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Abstract: This research sought to enhance the efficiency and biocompatibility of anodes in bioelec-
trochemical systems (BESs) such as microbial fuel cells (MFCs), with an aim toward large-scale,
real-world applications. The study focused on the effects of acid-heat treatment and chemical modifi-
cation of three-dimensional porous pristine carbon felt (CF) on power generation. Different treatments
were applied to the pristine CF, including coating with carbon nanofibers (CNFs) dispersed using
dodecylbenzene sulfonate (SDBS) surfactant and biopolymer chitosan (CS). These processes were ex-
pected to improve the hydrophilicity, reduce the internal resistance, and increase the electrochemically
active surface area of CF anodes. A high-resolution scanning electron microscopy (HR-SEM) analysis
confirmed successful CNF coating. An electrochemical analysis showed improved conductivity and
charge transfer toward [Fe(CN)6]3−/4− redox probe with treated anodes. When used in an air cathode
single-chamber MFC system, the untreated CF facilitated quicker electroactive biofilm growth and
reached a maximum power output density of 3.4 W m−2, with an open-circuit potential of 550 mV.
Despite a reduction in charge transfer resistance (Rct) with the treated CF anodes, the power densities
remained unchanged. These results suggest that untreated CF anodes could be most promising for
enhancing power output in BESs, offering a cost-effective solution for large-scale MFC applications.

Keywords: carbon felt (CF); microbial fuel cell; anode materials; biofilm; power density; electroactive
bacteria

1. Introduction

Microbial fuel cells (MFCs) have emerged as a promising technology for the direct
conversion of chemical energy from organic substrates into electricity, leveraging the cat-
alytic activity of electrochemically active bacteria (EAB) at the anode [1–4]. The electrons
released during substrate oxidation at the anode are transferred to the cathode, typically
via an oxygen reduction reaction. Despite the potential of MFCs for wastewater treatment
and power generation, their real-world application remains limited due to challenges such
as low power densities [5,6]. One of the primary factors influencing MFC performance is
the efficiency of extracellular electron transfer (EET) at the anode, which is determined by
the properties of the anode material [7]. Among the myriad of materials explored, carbon
felt (CF) has emerged as a frontrunner. Its inherent biocompatibility, electrical conduc-
tivity, and 3D porous structure make it an ideal candidate for facilitating efficient EET in
BESs [8–11]. However, while CF is a frontrunner among multiple materials explored, there
is a growing consensus that its performance can be further enhanced through strategic
functionalization and modification [8,10,11]. Recent studies have delved into the acid-heat
treatment of CF to optimize its properties for MFC applications. Such treatments have
been shown to modify the surface structure and chemistry of the carbon felt, leading to
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enhanced bioelectricity generation. For instance, a study by Simeon et al. highlighted the
combined effects of electrode material, spacing, and substrate feeding frequency on MFC
performance [12]. Another study by Miran et al. emphasized the role of iron oxide-modified
carbon electrodes in tandem with sulfate-reducing bacteria for efficient bio-electricity gener-
ation [13]. Fatima and colleagues integrated a novel lignin-based carbon fiber felt bioanode
in an MFC, demonstrating its potential for treating recalcitrant textile wastewater [14].
Additionally, Kim et al. employed microwave and sulfuric acid treatments on graphite
granules, resulting in a significant boost in bioelectricity generation in MFCs [15]. Further-
more, recent advancements in electrode functionalization have highlighted the potential
of carbon nanofibers (CNFs) to enhance the electrochemical and catalytic properties of
electrodes [16,17]. For instance, the use of Mo-doped carbon nanofibers (Mo-CNFs) as an
anode in MFCs, as demonstrated by Wu et al., resulted in a power density that was double
that of electrodes with unmodified CNFs [18]. Such advancements highlighted the pivotal
role of CNF-functionalized electrodes in optimizing MFC performance. The dispersion of
CNFs using surfactants like dodecylbenzene sulfonate (SDBS) and biopolymers such as
chitosan (CS) has been shown to further enhance the hydrophilicity, biocompatibility, and
electrochemical properties of the anode, paving the way for more efficient and robust MFC
systems [19–21]. Such functionalization techniques have been shown to promote a better
dispersion of CNFs on the electrode surface, leading to improved electrochemical activity
and stability [22]. The use of SDBS as an anionic surfactant has been particularly effective
in achieving stable aqueous dispersions of CNFs, with the π-π stacking induced by the
benzene ring in SDBS playing an important role in this stabilization [23]. Furthermore, the
functionalization of electrode surfaces using CNFs dispersed with CS biopolymer has been
identified as a promising strategy to augment their electrochemical and catalytic attributes.
For example, Liu et al. (2018) presented a CNFs/CS nanocomposite as a biocompatible
electrode material, which enhanced the electricity generation in microbial fuel cells [24].
Similarly, Plekhanova et al. proposed an innovative technique for the immobilization
of bacterial cells on graphite anode surfaces using CNFs combined with CS [25]. This
modification led to a notable improvement in MFC performance. While these modification
processes can enhance performance, they also elevate the cost of electrodes, potentially
hindering the mass production of anodes. As a result, the feasibility of implementing
large-scale MFC technology with nanomaterial-modified anodes is still being explored. A
recent study by Fonseca et al. highlighted that an MFC equipped solely with pristine CF
achieved a maximum power density (Pmax) of 1.46 W m−2, surpassing many results from
studies using modified anodes [8]. This suggests that utilizing unmodified electrodes could
be beneficial for the widespread, real-world application of MFCs.

In light of these considerations, this study undertakes a thorough examination of the
performance dynamics of pristine CF anodes in MFCs in comparison to their modified
counterparts. Through a systematic evaluation of various treatments and modifications,
this work seeks to glean insights into the ideal anode material for MFCs. The ultimate
objective is to harmonize performance enhancement with cost-effectiveness, potentially
facilitating the wider adoption of MFC technology across various applications [26,27].
In this investigation, multiple treatments were administered to assess their influence
on the performance of CF-based anodes in MFCs. The anodes were subjected to six
distinct conditions, encompassing both pristine CF (CF) and acid-heat-treated CF (A-CF)
substrates. These were subsequently immersed in two separate aqueous dispersions of
CNFs, dispersed using either the SDBS surfactant (CF@CNF-SDBS, A-CF@CNF-SDBS)
or the CS biopolymer (CF@CNF-CS, A-CF@CNF-CS). High-resolution scanning electron
microscopy (HR-SEM) was employed to analyze the surface morphology of all anode
materials. Electron transfer dynamics across these anode surfaces were probed using cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical
characterization and performance of MFCs, equipped with different anodes, were examined
and compared using single-chamber bottle-type MFC in batch mode. The electrochemical
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behavior and extracellular electron transfer were assessed using CV in MFC reactors at
biofilm maturation.

2. Materials and Methods
2.1. Chemicals and Materials

Sulfuric acid (H2SO4, 95.0–98.0%), sodium dodecylbenzene sulfonate (SDBS), chitosan
(CS), carbon nanofibers (CNF, pyrolytically stripped, platelets (conical), >98% carbon
basis, D × L 100 nm × 20–200 µm), agarose, KCl, Nafion (5 wt.%), platinum on carbon
black (10 wt.% Pt/C), sodium acetate (NaAc), and 2-propanol (≥99.5%) were sourced from
Sigma-Aldrich (France) and utilized without further purification. A polytetrafluoroethylene
(PTFE) spray solution (3 in 1) was procured from Castorama (Dardilly, France). All other
reagents employed in this study were of analytical grade. Primary wastewater effluent
(7 mS cm−2), serving as an electrolyte, and anaerobic activated sludge, used as a source of
electrochemically active bacteria (EAB) in a NaAc (10 mM) medium, were collected from
the Grand Lyon domestic wastewater treatment plant (Lyon, France). These were utilized
for the initiation of single-chamber bottle-type microbial fuel cells (Figure S1) operated in
batch mode.

2.2. Pretreatment and Modification of Carbon Felt-Based Anodes

As depicted in Figure 1, a series of six anodes were fabricated through acid activation,
heat treatment, and immersion in CNF dispersions of CF anodes. The anode substrates,
both pristine CF and A-CF, were individually immersed in two CNF dispersions utiliz-
ing SDBS surfactant and CS as dispersing agents. Initially, the pristine CF underwent
sequential pretreatment with three distinct solvents (ethanol, acetone, and water), each
subjected to 15 min of ultrasonication (Figure 1A). Following a drying period at 60 ◦C for
3 h, the CF was sectioned into 1 × 1 × 1 cm3 cubes and immersed in concentrated H2SO4
for 15 min under agitation. After multiple water rinses to achieve a neutral pH, the CF
anodes were dried at 60 ◦C for another 3 h. The acid-treated CF electrodes then under-
went a heat treatment at 450 ◦C for 15 min in a muffle furnace to remove manufacturing
impurities [19,28]. This acid and heat treatment process aimed to diminish the internal
resistance of CF, enhance hydrophilicity, and foster the creation of functional group-rich CF
surfaces, potentially promoting superior adhesion of electroactive biofilms [20]. To further
optimize the internal resistance and conductivity of both pristine (CF) and activated CF
(A-CF), a chemical modification was undertaken (Figure 1B). This modification, designed
to enhance interactions between electrogenic bacteria and the anode surface, involved
the preparation of electrically conductive CNF dispersions. CF and A-CF were coated
with CNF through a straightforward immersion and drying procedure. Aqueous CNF
dispersions (2 mg mL−1) were prepared by ultrasonically treating CNFs in two distinct
solutions of dispersing agents (SDBS surfactant and CS biopolymer) for 2 h. Both SDBS
and CS solutions were prepared at concentrations of 2 mg mL−1 in water and 1% (v/v)
acetic acid, respectively. These agents ensured stable and efficient CNF dispersion. The
immersion and drying steps were repeated thrice to augment CNF loading and reduce
the internal resistance of either pristine CF or A-CF. In the final step, all fabricated anodes
were connected to the external circuit using stainless steel wire. Before MFC assembling
and operations, the electrochemical activities of the prepared CF anodes were evaluated
using CV and EIS techniques in 0.1 M KCl solution containing 10 mM [Fe(CN)6]3−/4−

redox probe. This is to evaluate and characterize the electron transfer at the surface of the
synthesized anode materials. The redox probe and KCl were prepared in ultrapure water
(18.2 MΩ cm−2). These anodes were then ready for characterization and deployment in
MFC reactors.
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ized agarose solution were injected into one end of Pasteur pipettes and subsequently 
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drogel solidified, the pipettes were filled with saturated KCl. The previously prepared 
Ag/AgCl electrodes were then inserted, yielding Ag/AgCl (saturated KCl) REs analogous 
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Figure 1. (A) Schematic of the preparation of CF and activated CF (A-CF) anode substrates and their
dipping (B) for three cycles in a conductive CNF dispersion solution using SDBS surfactant or CS as
dispersing agents.

2.3. Fabrication of Reference Electrodes

Due to the limitations of commercial Ag/AgCl reference electrodes (REs) in terms of
size, a cost-effective, miniaturized Ag/AgCl (saturated KCl) RE was fabricated. The fabri-
cation process was executed in three distinct phases. (i) Ag/AgCl formation: Silver wires
were partially immersed in a 50 mM FeCl3·6H2O solution for a duration of 1 min (Figure S2).
This immersion facilitated the formation of an AgCl film on the silver wires, in accordance
with the specified redox reactions [28]. Subsequently, the silver wires, now coated with the
AgCl film, were transferred to a saturated KCl solution. (ii) Preparation of ion-conducting
agarose hydrogel: This phase involved the creation of a conductive hydrogel to act as a
salt bridge at one end of a Pasteur pipette. The hydrogel was formulated by dispersing
1% (w/v) agarose in a saturated KCl solution (0.2 g in 20 mL). This mixture was subjected
to microwave irradiation for a total of 1 min (in two 30-s intervals) to ensure complete
agarose dispersion. The resultant dispersion was then placed on a preheated hotplate set
at 80 ◦C and stirred vigorously. Concurrently, aliquots of the solubilized agarose solution
were injected into one end of Pasteur pipettes and subsequently cooled in a saturated
KCl solution. (iii) Assembly of the reference electrode: Once the hydrogel solidified, the
pipettes were filled with saturated KCl. The previously prepared Ag/AgCl electrodes were
then inserted, yielding Ag/AgCl (saturated KCl) REs analogous to commercial variants
(Figure S3). The opposite ends of the Pasteur pipettes were sealed using silicone and left to
dry at room temperature prior to their deployment in MFC systems. The potential of these
home-made reference electrodes was measured against commercial AgCl/Ag reference
electrodes, and only those electrodes exhibiting a shift of less than 10 mV were retained.
This potential difference was noted for each electrode and considered to adjust the potential
values presented.

2.4. MFCs Configuration, Inoculation, and Operation

Single-chamber batch MFCs were set up using 250 mL Wheaton bottles in the labo-
ratory at ambient temperature. The cathode was prepared with a PTFE coating and a 5%
platinum catalyst, following the procedure outlined by Cheng et al. [21]. The fabricated
electrodes, encompassing cathodes, anodes, and reference electrodes, were integrated into
single-chamber MFCs, as depicted in Figure 2. Each MFC system incorporated an anode
material in the form of a 1 × 1 × 1 cm3 CF substrate cube. The MFC chambers were filled
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with 250 mL of primary effluent (7 mS cm−2), supplemented with 5 g L−1 of activated
anaerobic sludge sourced from the Grand Lyon municipal wastewater treatment plant
(Lyon, France), and enriched with NaAc (1 g L−1) medium to serve as a carbon substrate.
Throughout the MFC operation, the cathode and anode in each reactor were interconnected
through an external circuit, bridged by a 330 Ω resistor. This setup facilitated the formation
of an electroactive biofilm on the anode surface and enabled electron transfer from the
anode to the cathode. The spatial separation between the anode and cathode was main-
tained at approximately 2 cm. Additionally, all single-chamber MFCs were interfaced with
data acquisition systems to continuously monitor and record voltage output during the
maturation of the anodic biofilm every 1 min with a precision of 1 µV (Figure S4).
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Figure 2. A detailed scheme summarizing the sequential step preparation of CF anodes and their
utilization in single-chamber bottle-type MFCs. Both pristine CF and CF directly treated with
concentrated H2SO4 and thermally involved at 450 ◦C (A-CF) were used as anode substrates for
CNF coating. The prepared CNF dispersions (CNF in SDBS or CS) served as immersion solutions for
dipping CF and A-CF.

2.5. Electrochemical and SEM Characterization

The electrochemical characterization of the anode surfaces was achieved at ambient
temperature using CV and EIS techniques within a conventional three-electrode electro-
chemical cell system, interfaced with a potentiostat (OGS 500, Origalys, Rilleux-La-Pape,
France). These electrochemical measurements were designed to assess electron transfer
mechanisms. As depicted in Figure S5, the three-electrode assembly consisted of uncoated
or CNF-coated CF electrodes as working electrodes (WE), a stainless steel rod as a counter
electrode (CE), and a commercially available Ag/AgCl electrode as a reference electrode
(RE). The electrolyte used was a 0.1 M KCl solution containing a 10 mM [Fe(CN)6]3−/4−

redox probe. The CV measurements were conducted in the fixed potential range of −1 V to
+1 V (vs. Ag/AgCl) at a scan rate of 100 mV s−1. EIS was carried out in the frequency range
of 100 kHz to 10 mHz at the open circuit potential (OCP) with 10 mV s−1 amplitude. Upon
stabilization of the voltage output (indicative of biofilm maturation) as recorded by data
logging systems, the external circuit was opened and then reconnected with a potentiostat
in a two-electrode arrangement. Then, each anode electrode of the MFCs was connected
as WE, while the air cathode was connected to the potentiostat’s two shorted RE and CE
cables. Afterward, the polarization curves (V-I) of the six different anodes were recorded
using linear seep voltammetry (LSV) over a potential range from OCP values to 0 V at a
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scan rate of 10 mV s−1. Moreover, the power density (P, W m−2) curves were obtained by
multiplying the cell voltage by current density (J, A m−2) according to Equation (1).

P = V × I/S (1)

where V represents the measured voltage and I denotes the current normalized to the
projected anode surface area (S). On the other hand, the anodic biofilm formed at the
six anodes was characterized using CV, which might provide information including the
electrochemical activity and electroactive species involved in charge transfer. Indeed, the
electroactivity of anodic biofilms or the load in electrochemically active bacteria (EAB)
could be assessed as a function of the current intensities related to its typical redox peaks
in CV [29]. The CV curves at biofilm maturation were recorded in the potential range of
−800 mV to 700 mV (vs. Ag/AgCl) at a scan rate of 10 mV s−1 in MFC reactors containing
wastewater and 10 mM NaAc substrate. Furthermore, the surface morphology of all
prepared anode materials based on CF substrates was investigated using field emission
scanning electron microscopy (SEM) (SEM TESCAN model MIRA-3 (TESCAN-ORSAY,
Brno, Czech Republic)).

3. Results and Discussion
3.1. Surface Morphology of CF Electrodes

After the successful preparation of uncoated and CNF-coated CF anodes, an SEM
analysis was performed to examine the surface morphology before and after modification
of all prepared anodes, as shown in Figure 3. As can be seen, the pristine CF anode was
made up of carbon fibers with a diameter of approximately 10 µm, which networked and
formed a 3D macroporous structure. Furthermore, the carbon fibers of the pristine CF
have a smooth surface. Figures 3B and 3C demonstrate that the pristine CF and A-CF
were successfully coated with CNF dispersed in a CS solution (i.e., the carbon fibers were
covered by the CNF-CS composite), respectively. Similarly, CNF dispersed in an SDBS sur-
factant solution coated the total volume of both CF and A-CF anode substrates, as shown in
Figures 3D and 3E, respectively. The CNF was embedded in the 3D macroporous structure.
A notable increase in the roughness of individual carbon fibers is evident post CNF coating,
suggesting a potential enhancement in specific surface area without compromising the
structural integrity of the fibers. As observed in Figure 3B,C, the CNF-CS particles tend to
agglomerate, resulting in the formation of grain-like structures. In contrast, the CNF-SDBS
composites, as seen in Figure 3D,E, manifest a distinct mesh-like network within a 3D
microstructure. These results provided a detailed insight into the surface morphology of
both uncoated and CNF-coated CF anodes. The distinct structural differences between the
pristine CF and the CNF-coated versions, whether dispersed in CS or SDBS, underscore
the potential for tailored surface properties. Such modifications, especially the increased
roughness and specific surface area, could play a main role in enhancing the electrochemical
performance of the electrodes. To elucidate the rationale behind the distinct microstruc-
tures observed in Figure 3, it is essential to understand the interaction dynamics between
the coating materials and the CF substrate. The CNF-CS composite leads to grain-like
structures due to the adhesive and film-forming properties of chitosan. This results in a
more pronounced agglomeration of CNF particles, enhancing the surface roughness and
potentially the bioactivity of the anode. In contrast, the CNF-SDBS dispersion creates a
mesh-like network within the CF’s 3D microstructure. The surfactant properties of SDBS
facilitate a more uniform CNF dispersion, preventing particle aggregation and ensuring a
more intricate and evenly distributed coating. This microstructure variation is significant
for electrochemical applications, as it directly impacts the surface area and the electrode’s
biofilm-interaction capabilities. These observations underline the importance of coating
material selection in tailoring anode surface properties for specific applications in MFCs.
The distinct microstructural features achieved through different CNF coatings demonstrate
the potential for enhancing electrode performance through careful material engineering.
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Figure 3. SEM images of (A) pristine CF, (B) CNF/CS-coated CF, (C) CNF/CS-coated A-CF,
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3.2. Electrochemical Properties of Unmodified and Modified CF Electrodes

The electron transfer capabilities of all anode surfaces were evaluated using CV and
EIS techniques within a conventional three-electrode electrochemical cell system, utilizing
10 mM [Fe(CN)6]3−/4− as the redox probe. As depicted in Figure 4A, the CV profiles,
spanning a potential range of −1 V to +1 V vs. Ag/AgCl at a scan rate of 100 mV s−1, did
not exhibit pronounced redox peaks. However, the chemical and thermal treatments, as
well as the subsequent CNF modification of the pristine CF anode, expanded the potential
window and reduced the resistive current. This observation was further corroborated
by EIS measurements conducted at OCP, which indicated a reduction in charge transfer
resistance (Rct) post chemical and thermal treatments or modifications (Figure 4B). The ex-
panded potential window and reduced resistive current observed post treatments suggest
an increase in active sites for electron transfer. Notably, the Nyquist plots for CNF-coated
CF/A-CF, where CNF was dispersed using the SDBS agent, presented two distinct semi-
circles: a prominent one at high frequencies followed by a smaller one at low frequencies.
This dual-semicircle behavior is indicative of the altered electrochemical dynamics due to
the SDBS-assisted CNF distribution on the CF/A-CF anodes. These findings underscore
the role of chemical and thermal treatments, as well as CNF modifications, in enhancing
the electron transfer capabilities of CF electrodes. The distinct electrochemical behavior
observed with SDBS-dispersed CNF coatings highlights the potential for tailored surface
interactions, crucial for optimizing MFC performance.

3.3. Performance of the MFC Equipped with Various Anode Materials
3.3.1. Biofilm Growth on Various CF-Based Anode Surfaces

As shown in Figure 5, the voltage outputs of the MFCs were recorded over an 11-day
period to monitor biofilm growth on the six CF anodes, which included uncoated and CNF-
coated pristine CF or A-CF anodes. As observed, the voltage of the MFC equipped with a
pristine CF anode increased more rapidly, reaching 275 mV during the first four days of
MFC running, and then slightly increased to reach a nearly stable value of 300 mV. Although
the acid-heat treatment could increase the electrical conductivity and hydrophilicity of
the CF [30], the biofilm growth kinetics were still lower than those of pristine CF. These
results suggest that electrogenic bacteria are more likely to adhere/colonize faster on
hydrophobic surface [31]. The acid-heat treatment or coating the CF/A-CF electrodes with
CNF increased their conductivity and enhanced charge transfer rate. However, in the
MFC configuration, pristine CF demonstrated the best performance in terms of its high
affinity towards electroactive bacteria and faster biofilm formation. In addition, the results
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obtained are consistent with those reported in a recently published study, which showed
that chemical treatments did not bring much improvement in power output [8]. Hence, it
can be concluded that pristine CF alone may be sufficient to achieve satisfactory electrical
performance in MFC systems.
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3.3.2. Electrochemical Activity of the Developed Biofilms

As shown in Figure 6, the electrochemical behavior of the biofilm developed at dif-
ferent anode materials was investigated using CV in MFC reactors. This is to assess
extracellular electron transfer (EET) between the anodic biofilm and the electrode surface
through the bioelectrocatalytic oxidation of the NaAc substrate. Indeed, after 11 days
of MFC operation, all CVs exhibited a reversible redox system at around −300 mV vs.
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Ag/AgCl, with an oxidative peak at 400 mV, indicating that direct electron transfer was the
primary EET mechanism, as previously described [32]. Based on values in the literature,
the negative potential region is typically associated with mediated electron transfer in
Shewanella oneidensis and/or heterogeneous electron transfer via nanowires characteristic
of Geobacter sulfurreducens EAB [33,34]. In the positive potential domain, direct electron
transfer predominates as the primary EET mechanism, potentially facilitated by c-type
cytochromes, as observed in genera such as Clostridium, Geobacter, and Shewanella [35].
The congruence in CV profiles across all MFC anodes indicates that the electron transfer
dynamics within the biofilms are comparable between untreated and treated CF anodes.
However, the pristine CF anode displayed the most pronounced peak intensity with distinct
redox peaks in the negative potential region, while manifesting one of the lowest peak
intensities in the positive potential region, relative to other CF anodes. As illustrated in
Figure 5, the voltage output profiles in MFCs aligned with the observed peak intensities
in the negative potential region. This suggests that the electron transfer mechanisms asso-
ciated with this potential range play a pivotal role in determining MFC performance. A
synergistic approach employing both metaproteomics and metagenomics would provide a
more holistic understanding.
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3.3.3. Polarization Curves at Biofilm Maturation Conditions for Power Generation

The performance of MFCs, gauged by maximum power and current densities utilizing
both uncoated and CNF-coated carbon felt anodes, was rigorously examined. Upon
stabilization of MFC voltage outputs, polarization and power density curves for the six
distinct anodes were derived using LSV at a scan rate of 10 mV s−1, with each MFC
interfaced in a two-electrode configuration to the potentiostat. Notably, the MFC equipped
with a pristine CF anode produced maximum power density output and short-circuit
current density, as illustrated in Figure 7 and Table 1. These results are also consistent
with the output voltage profiles (Figure 5) as well as with the CV curves (Figure 6). The
maximum power density reached 3.4 ± 0.3 W m−2 for the untreated CF, surpassing the
outputs from acid-heat treated or CNF-coated counterparts. This power density value
obtained in single-bottle MFCs was relatively higher than those reported in most published
works, which were mostly based on two-chamber MFCs, as summarized in Table 2. In
addition, the proposed simple MFCs were found to be inexpensive thanks to the absence
of introducing modifying agents. Thus, this type of MFC could be of great interest for
large-scale applications.
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Table 1. Summary of the performance of MFCs equipped with different anodes based on maximum
power and current densities.

CF A-CF CNF-SDBS@CF CNF-SDBS@A-CF CNF-CS@CF CNF-CS@A-CF

OCP (mV) −520 −540 −530 −535 −520 −520
Power density (Pmax)

± SD (W m−2) 3.4 ± 0.3 2.9 ± 0.2 2.7 ± 0.2 2.6 ± 0.2 2.5 ± 0.2 2.4 ± 0.2

Current density (Jmax)
± SD (A m−2) 26.2 ± 2.3 21 ± 1.8 17.4 ± 1.6 19.8 ± 1.8 16.5 ± 1.5 16.2 ± 1.4

Table 2. Comparative study of the performance of the developed MFC equipped with a pristine CF
anode with those of recently reported MFCs based on unmodified and modified anodes.

No Anode Modification MFC Configuration OCP (mV) JSC
(A m−2)

Pmax
(W m−2) Ref.

1 Carbon felt PANI/m-WO3
a Double-chamber MFC 586 3.7 0.980 [36]

2 Carbon felt NiO@PANI b Double-chamber MFC 725 1.5 1.078 [37]
3 NCNT c/sponge CS-NCNT-PANI d Double-chamber MFC 779 6.6 1.891 [27]
4 Carbon felt GMC e Double-chamber MFC 800 0.3 0.070 [38]
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Table 2. Cont.

No Anode Modification MFC Configuration OCP (mV) JSC
(A m−2)

Pmax
(W m−2) Ref.

5 Carbon felt Br-GO f Double-chamber MFC 630 1.0 0.240 [39]
6 Carbon felt P/MC g Double-chamber MFC 850 4.4 1.267 [11]
7 Carbon felt MnCo2O4

h Double-chamber MFC 780 3.5 0.945 [40]
8 Carbon felt NiFe2O4/MXene i Double-chamber MFC 925 3.5 1.385 [41]
9 Graphite felt PEDOT j Double-chamber MFC 1460 3.8 0.003 [42]

10 Graphite felt Ppy-NP k
Single-chamber MFC 842 6.8 1.220

[43]
PTh-NP l 644 2.2 0.800

11 Pristine plain graphite fiber brush Double-chamber MFC 760 7.6 2.35 [8]
12 Pristine carbon felt Double-chamber MFC 760 3.6 1.46 [8]
13 Pristine carbon felt Single-chamber MFC 550 26.2 3.4 This work

a Polyaniline/mesoporous tungsten trioxide; b Polyaniline embedded in petaline NiO; c Nitrogen-doped carbon
nanotubes; d Chitosan-NCNT-polyaniline; e Graphitized mesoporous carbon; f Bio-reduced graphene oxide;
g Copyrolyzed pyrite and microalgae; h Manganese cobalt oxide; i Nickel ferrite/MXene; j Poly(3,4-ethylene
dioxythiophene); k Polypyrrole nanoparticles; l Polythiophene nanoparticles. JSC indicates maximum short-circuit
current density.

4. Conclusions

This comprehensive study delved into the electrochemical properties and performance
of CF anodes, both in their pristine form and when subjected to various modifications.
The modifications included acid-heat treatments and coatings with CNF using distinct
dispersing agents. Surface morphology assessments revealed that the pristine CF anode
maintained a unique 3D macroporous structure, which was further enhanced in terms
of roughness upon CNF coating. Electrochemically, the pristine CF anode consistently
outperformed its modified counterparts, showcasing superior electron transfer capabilities
and biofilm formation kinetics. The electron transfer mechanisms within the biofilms, as
evidenced using cyclic voltammetry, remained largely consistent across all anode types.
However, the pristine CF anode demonstrated the most pronounced redox peaks, indicating
its superior affinity for electroactive bacteria and its potential for the efficient bio-electro-
conversion of substrates. Furthermore, the MFC equipped with the pristine CF anode
achieved the highest power density output of 3.4 W m−2 with an open-circuit potential
of 550 mV, surpassing the performance of those equipped with modified/treated anodes.
Thus, it appears that while modifications to CF can enhance electrochemical properties, the
pristine CF anode’s inherent characteristics make it a great candidate for MFC applications.
Its cost-effectiveness, coupled with its electrochemical performance, underscores its poten-
tial for large-scale applications in the realm of bioenergy production. Future studies could
delve deeper into the microbial communities interacting with these anodes, potentially
using metagenomic and metaproteomic approaches, to further elucidate the mechanisms
driving their performance. In light of the observed performance of pristine CF anodes in
comparison to their treated counterparts, future research could also explore strategies to
enhance the hydrophobicity of CF anodes. Increasing hydrophobicity could potentially
improve electron transfer efficiency and biofilm adhesion, leading to higher power outputs
in MFCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14122142/s1, Figure S1: MFC bottle with an air cathode;
Figure S2: Silver wires used to prepare Ag/AgCl electrodes; Figure S3: Cooling the hydrogel-plugged
glass Pasteur pipettes to prepare Ag/AgCl electrodes; Figure S4: Pictures illustrating the components
used for single-chamber MFC experimentation and setup; Figure S5: The conventional three-electrode
electrochemical cell.
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