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Abstract. We report in this paper on the potential interest of real-time

queueing models to optimize organ allocation policies. We especially focus

on building organ shortage resilient policies in terms of equity, as we experi-

enced differential impact of the COVID epidemic organ shortage on transplant

access, according to the cause of liver failure. Patient’s death on the waiting

list or dropout for being too sick, resulting from the absence of a timely avail-

able organ, is chosen as the main equity metric. Results obtained with the

composite allocation score used in France is challenged against the so-called

Early Simulated Deadline First (ESDF) real-time queueing discipline, under

increasing levels of organ shortage, by extensive simulations. The ESDF pol-

icy is a variant of the well-know Earliest Deadline First (EDF) policy, which

was shown as optimal in various contexts in the queueing literature. In the

present case, the time to the deadline represents the remaining life duration of

patients - which is of course unknown. So we propose to simulate a fictional

life-duration, and give priority to the earliest simulated deadline. This leads to

a simple and comprehensive representation of the system at hand by a Markov

process. Our simulation results clearly show that the ESDF policy allows to

maintain equity between indications, conversely to the scoring policy, which

was not resilient to increasing levels of organ shortage.

1. Introduction

1.1. Liver allocation in France. Due to organ shortage, the allocation of organs

for transplantation is a worldwide sensitive issue. Organs for transplantation are

considered as scarce resources, as the needs exceed graft offer. For vital organs

such as Heart or Liver, the absence of a timely available organ leads to the pa-

tient’s adverse outcomes on the waiting list: death or dropout for being too sick
1
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for transplantation (DDTS). Organ allocation policies try to answer to the vari-

ous medical needs of transplant candidates in a suitable, efficient, equitable and

traceable manner. To achieve the best use of this scarce resource, many countries

moved from centre-based to patient-based allocation policies. In some cases, se-

quential allocation priorities related to patients conditions can be defined, as is the

case for example for patients with fulminant hepatitis. In most cases, the over-

laps of patients’ medical conditions do not permit to rank patients according to

simple categorical criteria. In this situation, multivariate allocation scores have

been demonstrated to offer efficient tools, both to support patient-based allocation

policies and to optimise organ allocation in weighting the influence of various, and

sometimes contradictory, equity, efficacy and feasibility allocation criteria. The

Model for End-stage Liver Disease (MELD) has been demonstrated to be a good

predictor of risk of death for cirrhotic patients [25],[20] and is widely used to priori-

tise liver transplant candidates. It has also been demonstrated to identify patients

with an individual benefit from Liver Transplantation (LTx), and permits to avoid

too early transplantation, when the risks related to the liver disease is lower than

the risk of tranpslant surgical procedure [20].

In France, the Agence de la biomédecine (ABM) is responsible for the allocation

of organ and the management of the waiting lists. ABM, in collaboration with

transplant professionals and patients associations defines and implement the organ

allocation policy. The Liver allocation policy comprises a national “Super-Urgency”

priority for patients with fulminant hepatitis or early primary graft non function

[4]. Liver are allocated to patients sharing the same blood type with the donor. In

absence of SU patients, the liver allocation score (LAS) is computed for each active

patient on the national waiting list [16, 12]. LAS assigns them a priority rank and

therefore allows the allocation of an organ to the patient with the highest score

[2]. The LAS takes into account the MELD score for cirrhotic patients (CIRRH),

combined with the time spent on the waiting list for hepatocellular carcinomas

(HCC) and other indications (OTHER). To handle logistic constraints, the final

score includes an interaction between the LAS and the distance between organ

procurement and transplant centers using a gravity model [8]. For some indications,

referred as to “MELD exceptions” (MXP), MELD does not reflect properly the risk

of death on the waiting list. According to their condition, these patients are granted

with 650 to 800 additional points to the score within 0, 3, 6 or 9 months, by expert

advice.
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1.2. Rationale for change. During the Covid-19 period, we observed an increase

in organ shortage that resulted in an imbalance between Liver Allocation score

components [1]. This fact, confirmed by simulation works, prompts us to find

organ shortage resilient mathematical models.

1.3. Real-time queueing systems. Queueing systems have become a standard

model in operational research, in the performance evaluation of communication and

computer networks, and supply chains, among other fields. The typical settings

allow for a representation of the system at hand by a markovian stochastic process.

The exact, or approximate, analysis of the process under study often leads to the

construction of efficient tools to control, optimize or at least, simulate the system

in the long run. To do so, the central question is that of the construction of

efficient service disciplines (that act as a control of the system at hand) that can

be implemented sequentially, so as to optimize a given performance parameter. In

the so-called real-time context, the incoming elements have a bounded life-time,

or patience in the system, and the timely execution is of critical importance. Of

particular interest, in such context, is the Earliest deadline first (EDF) policy,

prioritizing the customers in line having the least remaining patience time (time

to the deadline) at current time. EDF policies can also model reneging, offering a

mean to handle items with elapsed deadlines.

The outcome of patients in the transplant waiting list typically stands in the

field of applications of such real-time queueing systems. In the present settings, the

patience time stand for the life duration of the patients, and the reneging, for their

death on the waiting list, when their life duration has elapsed.

1.4. Outline. In this work, we show that a practically relevant variant of the

EDF policy, which we call ESDF (for Earliest Simulated Deadline First) allows

to efficiently control the system at hand, by providing a simple representation of

the system, that is amenable to extensive simulations. Second, we show that ESDF

tends to be more organ shortage-resilient in terms of equity between indications, in

comparison with the more classical Score policy.

The remainder of this paper is organized as follows. In Section 2, we describe

the population and study design for our simulations. Then, in Section 3 we present

in detail the mathematical model at hand, namely, a bipartite stochastic matching

model with impatient items, as recently introduced in [6, 17, 19, 7], ruled by the
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original ESDF matching policy. In Section 4, we detail the calibration of the pa-

rameters of our mathematical model and in Section 5, we describe our simulation

procedure. Our results are presented and analyzed in Section 6. Section 7 concludes

this work. Additional materials (mathematical developments and the presentation

of additional algorithms in our simulation scheme) are presented in Section 8.

2. Population and study design

2.1. Population. This study used aggregated data from the French national data-

base CRISTAL. CRISTAL is a national database initiated in 1996 and administered

by the ABM that prospectively collects data on all organ transplant candidates in

France along with their outcomes [24]. The ABM is also in charge of the evalu-

ation of all transplant activity including outcome of patients on the waiting list

and after transplantation. Data are entered into the registry by each center and

updated at least every three months. Data collection is mandatory. Withdrawal

from the waiting list and patient death are prospectively notified. The study was

conducted according to the French law indicating that research studies based on

the national registry CRISTAL are part of the transplant assessment activity and

do not require institutional reviewboard approval. These data were used as input

for the new mathematical model presented in this paper and for the survival times

generation (analyses made by the ABM).

2.2. Patients and donors arrivals/flow.

2.2.1. Patients. All newly registered patients on the French national waiting list

between January 1, 2018 and December 31, 2019, in the liver transplant centers in

France were included. 3758 patients were listed for transplantation during the study

period. Patients’ anonymous aggregated data according to blood type, transplant

indications (hepatocellular carcinoma, cirrhosis, MELD exception and others) and

MELD classes to feed the mathematical model.

2.2.2. Donors. All brain dead deceased donors in France between January 1, 2018

and December 31, 2019, whose liver has been transplanted were included. 2458

donors were transplanted during the study period. Donors’ anonymous aggregated

data according to blood type were used to feed the mathematical model.
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2.3. Survival times generation.

2.3.1. Patients. All newly registered patients on the French national waiting list

between January 1, 2012 and December 31, 2016, in the liver transplant centers

in France were included. 3758 patients were listed for transplantation during the

study period.

2.3.2. Method. A cox proportional hazard statistical was performed to predict DDTS

dropout. We stratified the model by indication and only used MELD as covariate.

Inverse transformation method was used to simulate the individual patient survival

time on the waiting list [3],[9]. We also used a cox model and the inverse trans-

formation method to simulate the transition time to cirrhosis or others status to

MELD exception status.

2.4. Study design. To mimic the impact of changes in organ shortage, we simulate

the outcome of patients under various levels of liver donors. LTx and DDTS crude

rates were selected as the evaluation endpoint. They were computed from the

incident cohort of newly enlisted patients during the first 2 years of the study

period. We’ll observed the outcome of those patients on the whole 10 years study

period.

We simulate 8 scenarios: 2 matching policies (described in section 3.3) and

4 levels of organ shortage defined by the decrease in the percent of liver donors

available (0%, 15%, 30% and 50%). Each scenario is performed 10 times to average

the variations inherent to the random settings.

3. Mathematical model

3.1. A matching model. We consider a general stochastic matching model (GM),

as was defined in [18] (extending e.g. the classical references [11], [5] and [10] to

single arrivals): ‘items’ (donors and recipients) enter one by one in the system, and

each of them belongs to a determinate class. We let V be the set of classes, and fix

a compatibility graph G = (V,E) between classes. Upon arrival, any incoming item

of class, say, i ∈ V is either matched with an item present in the system, of a class

j such that i shares an edge with j in G, if any, or if no such item is available, it is

stored in the system to wait for its match. Whenever several possible matches are

possible for an incoming item i, a matching policy Φ determines what is the match

of i without ambiguity. Each matched pair (organ/recipient) departs the system

right away, representing the transplant between the two considered item.
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Recipients and donors classes. The set of classes is denoted by V = D ∪R, where

D is the set of donor classes, and R is the set of recipient classes. For any i ∈ V ,

we suppose that the inter-arrival times (i.e. the durations between two consecutive

arrivals) are IID (Independants and identically distributed) with the distribution

ξi.

Each system corresponds to one single blood group, so there is a single donor

class d, i.e., we set D = {d}. Each class in R is characterized by a triplet (a1, a2, a3),

where:

(1) a1 gives the Indication of the patient. They are 4 possible indications

which indicate the nature of the patient affection and which are denoted by

the following terms: CIRRH for cirrhotic patients, HCC for hepatocellular

carcinoma patients, MXP for patients with a MELD exception and OTHER

for every other possibility.

(2) a2 is the MELD class of the patient. There are 6 different MELD classes

which regroup different intervals of possible MELD value for patients:[6,14],

[15,19], [20,25], [26,30], [31,35] and [36,40]. For each indication, patients

can have those 6 possible MELD Classes, except for MXP patients, who

can only belong to classes [6,14], [15,19] and [20,25].

(3) a3 (0 or 1) indicates if the patient awaits a MELD exception. A MELD

exception is given to the patients whose life quality is greatly impacted by

their condition. The decision to transplant patients with MELD exception

is then based on life quality, more than survival considerations. OTHER

and CIRRH patients with MELD classes [6,14], [15,19] and [20,25] can

await to receive a MELD exception.

There are therefore 27 different patient classes with 9 OTHER classes (6 MELD

classes + 3 for patients awaiting MELD exceptions), 6 HCC classes (6 MELD

classes), 9 CIRRH classes (6 MELD classes + 3 for patients awaiting MELD ex-

ceptions), 3 MXP classes (3 MELD classes). We denote by R1 the patients who

are not waiting for a MELD exception and by R2 the patients awaiting a MELD

exception in a way that we have R = R1 ⊔R2.

As the patients and organs we consider all have the same blood type, all the

patients in R and all the donors in D are compatible. Nevertheless, as patients

who are awaiting a MELD exception cannot be transplanted, the set E of possible

matchings is given by E = R1 × D. In other words, the compatibility graph we

consider in this work is the bipartite graph G = (D ∪R,R1 ×D).
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Patience times. To stand for the timely constraint on the recipient’s end, and in

line with the recent extensions proposed in [6], [17], [19] and [7], the GM model

is enriched with an impatience parameter. Specifically, we suppose that a subset

R′ ⊆ R of the classes of recipients are assigned a patience time upon arrival. If

the considered item has not been matched at the end of its patience time, namely,

the corresponding recipient did not find a transplant, then it leaves the system

forever. The initial patience times of items of class i ∈ R
′
are IID, from a probability

distribution µi. Likewise, for all i ∈ R′, we assume that all elements of class i

are assigned predictive, or simulated patience times, which are independent of the

actual patience times, and IID with the distribution µ′i (which is for most classes,

but not all, equal to µi). These fictional patience times will be needed hereafter, to

define a particular class of matching policies. If the predictive patience of a given

recipient elapses before its match, and before reneging (i.e. before its death), then

the corresponding item is still in line, and we must draw again another predictive

patience time. We denote by γi,c, the distribution of predictive patience times of

items of class i, conditional on having spent a time c in the system.

Change of classes. Last, we suppose that our matching model with impatience is

dynamic, in the sense that items of classes in R, i.e., recipients, can change classes

and residual patience time within the system, while maintaining the same place

in the system. Specifically, we let E2 be the subset of V × V gathering the set of

couples (i, j) such that a transition can be made from class i to class j. Then, for

all (i, j) ∈ E2 we let λi,j be the rate of transition time for a patient from class i to

class j, meaning that as soon as it becomes of class i (or enter the system being of

class i), and provided that it does not leave the queue for a transplant or a reneging

before that, an item will transition to class j after an exponential time (independent

of everything else) of distribution Exp (λi,j). For any i ∈ R′ and c ∈ R∗+, we also

define µi,c as the distribution of patience times of items transitioning to class i after

having spent a time c in the system, and µ
′
i,c, the generic predictive patience time

of an item transitioning to class i after a time c spent in the system.

3.2. Model Dynamics. From the items’ point of view, the typical dynamics is as

follows: A recipient r of class i arrives in the system, say, at time T , and is assigned

an initial waiting time set at 0. If i ∈ R
′
, r also gets assigned a patience time P1 of

law µi. This means that the patience time of r is theoretically due to end at time

T + P1. The recipient r also gets assigned a predictive patience P ′1 of law µi.
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For all j ∈ R such that (i, j) ∈ E1, we draw an exponential random variable of

law Ci,j ∼ Exp(λi,j). Then, if one of these exponential clocks (take the smallest

one, say it is Ci,j) rings before P1 (if i ∈ R′), and before r could find an organ for

a match according to the policy Φ, then, at time T +Ci,j , r changes class to j ∈ R,

and if j ∈ R′, r is assigned a new patience time P2 ∼ µj,Ci,j and a new predictive

patience time P ′2 ∼ µ
′
j,Ci,j

. In the case of patient receveing a Meld exception, the

waiting time is reset at 0, to mimic the fact that expert decisions only take into

account the time since the patient has received a Meld exception. We denote by

E3, the subset of E2 describing transitions where the waiting time is reset to 0.

If the remaining predictive patience of an item hits 0 after a time c without any

of the aforementioned events happening, and while it is of class i, we perform a

new draw of a remaining predictive patience time, following the distribution γi,c.

Markov chain. The state space of the model is

X = (V ×R+ ×R ×R)
∗
.

Any word x ∈ X of length ∣x∣ can be written as

x = x1x2
⋯x∣x∣ ∶= (C1,D1, P 1

1 , P
1
2 )(C

2,D2, P 2
1 , P

2
2 )⋯ (C

∣x∣,D∣x∣, P
∣x∣
1 , P

∣x∣
2 ),

where for i ∈ J1, ∣x∣K, the variables Ci,Di, P i
1 and P i

2 respectively denote the class,

the waiting time in the system, the remaining patience time and the predictive

patience time of the i-th item in the system in the order of arrivals. If the class

of the i-th item lies outside R, i.e., it has no patience time and predictive patience

time, then we just use the convention P i
1 = P

i
2 = +∞.

The system is then updated at exponential rates when one of those two events

occurs on the time interval [0, h] (as is classically the case for exponential clocks,

the probability that more than one event occurs on [0, h] is a o(h)):

(1) After a time h, a new item (C,0, P1, P2) enters the system, in which case

we first update the state by decreasing the patience and predictive patience

by h and increasing the waiting time by h for every item in the list. Then,

any negative patience means that the corresponding item has reneged, and

is deleted from the system. Therefore, we update the system to the new

state

(1) x′ = θ ((C1,D1
+ h,P 1

1 − h,P
1
2 − h) ⋯ (C

∣x∣,D∣x∣ + h,P
∣x∣
1 − h,P

∣x∣
2 − h)) ,

where for all y ∈ X, θ(y) is the state of X composed of the items of y

having patience times in R+ ∪ {+∞}, appearing in the same order as in
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y, and where any item j whose predictive patience has reached negative

values on [0, h] has its predictive patience re-drawn from γCj ,Dj+h. Then

we update to state x′′ according to the matching policy, i.e:

(1a) If the new item cannot be matched, we add the item at the lost spot

in line in the system, and so

x′′ = x′(C,0, P1, P2);

(1b) Else, the new item is matched with an item in x′, say item x′j , and

then we just set

x′′ = Ψ∣j(x
′
),

where for all y ∈ X, Ψ∣j(y) is the word obtained from y by just deleting

its j-th letter.

(2) After a time h, the i-th item switches from class Ci to class C̃i. We first

update to state x′ defined by (1). Then, if the i- th item that switches class

has not reneged, we determine a new patience and a new predictive patience

for this item. We perform this by drawing two random IID variables P̃ i
1

and P̃ i
2 of respective laws µC̃i,Di+h and µ′

C̃i,Di+h
. Depending on the type of

transitions we then update the waiting time of the item to

D̃i
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if (Ci, C̃i) ∈ E3;

Di + h else.

The new state of the system is then updated as x′′, obtained from by

substituting the letter (C̃i, D̃i, P̃ i
1, P̃

i
1) to (C

i,Di + h,P i
1 − h,P

i
2 − h) in x′.

This dynamics characterizes a Continuous-time Markov chain (CTMC) which we

denote by {Xt}, and is reminiscent of the measure-valued Markov representations

of EDF queues proposed in [15], [13] and [22]. For completeness, we write explicitly

the infinitesimal generator of that CTMC in Section 8.1.

3.3. Matching policies. Similarly to [18, 17, 19], we now formalize the notion of

matching policy.

Definition 1. In a dynamic matching system with impatience, a matching policy

Φ is a map from X × (V ×R+ ×R+ ×R) to X such that for all x = x1x2⋯x∣x∣ ∈ X,,

for all y = (C,D,P1, P2) ∈ (V ×R+ ×R+ ×R),

Φ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xy if no class in x is compatible with C;

Ψ∣j(x) else, if the policy chooses the item corresponding to xj .
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A matching policy Φ is said to be patience-independent, if for all x and y, Φ(x, y)

is independent of the patience of items in x and of the patience of y.

In what follows, we consider three different matching policies.

EDF. Standing for Earliest Deadline First, the EDF policy consists of matching

the incoming item with the stored compatible item that has the lowest remaining

patience, if any.

SCORE. We say that Φ is a SCORE policy, if for all

x = (C1,D1, P 1
1 , P

1
2 )⋯ (C

∣x∣,D∣x∣, P
∣x∣
1 , P

∣x∣
2 ) ∈ X,

the choice of j in Definition 1 is made based on the sole knowledge of the

S ((Ci,Di
)) , i ∈ J1, ∣x∣K,

where S is a measurable map from V × R+ to R+. In other words, the choice of

match induced by Φ is made based on the sole knowledge of the classes and waiting

times of the items in line. This policy corresponds to a simplified version of the

score allocation, currently used in the France transplant system.

ESDF. Similarly to the EDF policy, the ESDF (Earliest Simulated Deadline First)

policy consists of matching the item in the system that has the smallest remaining

predictive patience among those which are compatible with the incoming item, if

any.

As is well known in real-time queueing theory, the EDF policy, which prioritizes

the elements that are the closest to their reneging time, is optimal in terms of

feasibility [14], tardiness [21] and loss probability under various statistical assump-

tions (see e.g. [23] and [22]). However, the very implementation of the EDF policy

requires the full knowledge of the patience times of all customers in the system.

In the context of organ transplants, assuming the full knowledge of patience times

is clearly unrealistic, as it amounts to the knowledge of the residual lifetimes in

line, for all recipients. Thus, we aim at using policies that do not require this full

knowledge, such as SCORE or ESDF. In particular, the ESDF policy can be seen

as a proxy for EDF: instead of giving priority to the recipients that have the short-

est remaining lifetime (an information that is clearly not available), we emulate

the lifetime by simulating a survival time upon arrival (what we call the predictive

patience), from the same probability distribution. Then, priority is given to the
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recipient that has the smallest residual predictive patience amongst all recipients

in line for which a transplant is feasible.

4. Calibrating the parameters

In this section, we describe the precise parameters that were used for the liver

transplant model and simulation.

4.1. Arrival rates. The arrival rates of all classes (donors and recipients) except

the Meld exceptions recipients, are calibrated by the observed arrival rates of the

patients in real life, over a period of 2 years (see 2.2). For Meld exception recipients,

the arrival rate is null: patients first arrive into the system, awaiting a MELD

exception, and only then, transition to become MXP patients (see 2.3).

4.2. Patience times. In practice, due to organ shortage, organs are only removed

from the waiting line whenever there is already a patient awaiting in line upon their

arrival into the system. So we make the assumption that organs are immediately

matched upon arrival, in other words, organs (class {d}) have no patience clock

upon arrival.

The patience times of patients of all classes are calibrated by the observed death

of patients of such classes in the waiting line, during a period of 4 years (see 2.3).

Transplanted recipients are censored on their transplant date, since we could not

observe their death while they were in the waiting list (this is the so-called censored

at transplant). The patience time distribution is calibrated as follows.

Definition 2. We assume that the patience times of classes in R′ are IID from a

Cox model. In other words, we have the following expression for the instant risk

of death at time t, formally defined as the probability of death in an infinitesimal

amount of time after t, conditional on the patient being still alive at time t:

λ(t,MELD ) = λ0(t) exp(
6

∑
i=1

βiXi),

where λ0(t) is the baseline instant risk of death at t,

Xi = 1{MELD ∈ category i}, i ∈ J1,6K

are the categorial covariable corresponding to the MELD categories (among [6,14],

[15,19], [20,25], [26,30], [31,35] and [36,40]), and for all i, βi is a weight pa-

rameter for the categorial covariable Xi.

Then, there are three cases for patients survival laws:
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(i) The real and predicted patience times of patients who are not MXP and do

not await a MELD exception have the same law, based on that Cox model.

(ii) MXP patients have a different law for their real and predicted patience.

Indeed, for the MXP patients the predicted survival time that we may want

to use to decide for a transplantation does not make much sense, since we

mainly transplant them based on their life quality. Therefore we calibrated

the predictive patience of MXP patients on the transplants observed in

the waiting queue over a period of 4 years, see 2.3. This guarantees that

transplants for MXP patients that were based on predictive patience would

not be too far from what we would expect in reality.

(iii) Patients who awaits a MELD exception are the only patients who do not

have a real or predicted patience time (these correspond to the only classes

in R∖R′). Indeed, in our model we consider that we know from the begin-

ning that these patients will receive a MELD exception, and have to wait for

it (while in real life, the decision to give a MELD exception and the receiv-

ing of such a component is simultaneous). This difference makes it so that

if patients in our model could renege while awaiting a MELD exception, we

might not have the right rates of arrival for MXP patients. Therefore, we

consider that those patients cannot renege or be transplanted while they

await for a MELD exception. Clearly, this is just equivalent to saying that

those patients only arrive in the system when they receive their Meld ex-

ception, because in the context of organ shortage, under both SCORE and

ESDF they would not have access to a transplant before receiving their

Meld exception.

The patience times described above are assigned to patients upon their arrival

in the system. We will describe in Section 4.3 how we calibrate these patience

times after a class transition. Before that, we need to describe how we re-draw the

predictive patience times when the latter become negative:

Definition 3. Let i ∈ V
′
and c > 0. Then the law for re-drawing the predictive

patience time of a recipient whose predictive patience has elapsed after having spent

c units of time in the system, is given by

(2) γi,c(p) = µ
′
i∣≥c(p) − c, p ≥ c,
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where γi,c = µ
′
i∣≥c is the following probability distribution: for all p ≥ c,

µ′i,∣≥c(p) =
µ′i(p)

µ′i([c,∞))
= P(P2 = p ∣ P2 ≥ c),

for P2 a generic random variable of law µ′i.

4.3. Class transitions. We model 2 kinds of class transitions:

(1) Transition between ‘patient awaiting a MELD exception’ to ‘MXP patient’;

(2) Transitions between MELD classes for patients who are not MXP nor await-

ing a MELD exception, and don’t have a contra-indication.

The transitions to receive a MELD exception are based on the observed transition

over a period of 2 years, and also take the form of a Cox Model. These transitions

are the only transitions in E3, i.e., we reset the time spent in the system when we

give a MELD exception. For those transitions to a class i after having spent c units

of time in the system, we draw the new real patience from the distribution

µi,c = µi∣≥c − c,

associated to µi as in (2). Then, the predictive patience is drawn from µ
′
i, which

makes sense because the predictive patience distribution was established using the

observed transplantation only after a patient received a MELD exception.

The transitions between MELD classes are the transitions for which we had the

least amount of data, so we calibrated the rates in the following way: For any i ∈ R,

we denote by Wup
i (resp. W down

i ) the set of classes having the same indication,

contra-indication status and MELD exception awaiting status than i, and having

a higher (resp. lower) MELD.

- If W down
i is empty, then for all j ∈Wup

i we set

λi,j =
1

2

ξj

∑k∈Wup
i

ξk
⋅

- If Wup
i is empty, then for all j ∈W down

i we let

λi,j =
1

2

ξj

∑k∈Wup
i

ξk
⋅

- Otherwise, for all j ∈Wup
i we set

λi,j =
1

2

1

3

ξj

∑k∈Wup
i

ξk
=
1

6

ξj

∑k∈Wup
i

ξk
,

and for all j ∈W down
i ,

λi,j =
1

2

2

3

ξj

∑k∈Wup
i

ξk
=
1

3

ξj

∑k∈Wup
i

ξk
⋅
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To better understand this calibration choice, note that setting these rates for

MELD transitions is equivalent to applying the following procedure:

1) Draw an exponential of parameter λi =
1
2
that determines the time until

the patient changes MELD class (whatever the MELD class is), setting at

2 years, the average time for changing MELD class.

2) If the patient MELD can decrease (i.e., W down
i is not empty) and/or de-

crease (i.e., Wup
i is not empty) then with probability 1

3
the patient gets

a lower MELD and with probability 2
3
, a higher MELD. This conveys the

idea that a patient status is more likely to deteriorate than to improve.

3) Once we have chosen if the patient status improves or deteriorates (say it

deteriorates), we pick the class j with probability
ξj

∑k∈Wup
i

ξk
. This means

that we consider picking a new MELD class among the set Wup
i of possible

ones, which is equivalent to seeing the arrival of a new patient, conditional

on her class belonging to Wup
i .

For those transitions to a class j after a time c spent in the system, we

draw the new actual and predicted patience times respectively from the

(conditional, and shifted) laws µj,c and µ
′
j,c, respectively associated to µj

and µ′j respectively, as in (2).

4.4. Adapting the model to the discrete-time settings. The model intro-

duced so far is formally defined in continuous time. To adapt the present model to

discrete simulations, we made the following changes and approximations:

● Arrivals occur at each time step, and the class of the arriving patient/organ

is drawn according to the initial inter-arrival rates ξi, by uniformization.

● The law of transitions between MELD classes is geometric, with the same

mean as the exponential laws of the MELD transitions.

● For practical reasons, instead of considering that a patient awaiting a

MELD exception has no patience time, we draw a predicted and real pa-

tience times conditioned to be greater than the transition time to receive

a MELD exception, thereby ensuring that the corresponding patients will

not die before receiving the MELD exception.

5. Simulation procedure

By conducting this simulations, our aim is to observe how different policy de-

cisions (SCORE, ESDF) and different organ shortage percentages (0%, 15%, 30%,
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50%) affect the evolution of a patient/organ waiting queue. To do so, we split the

simulation into 2 phases:

5.1. The initiation phase. In this phase, our aim is to create a queue that will

be used as an initial state for the study of the impacts of policy decisions and

organ shortage in the study phase. To do so, we start with an empty queue, and

then simulate the dynamics of the queue during a reasonable amount of time (here,

approximately 15 years), by not applying the different organ shortage percentages

during this phase. Indeed, if it was not so and if we started to study patients and

organs from an empty queue, then it would lead to an unrealistic view of the queue

dynamics, as most of the first patients would be transplanted, and there would not

be enough competition between patients.

Notice that, in a standard Markovian model, one typically studies the system

behavior from any possible starting position, so that it can be asked why the ini-

tial queue generated in this initiation phase is not simply viewed as an additional

parameter for the study phase. The fact is that the composition of a patient/organ

waiting line is an intricate of the positions of patients/organs in the queue, of the

time they already spent in the queue, their class, etc., so that viewing the starting

queue as an additional parameter would require too many additional simulations.

5.2. The study phase. Starting from the queue generated in the initiation phase,

we then simulate the dynamics of the queue, by applying the fixed matching policy

and the given organ shortage percentage, during a period of approximately 10 years.

While performing these simulations, we record different characteristics composing

the fate of organs and patients during this period:

● The initial class they had when entering the queue (if they received a MELD

exception changing their class to a new class, then we consider this new class

as their initial class);

● If they were transplanted, deceased or are still alive at the end of the study

phase;

● The time they have spent in the system during the study phase.

It is standard in the medical context to only study the fate of patients and organs

that arrived during the study phase. However, to have a more complete view, we

also recorded the fate of patients/organs from the initiation phase.

5.3. Simulations dynamics. The simulations principle is the same whether we

are in the initiation phase or the study phase: We divide the phase in equal amount
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of times called time steps. At each time step, we randomly draw an incoming

patient/organ class according to a probability law Parr (as mentioned in 2.2, Parr

is based on the observed incoming rates of patients/organs of different classes during

a period of 2 years).

If it is indeed a patient, we also draw if she awaits a MELD exception. We then

draw her real survival time using the aforementioned Cox model, as well as the

predicted survival time in the case of the ESDF policy. If it is an organ, we simply

consider a constant survival time since, from a certain time point, all organs are

immediately transplanted. We then actualize the status of every patient/organ in

line, as follows:

1) Their elapsed sojourn time in the system increases by one time unit;

2) Their real and predicted survival time, as well as the eventual time they

have to wait to receive a MELD exception, decrease by one;

3) We determine if the patient/organ is deceased, in which case it is removed

from the queue;

4) We determine if the patient/organ receives a MELD exception, in which

case we change its class, set its elapsed sojourn time to 0, and then re-draw

a real and predicted survival time conditioned to be larger than the time

she already spent in the system.

5) We determine if the patient/organ state deteriorates or improves, in which

case we change its MELD class.

We then check, whether the incoming patient/organ can be matched with an already

existing organ/patient in line. If so, we determine its match according to the

matching policy, and we then remove the chosen organ/patient from the system. If

not, we add the incoming patient/organ to the queue.

We then repeat this operation for every time step. Note that we can separate

the phase in steps of time because the inter-arrival times of our model are supposed

constant. At the end of the two phases, we return the state of the queue for the

initiation phase, and the fate of all arrived elements during the study phase.

5.4. Main algorithms. The simulation function that is represented in Figure 1

is the main algorithm, with N1 being the number of steps we want to simulate the

queue in the initiation phase starting from an empty queue.

The dynamic function represented in Figure 2 describes the dynamics of one

simulation step.
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Figure 1. simulation function

Figure 2. dynamic function
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The secondary algorithms that are used in the simulation are described in section

8.2.

6. Results

Table 1. Description of the patient population (mean number of

patients per 10 simulations)

6.1. Patient population. The mean numbers of patients enlisted during the first

2 years of the study period per 10 simulations are presented in Table 1. On columns

we have the 2 matching policies (ESDF and SCORE) and the 4 levels of organ

shortage (0%, 15%, 30% and 50%) which correspond to all the simulated scenarios.

On rows we have the 4 indications and the 6 MELD classes.

For instance, the first column for ESDF policy and 0% of organ shortage show

that the mean number of patient arrivals for CIRRH indication is 1333.8 and for

[36-40] MELD class is 378.3.

Variations in patient arrival flow by matching policies and organ shortage sce-

narios due to the stochastic modeling are low, and are likely to have a very small

influence on DDTS and LTx rates between the two policies.

CIRRH and HCC are the 2 main indications with an average of nearly 1300

patients in 2 years. OTHER is the smallest one with an average of 321 to 356

patients and MXP has an average of 747 to 811 patients. As expected, according

to the actual epidemiology of liver diseases, the number of patients is decreasing

with increasing MELD class.

6.2. Ltx and DDTS crude rates. Figure 3 reports on the crude DDTS and LTx

rates by organ shortage level and matching policy. SCORE and ESDF are displayed

respectively in darkgray and orange bars. Of note, as we stated that an equitable
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Figure 3. DDTS and LTx rates by organ shortage level and

matching policy.

allocation system should share the burden of organ shortage independently of pa-

tients characteristics, we defined DDTS variance as a relevant judgement criterion

for indications where DDTS is at stake (CIRRH, HCC, OTHER). MXP patients

whose LTx indication is mainly driven by a poor quality of life have of course the

most low DDTS rates. For this indication, the objective is to provide fair LTx

rates.

As expected, increasing organ shortage is associated with higher DDTS rates

(32% to 52% for ESDF policy and 31% to 53% for SCORE policy) and lower LTx

rates (61% to 34% for ESDF policy and 64% to 38% for SCORE policy).

ESDF and SCORE policies have roughly equivalent DDTS rates (no significant

differences) regardless of the level of shortage. But the main point of this figure is

that the DDTS rates for CIRRH, HCC and OTHER indications remain equitable

with increasing organ shortage level With ESDF policy, in contrast to SCORE
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policy where DDTS rates for HCC increase significantly in case of 30% and 50%

increase in organ shortage.

The same holds true for LTx rates which remain equitable for all indications

with the ESDF polcy.

In contrast, the SCORE policy provides inequitable LTx rates with higher LTx

rates for MXP as compared to CIRRH, OTHER and HCC, the later having the

lowest LTX rate that might explain the inequitable increase of DDTS for this indi-

cation.

Figure 4. Variance DDTS rate by indication (without MXP)

6.3. Variance DDTS rate. As Figure 4 clearly demonstrates, under the ESDF

policy, the variance of DDTS rates for CIRRH, HCC and OTHER indications

remains close to 0 for all organ shortage levels. In contrast, the variance of DDTS

increases with the organ shortage for the SCORE policy.

This result demonstrates that the ESDF policy outperforms the SCORE pol-

icy on our main equity criterion based on the DDTS rates for CIRHH, HCC and

OTHER, while providing equitable LTx rates for all indications.
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7. Discussion

7.1. Main findings. Of course, DDTS rates will always increase and LTX rates

always decrease with organ shortage, but a major result of our study is to demon-

strate that ESDF policy offers prospects for allocation system resilient to organ

shortage in terms of equity on both DDTS and LTx rates. Of course, increasing

organ shortage in liver transplantation leads to an increase of DDTS rates. Of note,

at each level of organ shortage, ESDF policy performs similarly to the Score policy

in terms of DDTS rate.

Moving from a MELD-based SCORE to a continuous expected lifetime ESDF

policy (based on the projected remaining patience into the system) seems like a

game changer. This study proposes an extension to the classical model EDF to a

more realistic Earliest Simulated Deadline First (ESDF) policy, allowing to emulate

the behaviour of the EDF policy, by predicting the value of the remaining patience

times of the patients.

In our study, organ shortage levels were related to decrease in organ procurement.

Nevertheless, our results are likely valid for epidemiological or clinical situations

resulting in an increase in LTx indications.

7.2. Limitations and Future works. Despite the good results obtained in this

study, there are some limitations.

Of note, (i) the initiation phase provided a higher number of transplant candi-

dates for the study phase, resulting in a higher organ shortage in this study than

the actual situation in France ; (ii) we used 10 years DDTS rates whereas 2 or

5 years DDTS rates are usually considered. Anyway, this does not affect the key

results related to the resilience of ESDF policy to organ shortage. Last, while we

hope that a 30% decrease in organ procurement won’t be observed in practice, this

corresponds to a Organ/LTx candidate ratio that might occur in some countries.

Outside such a decrease, a MELD based SCORE system might be resilient to mild

decreases in organ procurement.

This study uses a macro-population simulation Markov model with classes. Fu-

ture works is to validate these promising results using our micro-population simu-

lation platform.

7.3. Conclusion/Take home message. Continuous expected lifetime ESDF pol-

icy might provide organ shortage resilient allocation systems in terms of equity,

without significant impact on the overall DDTS rate.
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8. Supplementary materials

8.1. Infinitesimal Generator. The dynamics of the Markov chain {Xt} as pre-

sented in 3.2 can also be encoded by the following Infinitesimal generator. Hereafter,

fix

y = y1,⋯, y∣y∣ = (C
1,D1, P 1

1 , P
1
2 )(C

2,D2, P 2
1 , P

2
2 )⋯ (C

∣y∣,D∣y∣, P
∣y∣
1 , P

∣y∣
2 ) ∈ X,

and let us introduce the following additional piece of notation,

(1) Aging:

To represent the aging of items, for all h > 0 we set

τh(y) = (C
1,D1

+ h,P 1
1 − h,P 1

2 − h)⋯ (C ∣y∣,D∣y∣ + h,P
∣y∣
1 − h,P

∣y∣
2 − h).

(2) Removing reneged recipients and redrawing predictive patience times:

Let Oy{i1,⋯, il}, with i1 < i2 < ⋯ < il, be the set of indices of those items of

y having positive patience and negative predictive patience. Then, for all

(p′1,⋯, p
′
l) ∈ Rl

+, we let θ2(y, (p
′
1,⋯, p

′
l)) be the state of X composed of the

items of y having patience times in R+∪{+∞}, appearing in the same order

as in y and where the item in position ik has a new predictive patience pk,

for all k ∈ J1, lK.

(3) Choosing and removing matched items:

Let Uy be the subset of V of those classes that can be matched with

elements represented by y. Then, for any admissible matching policy Φ

and any class i, we let I(Φ,y, i) be the index of the item of y that will be

matched with an incoming item of class i, according to Φ.

(4) Transitioning items:

Let E2(y) be the set of possible transitions of items of y, where any tran-

sition for an item I is denoted (i, j, k) where i is the class of I, j is a class

available for I to transition, and k is the position of I in y. Similarly, we
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let E3(y) be the set of possible transitions of items of y where the timer is

reseted. We then define:

E4(y) = {(i, j, k) ∈ E2(y)/E3(y), j ∈ R
′
},

E5(y) = {(i, j, k) ∈ E3(y), j ∈ R
′
},

E6(y) = {(i, j, k) ∈ E2(y)/E3(y), j ∈ R/R
′
},

E7(y) = {(i, j, k) ∈ E3(y), j ∈ R/R
′
}.

Let k ∈ J1, ∣y∣K and (C,D,P,P
′
) ∈ V ×R+×R×R. Then θ3(y, k, (C,D,P,P

′
))

is the state of X composed of the items of y, where the item in k-th position

is replaced by (C,D,P,P
′
).

Gathering the arguments of section 3.2, we obtain that

Theorem 1. The infinitesimal generator A of the Markov chain X is characterized
as follows: for all sufficiently smooth functions F ∶ X ↦ R, for all x ∈ X such that
Ox = {i1,⋯, il} with i1 < i2 < ⋯ < il, we have that

A F (x) = lim
h→0

E[F (Xk+h) − F (Xk)∣Xk = x]
h

= lim
h→0

∑
ℓ∈Ux

ξℓ ∫
Rl+
[F (Ψ∣I(Φ,θ2(τh(x),p

′
1
,⋯,p

′
l
),i)(θ2(τh(x), p

′
1,⋯, p

′
l)) − F (x)]⊗

l
m=1 dγCim

,Dim
(p
′
m)

+ ∑
ℓ∈R′ /Ux

ξℓ ∫
Rl+
∫

R2+
[F (θ2(τh(x), p

′
1,⋯, p

′
l)(i,0, p, p

′
)) − F (x)]⊗l

m=1 dγCim
,Dim

(p
′
m)dµi(p)dµ

′
i(p

′
)

+ ∑
ℓ∈(V /R′ )/Ux

ξℓ ∫
Rl+
[F (θ2(τh(x), p

′
1,⋯, p

′
l)(i,0)) − F (x)]⊗

l
m=1 dγCim

,Dim
(p
′
m)

+ ∑
(i,j,k)∈E4(x)

λi,j ∑
ℓ∈R′ /Ux

ξℓ ∫
Rl+
∫

R2+
[F (θ3(θ2(τh(x), p

′
1,⋯, p

′
l), k, (j,Dk, p, p

′
)) − F (x)]

⊗l
m=1 dγCim

,Dim
(p
′
m)dµj,Dk

(p)dµ
′
j,Dk

(p
′
)

+ ∑
(i,j,k)∈E5(x)

λi,j ∑
ℓ∈R′ /Ux

ξℓ ∫
Rl+
∫

R2+
[F (θ3(θ2(τh(x), p

′
1,⋯, p

′
l), k, (j,Dk, p, p

′
)) − F (x)]

⊗l
m=1 dγCim

,Dim
(p
′
m)dµj,Dk

(p)dµ
′
j,Dk

(p
′
)

+ ∑
(i,j,k)∈E6(x)

λi,j ∑
ℓ∈R′ /Ux

ξℓ ∫
Rl+
[F (θ3(θ2(τh(x), p

′
1,⋯, p

′
l), k, (j,Dk)) − F (x)]⊗l

m=1 dγCim
,Dim

(p
′
m)

+ ∑
(i,j,k)∈E7(x)

λi,j ∑
ℓ∈R′ /Ux

ξℓ ∫
Rl+
[F (θ3(θ2(τh(x), p

′
1,⋯, p

′
l), k, (j,Dk)) − F (x)]⊗l

m=1 dγCim
,Dim

(p
′
m)

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − h (∑i∈V ξi −∑(i,j,k)∈E2(x) λi,j)
h

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∫

Rl+
[F (θ2(τh(x), p

′
1,⋯, p

′
l)) − F (x)]⊗

l
m=1 dγCim

,Dim
(p
′
m).

8.2. Secondary algorithms.

8.2.1. Notations. Every element (patient or organ) i in the system can be tracked

by a sextuple [a, b0, b1, c, d, e] called the information on i, where:

(1) a is the class of i. It belongs to R, as defined in section 3;

(2) b0 and b1 are the real and predicted remaining survival time of i;

(3) c ∈ R+ is the time already spent in line by the patient/organ.
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(4) d determines if the patient awaits to receive a MELD exception, and if

so, in how much time. If e ≤ −1 then the patient doesn’t await a MELD

exception. If −1 < d ≤ 0 the patient must receive a MELD exception. (As

we decrease e in a discrete way, we need a margin away from 0 that is higher

than the time step.) If d > 0, then d is the time until the patient receives a

MELD exception.

(5) e only intervenes in the study phase and is a number that identify the

patient/organ, negative for prevalent patients, positive otherwise.

8.2.2. Algorithms.

Organ/patient arrival

The program shown in Figure 5 describes the arrival of an organ/patient at one

time step. It draws the information of the organ/patients, i.e their class, their

eventual temporary contra-indications and MELD exception awaiting, and their

real and predicted survival times in the system.

Figure 5. incoming function
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Queue actualization

The queue actualization at each step of time is handled by the function actualiza-

tion that acts as follows.

Step 1: Pick the first non-actualized patient/organ in the queue and get his

informations [a, b0, b1, c, d, e]. If there is no patient/organ left to actualize

in the queue go to Step 8.

Step 2 : Increase or decrease the relevant information by one time step.

(Namely, b0, b1, d and e decrease by one and c increases by one).

Step 3 : If b0 (the real survival time) is negative, the patient/organ is

deceased, so we remove the patient/organ from the system and go back to

step 1. If not go to Step 4.

Step 4: If b1 (the predicted survival time) is negative, our prediction was

wrong, so we re-draw a new predicted survival time according to µ
′
a,c.

Step 5: If −1 < d < 0, the patient must receive a MELD exception, and we

do so using the MXP function, which also updates its information.

Step 6: Using the reMELD function, we determine whether the patient

changes MELD class and if he does, we update his information accordingly.

We then go back to Step 1.

Step 7: We return the state of the queue, with all patients/organs updated.

Transition between MELD classes.

The algorithm described in Figure 6 determines randomly if a patient changes

MELD class, and if it does, it draws the new class according to the new function.

Last, this routine re-draws the predicted and residual survival times.

There, the function resurv(a, c) (resp. resurv2(a, c)) redraws a remaining real

(resp. predicted) survival time according to µa,c (resp. µ
′
a,c), and new(a) draws

randomly the new MELD of a patient in the following way:

(1) With probability 1
3
, we draw an improvement of the patient state (lower

MELD), and with probability 2
3
, a deterioration of the patient state (higher

MELD). (If the MELD is already minimal or maximal, we don’t get do

anything.)

(2) Then we draw among the possible MELD classes, weighing each class ac-

cording to the initial arrival probability of each MELD class.
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Figure 6. reMELD function

Assigning a MELD exception

The program shown in Figure 7 updates the class and the real and predicted sur-

vival times of a patient that receives a MELD exception.

Figure 7. XPF function
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