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Abstract 

The work presented in this paper is part of a project that focuses on sorting simulation models used at Intel to calculate 

power consumption of electronic devices. Hundreds of thousands of analytical power models have already been accumulated in a 

directory of files and folders, for the simulation of the consumption of thousands of products. As a first step, this work focuses on 

comparing and grouping together models of smaller granularity - the formulas - which consist of power equations, the definition 

of the parameters involved in these equations, and a description.  

To manage this large data problem, we follow the principles of Model Management and Analytics, to decompose the 

problem into the analysis of constituent fields. We believe that the equations describing power consumption are the most highly 

information-rich field of our models. The aim of this work is to group together the formulas models, using Mathematical 

Language Processing (MLP), to take advantage of the business information contained in electrical equations. We calculate the 

embeddings of our formulas, to enable comparisons between them, to cluster together similar equations (and therefore models). 
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1. Introduction 

We work with analytical power models that are built hierarchically from simple electrical equation models to 

complex models in order to simulate the power consumption of products, such as CPUs. Hundreds of thousands of 
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power models have already been accumulated in our databases, for thousands of simulations, and we want to take 

advantage of this knowledge.  

We have two goals: to sort the existing models in our databases, and to help future users in their reuse of existing 

models [1]. We focus on models of smaller granularity, the formulas models, which can be of three types (static, 

dynamic, supply) dedicated to different simulations. This allows us to pre-treat the models by separating them into 

three subsets. Each resulting formula model contains equations for calculating electrical power, the definition of 

parameters involved in these equations and a description field.  

Model Management and Analysis (MMA) [2]–[4] proposes to tackle this big data problem by analyzing all the fields 

available in the models and processing them with machine learning [5], [6]. Among these fields, we believe that the 

richest information is the equation that expresses the power. So, we use Mathematical Language Processing (MLP) 

[7]–[10], which is based on architectures close to Natural Language Processing (NLP) [11]–[14] to encode the 

semantics of the equation contained in each power model. Once this information is contained in a vector, we can 

compare the equations with each other by comparing the vectors [15] (Figure 1), to obtain similarity scores. 

This paper is organized as follows. Section 2 presents the tools and protocol used for mathematical data extraction 

and encoding, as well as model clustering based on similarity scores. Section 3 evaluates performance of the clustering 

algorithm applied to the similarity scores obtained between equations. Section 4 enumerates the conclusions from our 

work and introduces future perspectives. 

2. Equations Embedding and Clustering 

a. Need for Mathematical Language Processing (MLP) 

As time goes by, advances in natural language processing continue to improve information retrieval capabilities. 

Today's machine translators are no longer just word-by-word processors, but are capable of capturing context. Search 

engines no longer simply offer a list of results, but also the ability to understand users’ questions and propose answers. 

The progress of OpenAI with successive versions of GPT is revolutionizing the scientific community [16], [17]. 

However, it is precisely scientific content that is the most complex to reference. NLP algorithms are designed to 

process words in natural language, but do not allow encoding the mathematical portions of scientific content. Whether 

in scientific papers, training courses, tutorials, or encyclopedias, scientific content often includes mathematical 

equations. As a result, an immense amount of scientific content contains equations that current algorithms do not 

utilize for analysis and classification [18]. Also, the use of mathematical notation is dialectical. Different communities 

use different conventions for naming variables and defining operators (for example, using a horizontal line above an 

"x" to represent Boolean negation, versus the average of a set of values). Each author redefines and adapts the notation 

to his or her immediate needs. This flexibility benefits authors and readers alike, but makes automatic interpretation 

extremely difficult. Mathematical Language Processing is concerned with capturing mathematical language, and 

including it in the content to be encoded, in order to convey the meaning of a document. We want to use an algorithm 

based on this approach to compare our models. We only consider, for each of our models, an equation describing the 

amount of power consumed, as input material for an MLP algorithm. 

b. Algorithm choice 

The key to MLP is to choose the right way to analyze and decompose the formula, to capture its semantics. Two 

types of representations can be found in the literature: Operator Trees (OPTs) and Symbol Layout Trees (SLTs). OPTs 

contain the mathematical meaning, and SLTs the layout of the formula (the positions of the symbols with respect to 

each other). OPTs capture formula semantics while SLTs capture visual structure, as illustrated in figure 1.  

In order to evaluate algorithms, NTCIR-12 MathIR [19], [20] is an open task for retrieving mathematical 

information in documents from queries. The candidate algorithms enable users to search for a particular math concept 

using math formulae. Queries can be keywords, formulae, or a combination. Candidate algorithms need to return a 

ranked list of retrieval documents (document excerpts) matching the input query. This task enables Mathematical 

Language Processing algorithms to be evaluated with a single, clear evaluation procedure. Algorithms proposed in 

literature can be compared with the formula retrieval task, on the NTCIR-12 dataset (cf. Table 1). 
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Fig. 1: Formula (a) with its OPT (b)  

and SLT (c) representations 

Table 1: Bpref  [21] scores comparison 

between literature algorithms 

When reviewing the different approaches made by the scientific community for the NTCIR task, we observe that 

algorithms using combined representations (OPT + SLT) tend to have better results [22]–[24]. Mathematical formulas 

are often unique: It is rare for the same equation to be found identically in another theorem or another field of science. 

Hence, FastText embedding model will learn more abstract formula representations when compared with classic tree-

based approaches, especially thanks to the n-gram embedding which allows to capture local semantic of the formula.  

We've chosen Tangent-CFT [22] for its high performance on this task, which demonstrates that the features 

included in the embeddings produced contain significant information about the formulas. 

 

 

 

 

 

 

 

 Fig.2: Overview of the workflow applied to Intel’s simulation models in this article. 

Figure 2 summarizes our complete workflow. We use Tangent-CFT to produce the embeddings of our formulas. 
Then, unlike the original algorithm which operates as a search engine, we compare all pairs of formula embeddings 

with a cosine similarity, to obtain a distance matrix ready to be used by a clustering algorithm. 

c. Data pre-processing 

We extract the equations describing the power for 

each model. We first sort the formulas into their 3 

different types: static, dynamic and supply. These 3 

types of equations cover different use cases and will be 

treated separately. These equations are written in a 

computational language from Intel, used to compute the 

power value. We convert these equations into LaTeX, 

then into MathML (content + presentation), which is 

suitable for Tangent-CFT. Figure 3 illustrates this 

process with an example. The algorithm uses these two 

MathML forms respectively to obtain the OPT and SLT 

expressions of the formula. We also perform a pre-

processing step by eliminating strictly identical models, 

to save computation time by eliminating all duplicates. 

Intel's math language P = R . I ² 

MathML 

Content + Presentation 

<mrow> <mi> P </mi> <mo> = </mo>  

... 

LaTeX \mathrm{P} = \mathrm{R} \times 

\mathrm{I}^2 
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Fig. 3: Pre-processing 
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d. Inference 

For each equation, we compute a combined OPT and SLT embedding vector. We use the cosine similarity 

between each pair of embedding vectors to obtain a similarity score, then compute the cosine distance from the cosine 

similarity. Given two embedding vectors A and B of dimension n: 

Cosine Similarity = 
𝑨  .  𝑩

||𝐴||  ||𝐵||
 = 

∑ 𝑨𝒊 𝑩i𝒏
𝒊 = 𝟎  

√∑ 𝑨𝒊²𝒏
𝒊 = 𝟎  .  √∑ 𝑩𝒊²𝒏

𝒊 = 𝟎

 

Cosine Distance = 1 – Cosine Similarity  

Finally, we store all those cosine distance scores in a matrix, for all pairs of equations of the database. This format 

is ready to be used as input by the clustering algorithm. 

e. Clustering from scores  

We wanted to avoid classical methods such as K-means, which require knowing the number of clusters in 

advance, as we don't have this information. We tried to cluster with DBSCAN, but the optimal value for the 

neighborhood was not always the same, depending on formula type and length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Comparison between DBSCAN (with different neighborhood settings) and OPTICS.  

 

(a) OPTICS reachability plot.  

(b) OPTICS clustering proposal.  

(c) Zoom on (b) on a random area.  

(d), (e), (f), (g), DBSCAN clustering proposal with different neighborhood settings. 

(h), (i), (j), (k), same as (d), (e), (f), (g) but zoomed on the same area as (c). 



DESORMIERE Adam / Procedia Computer Science 00 (2019) 000–000  5 

Where DBSCAN (Figure 4) fails to capture clusters in areas of varying density, OPTICS succeeds: 

- On figure (d), DBSCAN is set with a very high epsilon value, and clusters all the dataset in the same cluster. Figure 

(h), zoomed in on a high-density area, shows that no discrimination is performed. 

- As we reduce the epsilon value, we see in figures (i), (j) and (k) that clusters in high-density areas are better and 

better captured. However, the number of outliers increases disproportionately (>60% of the dataset for (g)) and we 

can see from figures (e), (f) and (g) that low-density areas are no longer considered by DBSCAN. 

- Fortunately, (b) and (c) show that OPTICS manages to capture clusters in areas of varying density: rather than a 

neighborhood value, it takes into account abrupt variations of reachability in successive points. 

 

As a consequence, we choose to cluster with OPTICS, which allows variable neighborhood densities [25]. 

OPTICS [26] is a density-based clustering algorithm similar to DBSCAN, but that can extract clusters of varying 

densities and shapes. It is useful for identifying clusters of different densities in large, high-dimensional datasets.  

Taking a small set of four equations as an example, Figures 5 & 6 respectively show the scores calculated between 

pairs of equations, and the Multidimensional Scaling representation of the samples. Indexes start at 0. 

 

Fig. 5: Distance matrix  

between pairs of samples 

Fig. 6: Multidimensional Scaling to 

visualize distances between four samples 

Hence, we compared mathematical formulas with each other, and used the resulting similarity scores to cluster 

the corresponding models. In the following, we evaluate the quality of our algorithm’s proposals. 

3. Validation and results  

a. Validation sets 

Unfortunately, once a clustering proposal has been made by our algorithm, we can't evaluate it. We have no 

ground truth for the models in our database, so, even if we verified that the clustering proposals made by our algorithm 

are satisfactory and bring together similar patterns, we can't quantify this without a validation set. To overcome this 

problem, we asked three Intel engineers to cluster by hand all the models belonging to three different teams. We chose 

three teams working on different and diversified products to get a representative sample of all power engineers.  There 

are three diverse types of equations, so each engineer will have to manually cluster nine subsets of equations, giving 

us 27 manual proposals on representative samples from our database. Each proposal made by the engineers is valid, 

their manual clustering is subjective and based on their business knowledge, so the proposals can vary.  

On the other hand, we can evaluate (cf. Table 2) the similarity of different proposals made by each engineer on 

each cluster using the Rand Index [27], which represents the frequency of occurrence of agreements over the total 

pairs. Given two partitions A and B of a set Ω, we call: 

• u the number of pairs of elements of Ω that are in the same subset in A and in the same subset in B 

0 

1 

2 

3 

0 1 2 3 

Cluster 1 

Cluster 2 

Cluster 3 
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• u’ the number of pairs of elements of Ω that are in different subsets in A and in different subsets in B 

• v the number of pairs of elements of Ω that are in the same subset in A and in different subsets in B 

• v’ the number of pairs of elements of Ω that are in different subsets in A and in the same subset in B 

Then the Rand Index is defined by  𝑅𝐼 =  
𝑢 + 𝑢′

𝑢 + 𝑢′ + 𝑣 + 𝑣′
 

Table 2: Comparison (Rand Index) of clustering proposals from three engineers for two subsets of models. 

b. Algorithm evaluation 

It's important to remember that clustering proposals are subjective, and result from the engineer's interpretation. 

There is no one proposition that can prevail over another, and we keep all these propositions as valid ground truths 

for evaluating our algorithms. Nevertheless, we note that these propositions are often extremely close. Thanks to 

these validation sets, we can now evaluate our algorithm's clustering proposals. We use the 9 validation subsets 

described above, and the 3 ground truths from the engineers who manually labelled the models. 

We use the classic evaluation measures [28], we recall that a clustering result satisfies: 

• Homogeneity - if all of its clusters contain only data points that are members of a single class. 

• Completeness - if all the data points that are members of a given class are elements of the same cluster. 

Both scores (cf. Table 3) have positive values between 0.0 and 1.0; larger values being desirable. V-measure [29] 

is the harmonic mean of the first two. 

 

Table 3: Evaluation of our algorithm with classic measures, when compared to three different ground truths 

In most cases, the algorithm proposes the same thing as the engineers. In the few cases where it proposes a 

different clustering, the proposal is logical and makes sense, and we understand its purpose when examining it. As a 

result, we are satisfied with its ability to cluster similar power models. 

 
Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9 

Engineer 1 / Engineer 2 0.90 1.0 0 0.23 1.0 0.37 1.0 0.36 0.41 

Engineer 1 / Engineer 3 0.37 1.0 0.57 0.18 1.0 0.41 0.18 0.36 0.41 

Engineer 2 / Engineer 3 0.42 1.0 0 0.88 1.0 0.55 0.18 1.0 1.0 

 Adjusted Rand Index Homogeneity Completeness V-measure 

Ground truth n° →  1 2 3 1 2 3 1 2 3 1 2 3 

Subset 1 (team A) 0.37 0.48 0.11 0.84 1.0 0.70 0.52 0.61 0.23 0.65 0.76 0.35 

Subset 2 (team A) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Subset 3 (team A) 1.0 0 0.57 1.0 0.75 1.0 1.0 1.0 0.67 1.0 0.86 0.80 

Subset 4 (team B) 0.27 0.51 0.43 0.69 0.80 0.78 0.69 0.78 0.67 0.69 0.79 0.72 

Subset 5 (team B) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Subset 6 (team B) 0.42 0.03 0.06 0.74 0.56 0.59 0.74 0.61 0.46 0.74 0.59 0.52 

Subset 7 (team C) 0.36 0.36 0.29 0.66 0.66 0.67 0.88 0.88 0.61 0.75 0.75 0.64 

Subset 8 (team C) 0.50 0.40 0.40 0.72 0.76 0.76 1.0 0.75 0.75 0.84 0.76 0.76 

Subset 9 (team C) 0.16 0.71 0.71 0.37 0.69 0.69 0.46 1.0 1.0 0.41 0.81 0.81 
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4. Conclusion & Future research 

In this paper, we have shown that we can take advantage of the semantic information contained in mathematical 

equations to compare models. Using MLP, we have encoded our formulas in a space that expresses their mathematical 

characteristics, and we can then compare the formulas with each other thanks to the cosine similarity between the 

vectors. We can use these similarity scores to sort our databases, by grouping the formulas into subsets using a 

clustering algorithm, whose proposals are quite close to those that an expert would have obtained manually. We can 

also use these comparison scores to suggest to the user, like a search algorithm (Tangent-CFT's initial use case), 

equations like the one they are currently typing. In this way, the tool is an excellent assistant to an application 

administrator for tidying and sorting equations. 

Unfortunately, this clustering does not allow us to automatically label subsets once the models have been grouped. 

A manual interpretation from an expert is required to finish exploiting these results and arranging the models. 

Our prospects for future work target the creation of a search engine, which redirects the user of our application to 

similar models (based on the MLP as described in this paper), in real time as he types in the mathematical formula for 

the power consumption of his model. 

We're also considering changing the embedding algorithm, as some recent algorithms offer different embedding 

methods, potentially more efficient than FastText, which is an area worth exploring. 
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