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1 – Serverless Cloud Challenges [5]

Characteristic Serverful (IaaS, PaaS) Serverless (FaaS)
Provisioning Customer responsibility Fully managed (i.e. by the provider)

Scaling Customer responsibility Auto-scaling built in
Availability Depends on provisioned resources Code runs in multiple high availability zones

Fault tolerance Depends on deployment strategy Retries of stateless functions
Concurrency Depends on provisioned resources Virtually infinite

Tab. 1: Comparison of key characteristics in serverless and serverful service models

• Serverless resources are not reserved [6]
– Increased provider’s responsibility

∗ Dynamic allocation (following load variations) 8
∗ Dynamic placement (mapping requests to resources) 7

• Functions are not network-addressable [1]
– Communications between functions use slow storage
– Initialization times can dominate total function execution time

• Cloud resources are heterogeneous [3]
– Various levels of performance and cost

• Load is unpredictable [7]
– Stochastic barrier: need for an online solution

• Users have various QoS requirements [2]
– Throughput-centric (batch jobs) vs. lower latency (interactive jobs)

2 – Platform Overview and Lifecycle of a Request [4]

3 – Problem Justification

• Function instantiation requires pulling the func-
tion image (2 to 4 GB) from a remote image repos-
itory (Fig. 2)

• Functions on the same node benefit from local
storage to achieve communications (Fig. 3)

• Short execution times (10 to 100 ms) can be offset by
longer or more frequent cold start delays (1 to 15
s) (Fig. 2)

• There is a contention on local storage between
function images and function data (Fig. 3)

• Risk of saturating node function cache with function
images (Tab. 2)

• Local image cache starts thrashing, resulting in SLA
violations (Tab. 2)

3a – Function Cache

Fig. 2: Flowchart: allocation (yellow) and scheduling (red) decisions

3b – Function Communications

Fig. 3: Functions can achieve communications through either local or remote storage

4 – Thinking in Terms of Cost

We extend the cost model for resources allocation and
function scheduling we published in [4]. We identify the
implications of storage at each step:

Impact Cost
Resources
allocation

Function
response time

I/O bandwidth
(Gbps)

Resource
contention

I/O capacity
(GB)

Function
scheduling SLA penalties I/O latency (ms)

Tasks
consolidation

I/O capacity
(GB)

Application
execution

Inter-function
communications I/O latency (ms)

Output data
storage

I/O capacity
(MB)

Tab. 2: Breakdown of storage impacts on cost throughout the request lifecycle

scaleCostfN,P
= kTT ·TT fN,P

+kEC ·ECfN,P
+kHP ·HP fN,P

schedCostfN,P
= kQP ·QPfN,P

+kEC ·ECfN,P
+kTC ·TCfN,P

5 – Leveraging Node Storage

We propose to extend the platform in Fig. 1 with a
distributed, cost-aware function cache that op-
portunistically leverages the heterogeneity of available
disk space and memory on worker nodes to:
• accelerate function initialization by minimizing cold

start delays;
• lower application response time by minimizing inter-

function communications through remote storage.

TT fN,P
function response time (total execution time)

WT fN,P
duration of the scheduling decision, including queuing time

CST fN,P
initialization time for the function, including cold start

ET fN,P
execution time of the function on the platform

TCfN,P
sum of total times of all tasks in platform’s queue

QP fN,P
QoS penalty for a given scheduling

HP fN,P
hardware price for a given allocation or scheduling

HP fN,P
energy consumption for a given scheduling

IFCfN,P
inter-function communications

CST fN,P
is impacted by either pulling the function im-

age from a repository or deploying from the local cache
and increases function response time and thus potential
QP fN,P

penalties due to missed deadlines:

TT fN,P
= WT fN,P

+ CST fN,P
+ ET fN,P

TCfN,P
has to be maximized for functions of a same

application so as to allow node-local communications
between functions of an application and minimize the
use of remote storage:

ET appN,P
=

∑
ET fappN,P

+
∑

IFCapp

IFCapp =
∑

IFC localfN,P
+

∑
IFCremotefN,P

6 – Perspectives

• We are extending the simulator developed for [4] to
integrate our updated cost model to the resources al-
location and task scheduling policy;

• We will evaluate the relevance of the full policy using
traces derived from Azure datasets [7];

• We consider exploring the use of machine learning
algorithms to introduce workload prediction and/or
to characterize workloads during execution instead of
during an offline measurement phase.
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Problem Statement – How to account for storage costs when deploying short-lived serverless
functions in a private cloud, leveraging heterogeneous hardware to optimize for quality of service?


