exceeding 0.6, but resolution is not possible within a 

reasonable time.  

E. Impact of ψ on the resolution time 

ψ is the probability of the order arrival in a period t. The 

increase of ψ increases the chance of the order arrival. The 

aim of this study is to evaluate which problem size the MILP 

can solve and how fast in function of ψ evolution. The study 

is conducted for 10 instances per problem type. Thus, the 

average of Resolution Time (RT) is calculated. The instances 

contain 5 and 7 prime orders. Over the horizon time T = 48 

ut, other orders occur progressively in function of ψ. 

Different values of the index μ are tested {0; 0.5; 1}. β is 

fixed on 0.5. The results are presented in Table 10. 

Table 10 Impact of ψ in the resolution time 

Prime orders Ψ (TNAR) 
Resolution time in seconds 

μ = 0 μ = 0.5 μ = 1 

5 orders  

0.2 (10 orders) 0.07 0.08 0.09 

0.5 (24 orders) 0.4 0.39 0.41 

0.6 (28 orders) 233.7 235.2 232.8 
0.7 (33 orders) 1110.6 1112.3 1202.6 

7 orders 

0.2 (10 orders) 0.11 0.12 0.11 

0.5 (24 orders) 0.64 0.66 0.67 
0.6 (28 orders) 330.8 333.2 337.6 

0.7 (33 orders) - - - 

TNAR: Total Number of Arrival Orders 

Resolution time depends on both prime orders and ψ. 

When these ones increase, resolution time increases also. In 

this study, we observe a break when ψ = 0.7, which is 

averagely equivalent to 33 arriving orders when T =  48 ut.  

- With 5 prime orders and ψ = 0.7, the MILP makes 

averagely up to 20 min to solve the problem. 

-  With 7 prime orders and ψ = 0.7, the MILP is not able to 

solve the problem. The program ran for 12h, we have then 

interrupted the simulation.  

Varying μ, the resolution time remains stable. Hence, 

time dependent variable weights has no impact on the 

resolution time. As a conclusion, the MILP can averagely 

solve a problem up to 5 prime orders subjected to 

disruptions occurring with a probability of ψ = 0.7. It is 

equivalent to 38 orders when T = 48 ut.  

V. CONCLUSION 

This study investigates a rescheduling problem with time 

dependent variable weights. The aim is to propose a new 

concept for helping low weight orders to be treated when the 

optimization concerns a weighted criterion. In fact, when the 

disruption is due to orders arrival, the heavy weight orders 

fit into the schedule, forcing the low weight ones to wait. 

The proposed concept consists in increasing the weights of 

the orders as a function of time. Indeed, the longer the task 

remains in the system, the more its weight increases. The 

study is conducted on a single machine rescheduling 

problem. Predictive-reactive algorithm regenerates, at each 

period, a MILP model for solving the problem of the total 

weighted waiting time minimization. Instability of the 

schedule is also assessed by the weighted completion time 

deviation. Three important experimentations are performed. 

Firstly, for measuring the efficiency of the proposed 

concept, we have measured the impact of the weight 

variation on the orders flowtime. Numerical results show 

that the increase of the weight as a function of time 

decreases the standard deviation of the flowtime. In other 

words, the order’s flowtimes approximate to each other. 

Thus, the low weight orders have more chance to be 

planned. 

Secondly, we measured the impact of the weight variation 

on the objective function. The experimentation shows that 

the increase of the weight values matches the system 
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stability since this concept ensures that the orders keep the 

same positions, that is the principle of the schedule stability. 

However, schedule efficiency degrades. Ultimately, we 

studied the impact of instances size on the resolution time. 

The MILP can solve a problem with up to 38 orders. 

However, the time dependent variable weights, has no 

impact on the resolution time of the MILP.  

This research work can be very helpful, not only for the 

researchers working on operational research, but also for 

industrial managers or operating rooms planners, for 

instance. The concept of time dependent variable weights 

can be applied on any scheduling system taking into account 

the tasks priority. However, our study is established on a 

single machine rescheduling and the problem resolution is 

performed with a MILP formulation. Hence, our further 

works could focus on other machine environments, closer to 

real systems, such as flexible job shop or hybrid flowshop. 

Moreover, to browse more orders in a reasonable time, we 

will design metaheuristic methods.  
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