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1- Context: Deadline-constrained ML limits in Edge devices
Edge Intelligence (EI) : paradigm that brings in-
telligent applications closer to data collection devices.

Edge Intelligence constraints :

• Memory: The current growth of data volume to
process has surpassed the scaling capabilities of
DRAM memory [1].

• Time: Intelligent applications are required to
deliver timely responses as they process large
amounts of data.

• Energy: ML models training are resource-hungry
which drains rapidly the power budget.

Problem statement: How to design a memory-
constrained deadline-aware K-means algorithm for
embedded devices while reducing energy consumed.

K-means algorithm :
• K-means is widely used for clustering in EI.
• K-means execution time is affected by dataset size,

memory workspace size, centers initialization, and
the required number of iterations to converge.

• Predicting K-means delays for real-time is crucial
for applications such as anomaly detection [2], or
preprocessing data before AI models as CNN [3].

DVFS: Power management technique that adjusts
online the voltage and frequency of a processor.

(1) Frequency Impact on delay and energy

2- Related Work
• [4] presents a stereo depth estimation with CNN

on GPU that performs depth estimation in
stages, allowing the model to provide ongoing
estimates when queried.

• [5] proposes a fast inference framework that
learns to speed up inference at run-time by
combining a flexible sampling technique with
deterministic message-passing to reduce compu-
tations in general regressors as random forests.

• [6] The authors propose adapting the minimum
number of observations of a data stream before
calculating the best attribute for node splitting
to achieve precision within confidence intervals.

None of the previous studies adapt K-means to sat-
isfy a given deadline on embedded devices.

3- K−MLIO [7] Energy Analysis
• K-MLIO (for K-Means with Low I/O Over-

head) is a state-of-the-art I/O optimization for
the K-Means algorithm that employs a divide-
and-conquer approach to mitigate I/O overhead.
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• K-MLIO [7] stabilizes the I/O proportion of the
total execution time to less than 4% regardless of
the memory constraint ( N

M
).

• The results of EDP analysis indicate that one can
leverage frequency to achieve a favorable energy-
delay trade-off.

4- Energy efficient dead-line aware K−MLIO
• Principle : We run the K-means per chunk (as

in K-MLIO) on the data subset that makes it re-
spond at the given deadline at the cost of a small
clustering error through online data analysis.

• After measuring the processing time of the 1st
chunk, we speculate on the number of chunks to
drop skip_chunk to respect the deadline.

• Then, DVFS is applied before processing each
chunk to update the optimal frequency freqopt re-
quired to execute the Worst-Case Execution Time
W CET (freqopt) of the remaining chunk.

• In case a slack time emerges when a chunk con-
verges more quickly, the frequency freqopt is de-
creased while respecting the deadline.
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5- Evaluation
Objective : demonstrate that our solution respects
the deadline while maintaining good precision (and
reducing energy consumption).

Experiment Setup
Memory Work Space 300 Mo

⌊N/M⌋ 10
Cluster Separations -0.2, 0.0, 0.2

Time constraints from 600s to 3000s

6- Conclusion and Future Work
• We proposed a memory-constrained deadline-

aware K-means algorithm.
• The precision of the proposed solution is compa-

rable with the original K-MLIO version while
the deadlines were always met.

For future work:
• Evaluate energy consumption reduction on em-

bedded devices.
• Evaluate on real data-sets and on embedded de-

vices.
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