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Abstract: Mini-puberty of infancy is a short developmental phase occurring in humans and other
mammals after birth. In females, it corresponds to transient and robust activation of the hypothalamo-
pituitary-ovarian (HPO) axis revealed by high levels of gonadotropin hormones, follicular growth,
and increased estradiol production by the ovary. The roles of estradiol signaling during this intriguing
developmental phase are not yet well known, but accumulating data support the idea that it aids
in the implementation of reproductive function. This review aims to provide in-depth information
on HPO activity during this particular developmental phase in several mammal species, including
humans, and to propose emerging hypotheses on the putative effect of estradiol signaling on the
development and function of organs involved in female reproduction.
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1. Introduction

Mini-puberty of infancy is an intriguing developmental period in mammals char-
acterized by the postnatal activation of the hypothalamo-pituitary ovarian (HPO) axis
(or gonadotrope axis) for a short duration. The term “mini-puberty” was first used in
boys as the period of hormonal surge of gonadotropins and testosterone, which occurs in
early infancy and contributes to the maturation of germ cells [1]. A wide array of stud-
ies has shown that both sexes display high levels of follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) and a gender-specific elevation of sex steroid hormones
(testosterone in males and estradiol in females) postnatally. There is a sexual dimorphism
in the surges of gonadotropins, with higher FSH levels in girls than in boys and higher
LH levels in boys than in girls [2]. The postnatal elevation of testosterone levels in hu-
mans results in testicular descent, maturation of the testis, and penile growth [1,3]. It may
also influence the masculinization of the brain, a process initiated during fetal life and
mediated by testosterone produced by developing testes [3]. In male rodents, numerous
studies, including the seminal work of Phoenix et al. on guinea pigs (1959) [4], showed
that the perinatal period (end of gestation, first postnatal days) is critical for masculin-
ization and defeminization of the nervous system. By contrast, mini-puberty has been
far less studied in females, and its role remains elusive. Ovarian activity is particularly
elevated after birth, with an intense synthesis and release of hormones, such as estrogens
(estrone (E1) and estradiol (E2)). Their production depends upon the expression of steroido-
genic enzymes, such as aromatase (CYP19A1), which ensures the conversion of androgens
into estrogens. The balance between these biologically active metabolites, their precursors,
and inactive sulfated sex steroids is controlled by the sulfotransferase (SULT)–sulfatase (STS)
pathway (schematized in [5]). This notable ovarian activity occurs in time with the
development of structures related to reproductive success. Estrogens may already act
on several organs to influence their differentiation/maturation, particularly via the nuclear
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receptors ER (estrogen receptor), as discussed in this review. The conservation of this
phase among female mammals suggests that this transient gonadotrope axis activation is
important for reproductive function, but its role and regulation remain largely unexplored.
In this review, we cover the literature on the activation of the HPO axis at mini-puberty,
with a special focus on both the regulation of ovarian function and the potential role of
this phase on reproductive success, mainly based on studies led in rodents. We will mainly
discuss studies conducted in rodents since the literature on mini-puberty in humans has
already been reviewed several times [6–8].

2. Defining HPO Axis Activation & Mini-Puberty Timing in Female Mammals

In female mammals, gonadotropins are already detected during fetal life. Their lev-
els are schematized in mice at different periods of life (Figure 1; for humans [6,7]). This
review will focus on their early regulation since the literature on this aspect of repro-
ductive life, and reproductive senescence is abundant [9–11]. During fetal life, signifi-
cant amounts of gonadotropins are detected (mouse: [12–14]; rabbit: [15]; human: [16,17];
rhesus monkey: [18]). LH and FSH start being detected at 16–17 days post-conception
(dpc), i.e., 2–3 days before birth, in the female mouse [12,13] and at about 10–11 weeks
of gestation in humans [17]. Their action on the fetal ovary may, however, greatly vary
from one species to another. In humans and rhesus monkeys, gonadotropin signaling
may become active by mid-term, as fetal ovaries are already a host of steroidogenesis with
measurable androgens and estrogens. In addition, human fetal ovaries display growing
follicles up to the antral stage at around five months of gestation [17,19–21]. The situation
is different in rats and mice since, in these species, sex steroids become detectable after
birth (around five days postnatal (dpn)) when gonadotropin receptivity and preantral
follicles appear in the ovaries [22–24]. Gonadotropin levels then fall during perinatal life
in humans [16–18,25,26], but not in mice [13].

The postnatal elevation of gonadotropin levels lasts for a few days in rodents and
several months in larger mammals, including humans (Table 1). This is accompanied by a
significant increase in ovarian activity, as shown by the elevation in estradiol levels. It is
important to highlight that the duration of the mini-pubertal surges of gonadotropins and
steroids may differ, with estradiol being much shorter (Table 1). The period of postnatal
ovarian activity corresponds to mini-puberty [27–31]. Defining a precise time window
of mini-puberty for a given species is difficult due to the considerable variability in go-
nadotropin/estradiol surges between individuals, the scarcity of longitudinal studies on
the same subjects, and the poor reliability of commonly used hormone assays, in particular
those for sex steroids. In girls, FSH levels increase at about one week of age and peak at
2–3 months, reaching values twice as high as those of women during the follicular or
luteal phase [32]. They subsequently decline but remain higher than those of prepubertal
girls until four years of age, remaining low up to puberty [33,34]. LH levels peak at around
1–3 months of age to decline after that, and unlike FSH, it does not reach levels above
those of the menstrual cycle [32,33,35]. Estrone and estradiol are significantly produced by
the human ovary during infancy [36] and can be detected in the serum [31,32]. Accurate
determination of their levels by LC/MS-MS in children of different ages revealed that they
are higher during the first three months of life (means: 35 pM and 10 pM, respectively) than
in non-pubertal children (means: 10 pM and 3 pM, respectively), but they remain below
those of the first days of the menstrual cycle (mean: 100 pM) [30].

In-depth analyses of the postnatal profiles of LH, FSH, and estradiol in rodents during
the neonatal (0–7 dpn), infantile (8–17 dpn), and juvenile (17–30 dpn) periods (Figure 2A)
and comparison with their profiles at puberty (occurring up to about 35 dpn in rats
and 45 dpn in mice) and during reproductive life highlighted the tremendous activa-
tion of the gonadotrope axis during the infantile period in these species [27,29,30,37,38].
In rodents, the highest prepubertal FSH levels are reached at about 12–15 dpn, and we
observed in mice that they are 3–5 times higher than at puberty or during reproductive
life (Figure 2B) [27,29,30]. LH levels are elevated for about one week between 4 and 18 dpn,
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depending on rodent species and strains, and we found in mice that they reach values of
the LH ovulatory surge at about 14 dpn (Figure 2B) [27,29,30,37,38]. Estradiol is detected
in both the ovary and the serum as early as 5–7 dpn in mice and rats [29,30]. Circulating
estradiol levels surge around 12–15 dpn, reaching preovulatory surge levels at 14 dpn in
mice (Figure 2B) [29,30]. In contrast to the situation in humans where the “quiescence” of the
HPO axis until the approach of puberty is relatively long (i.e., lasting for a minimum of 7 years),
in rodents, there is a relatively short quiescence phase, lasting no more than 2–3 weeks.
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Figure 1. Regulation of the gonadotrope axis at different periods of life in the mouse. FSH (green 
line) and LH (blue line) are detected in the last part of gestation, induced by GnRH stimulation. The 
high levels of maternal estrogens (dotted pink line) may not exert negative feedback at this time on 
FSH and LH synthesis and secretion due to high levels of α-fetoprotein (AFP) produced by the fetal 

Figure 1. Regulation of the gonadotrope axis at different periods of life in the mouse. FSH (green
line) and LH (blue line) are detected in the last part of gestation, induced by GnRH stimulation.
The high levels of maternal estrogens (dotted pink line) may not exert negative feedback at this
time on FSH and LH synthesis and secretion due to high levels of α-fetoprotein (AFP) produced
by the fetal liver. After birth, maternal estradiol wanes from pup serum, and this may lead to
the loss of estradiol negative feedback and to the dramatic rise in gonadotropin levels observed
at the time of mini-puberty. Additional ovarian factors may contribute to this rise (see the text).
The gonadotropin surge contributes to increased estradiol production by the ovary at mini-puberty
(continuous pink line). After that, the decrease in AFP after birth, and the maturation of inhibin
negative feedback, may contribute to the observed fall in gonadotropin levels, remaining low up
to puberty. During reproductive life, gonadotropin levels are regulated by both estradiol negative
and positive feedback. Estradiol negative feedback in aged mice is attenuated, thereby increasing
gonadotropin levels. Note that the levels of hormones shown during the different periods are given
on an indicative basis since no studies encompass all these periods. See references in the text. The
figure was prepared with the help of Mr. Le Ciclé, using BioRender, under Academic License terms.
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Table 1. Approximate ages of HPO activation and puberty in humans and different mammal species.
ND: not determined.

Species Ages at Gonadotropin Surge Ages at Estradiol Surge Ages at Puberty

Mouse
FSH: 9–17 dpn; LH: 9–14 dpn [29]

FSH, LH: 4–18 dpn [37]
FSH: 11–16 dpn; LH: 11–14 dpn [38]

12–14 dpn [29] 28–45 dpn

Rat FSH: 1–17 dpn; LH: 11–21 dpn [27]
FSH: 10–20 dpn; LH: 10–25 dpn [30]

9–19 dpn [27]
10–20 dpn [30] 28–35 dpn

Sheep FSH: 2–7 weeks [39]
LH: ND ND 25–35 weeks

Cow FSH, LH: 2–14 weeks [40] ND 6–20 months

Chimpanzee FSH, LH: 1–4 months [33]
FSH, LH: 0.1–5 months [41] ND 8–12 years

Rhesus Monkey FSH: 0.5–4 months
LH: ND ND 2.5–3 years

Human
FSH: 1–4 years, LH: 1–3 years [33]

FSH, LH: 1 year [32]
FSH, LH: 0.5–4 years [34]

6 months [32]
2–3 months [28,31] 8–14 years
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Figure 2. Significant changes in reproductive hormone levels during prepubertal life in the mouse.
(A) The different stages of the prepubertal period in the mouse. The chronological axis displays the
neonatal, infantile, and juvenile periods in this species. Mini-puberty takes place within the infantile
period. (B) Gonadotropin and estradiol levels in prepubertal and adult female mice at different stages
of the estrous cycle were determined by Luminex assay and GC/MS-MS, respectively, as published
by our group in [29], including the additional age of 27 dpn analyzed at the same time as the other
ages using the same methods. Hormonal levels of the infantile period are shown as blue bars.

3. Possible Mechanisms Underlying Increasing Gonadotropin Levels during Fetal Life
and Mini-Puberty
3.1. Lack of Sensitivity to Estrogen Negative Feedback during Fetal Life

Gonadotropin-releasing hormone (GnRH) plays an important role in driving LH
and FSH synthesis and release during the reproductive cycle. However, it may play an
important role in regulating gonadotropins as soon as fetal life, as suggested by the onset of
GnRH system activity (protein abundance, receptor binding, induction of gonadotropins)
2 to 3 days before birth in mice and at mid-gestation in humans, i.e., concomitantly with
the observed increase in LH and FSH in the serum [12,42–45]. There is a marked sexual
dimorphism in gonadotropin levels, which are generally much higher in females than
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in males (mouse: [12–14]; rabbit: [15]; human: [16,17]; rhesus monkey: [18]). In males,
testes produce testosterone during fetal life, while in females, ovaries do not produce
sex steroids (in rodents). This marked increase in gonadotropin levels in the female
fetus may result from the lack of negative feedback from the ovary to the hypothalamus
and pituitary. However, in rodents, as in other mammal species, the fetus is exposed
to high levels of maternal steroids. In addition, in some species, including humans, sex
steroids are produced by fetal ovaries [21]. Therefore, another explanation could be that the
action of estrogens at the hypothalamic level in the fetus is prevented by estrogen-binding
proteins, such as alpha-fetoprotein (AFP) in mice, precluding crossing of the brain blood
barrier [46] (Figure 1). Noteworthy, AFP has a very low affinity for estrogens in humans,
and thus the identification of binding protein(s) during fetal life remains to be investigated
in this species.

What could explain the decrease in fetal gonadotropin levels observed around the
term in humans? The extremely high concentrations of maternal estrogens may allow the
generation of free circulating estrogens to cross the fetal brain-blood-barrier and target the
hypothalamus and the pituitary. Observations suggest that pre-term human infants, not
exposed to high maternal estrogens at the end of pregnancy display higher amplitude and
duration of FSH surge after birth [47].

3.2. Limited Negative Feedbacks Exerted by Estrogens and Inhibins at Mini-Puberty

The progressive increase in circulating LH and FSH levels observed at mini-puberty
may result from the progressive disappearance of maternal steroids from the circulation of
the offspring. Why do FSH levels generally display a more dramatic elevation in ampli-
tude and duration than LH levels in females? During reproductive life, it is assumed that
high-frequency GnRH pulses promote LH release, while low-frequency GnRH secretion
induces high levels of FSH secretion. Studies conducted on rat postnatal hypothalamic ex-
plants suggest that the frequency of GnRH pulses is low at mini-puberty and progressively
increases during the prepubertal period [48]. Hence, one of the current hypotheses is that
low-frequency GnRH pulses favor FSH secretion over that of LH at mini-puberty [49]. On
the other hand, the picture may be far more complex. Indeed, even if LH levels remain
relatively lower than those of FSH at mini-puberty, its levels are still high. Additional mech-
anisms regulate gonadotrope function, such as local factors and ovarian hormones. The
possibility that this differential regulation of FSH and LH is driven by ovarian factors is sup-
ported by our work in mini-pubertal rats, showing that the anti-müllerian hormone (AMH)
stimulates FSH secretion but not that of LH [50]. This marked elevation of FSH could also
arise from the low mini-pubertal production of inhibin A and B, which would not be
able to exert a negative action on FSH synthesis, as suggested by observations in the
rat reporting a negative correlation between FSH levels and those of inhibins during the
prepubertal period [30].

The elevation of gonadotropin levels could also result from the weakness of estradiol
negative feedback due to high levels of AFP, which restrict the availability of free estrogens,
at least in rodents. Since AFP levels decline markedly at mini-puberty to become low
at around 20 dpn, when gonadotropin levels decrease significantly [51,52], the estradiol
negative feedback system may become fully active [53,54]. However, there is some evidence
that this feedback is functional despite high levels of AFP since ovariectomy in rats during
mini-puberty further increases FSH levels, an effect that is prevented by estradiol supple-
mentation [54]. Negative feedback may also exist in primates since bilateral gonadectomy
in rhesus monkeys during infancy results in increased LH and FSH levels [55]. In addition,
girls with Turner syndrome usually suffering primary ovarian insufficiency with low to
undetectable levels of ovarian hormones, exhibit higher levels of FSH than healthy girls
during mini-puberty [2]. Furthermore, studies conducted in human infants reported that
higher gonadotropin levels at birth in pre-term girls than in full-term girls are associated
with lower serum levels of estradiol and inhibin B [56]. Overall, these data indicate that
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regulating gonadotropins during infancy involves multiple factors acting at different levels
of the HPO axis.

4. The Ovary: From Its Differentiation to Its Endocrine Activation at Mini-Puberty

The mini-pubertal ovary is endowed with many growing follicles in addition to
containing primordial follicles. Unlike the adult ovary, follicular growth does not proceed
beyond the antral stage (Figure 3). These early-growing follicles display very specific
features, which are discussed in more detail below.
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Figure 3. Different categories of follicles are present in the prepubertal ovary in mammals. The
prepubertal ovary is endowed with growing follicles up to the antral stage, and unlike the adult
ovary during reproductive life, it does not display large healthy follicles of the size of preovulatory
follicles despite high gonadotropin levels during mini-puberty.

4.1. Follicle Formation

The formation of primordial follicles occurs after the fragmentation of ovigerous
cords, which are structures containing oocytes arrested at the first prophase of meiosis and
lined with pregranulosa cells. Depending on the species, this event occurs during fetal
development (domestic mammals and humans) or around birth (rodents) [19,20,57,58].
However, in well-documented species such as rodents, fragmentation of ovigerous cords is
reported to also give rise to primary-stage follicles, exhibiting enlarged oocyte size as well
as cuboidal and proliferating granulosa cells [58]. Fragmentation of ovigerous cords starts
from the center of the ovary at birth, yielding primary follicles, and progresses toward the
periphery to give rise to primordial follicles around 4–5 dpn [59]. These primary follicles
have never been in a dormant state, unlike primordial follicles. The emergence of these two
populations of follicles may result from distinct waves of follicular cell differentiation, with
the pregranulosa cells in primordial follicles migrating from the ovarian surface epithelium
during perinatal life, whereas the granulosa cells in primary follicles would come from
precursors from the coelomic epithelium of the bipotential gonad [60,61]. This concept of
distinct waves of follicular cell recruitment to form two populations of follicles has also
been proposed for sheep, in which a similar centrifugal pattern of follicular differentiation
seems to occur [57]. It is unclear whether this also occurs in humans, where fragmentation
of ovigerous cords spans from 19 to 35 weeks of gestation and primary follicles first appear
around 21 weeks of gestation (for review [62]).

4.2. Roles and Dynamics of the First Follicular Waves

In rodents, primary follicles resulting from the fragmentation of ovigerous cords con-
stitute the first follicular waves. They rapidly grow to the preantral and antral follicle
stages at mini-puberty (Figure 3). The dogma that these first follicular waves are anovu-
latory and therefore degenerate through the process of atresia before puberty [58,63] has
been challenged by two studies, including one from our group [64,65]. In a rat model
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only containing the first follicular waves following depletion of primordial follicles dur-
ing the neonatal period (γ-irradiated rat model), it was shown that these growing folli-
cles are progressively eliminated by follicular atresia but that a subset of them achieves
their maturation to the ovulatory stage and contributes to the first sexual cycles of repro-
ductive life (2 months of age) [64,66]. This follicular population entirely disappears by
4–6 months of age due to depletion by atresia and ovulation [64]. Similar findings were
obtained in a more recent study conducted in a genetically modified mouse model, i.e., the
Forkhead box L2 (Foxl2)-CreERT2; mT/mG mice, allowing fluorescent tracing of the first follic-
ular waves and the primordial follicles over the prepubertal and adult periods [65]. This
model also revealed that primordial follicles begin to be recruited to the growing follicle
pool at approximately 13 dpn, i.e., at mini-puberty, thereby providing subsequent follicular
waves contributing to ovulations during reproductive life from about three months of age.
In humans, there is a long period between the appearance of the first growing follicles
during fetal life and the onset of puberty (8–14 years), and it is, thus, unlikely that the
growing follicles of the first follicular waves contribute to ovulation at puberty.

4.3. Mechanisms Controlling Intra-Ovarian Estradiol Production during Mini-Puberty
4.3.1. Regulation by Gonadotropins

In female mice and rats, ovaries express FSH receptors (FSHR) in granulosa cells early
as birth and LH receptors (LHR) in thecal cells from 5 dpn [24,67,68]. Similar to cyclic
females, LH stimulates androgen synthesis by thecal cells, and FSH promotes the aromatase-
mediated conversion of thecal-derived androgens into estrogens in granulosa cells [69]. FSH
also regulates follicular growth during this period, as shown by the early arrest of folliculo-
genesis at the preantral/early antral stage in FSH receptor (Fshr−/−) and Fsh beta subunit
(Fshb−/−) knock-out mice during the infantile period (Balla et al., 2003) [70]. Gonadotropins
are essential for early follicular development, as shown by the phenotype of hypogonadal (hpg)
mice, which display lower counts of preantral follicles than wild-type females and no antral
follicles at 8 dpn [71]. From the γ-irradiated rat model, we specified that follicles from
the first waves at the preantral/small antral stage express Cyp19a1 aromatase (the enzyme
responsible for the conversion of androgens produced by thecal cells into estrogens by
granulosa cells), and are responsible for the synthesis of estradiol throughout the prepu-
bertal period [64]. Their granulosa cells also express Lhcgr (LHR) [29,64] (Figure 4). These
findings indicate that these small follicles display premature endocrine maturation since
Cyp19a1 and Lhcgr are detected in granulosa cells at the large antral/preovulatory follicles
in the adult ovary [72]. While the functionality of LHR signaling in granulosa cells remains
to be demonstrated in mini-pubertal ovaries, it is likely that FSHR signaling stimulates
estradiol production by inducing the expression of Cyp19a1 [29,64,70]. In vitro analyses on
isolated preantral follicles from 14 to 17 dpn (mini-pubertal) mouse ovaries confirmed the
presence of Fshr and Cyp19a1 transcripts [73]. Paradoxically, despite the mini-pubertal ele-
vation of both FSH and LH levels at mini-puberty and the notable production of estradiol,
follicles do not grow beyond the antral stage [29]. By manipulating gonadotropin levels
in vivo in the mouse with a GnRH-R antagonist, we could demonstrate that high FSH
levels up-regulate the expression of both Lhcgr and Cyp19a1 and estradiol production from
the first follicular waves. However, they are inefficient in inducing the expression of the
cell cycle promoter Cyclin D2 (Ccnd2) and stimulating follicular growth [29]. Contrary to
these findings, in vitro FSH treatment of preantral follicles from mini-pubertal mice induces
both Cyp19a1 and Ccnd2 expression, and it has a follicular growth-promoting action [73].
We hypothesize that these contradictory data may result from differences in experimental
settings (in vitro versus in vivo), on the type of used FSH (recombinant human FSH in
Hardy et al., 2017 [73] versus pituitary-purified ovine FSH in François et al., 2017 [29]) and
on FSH concentrations (10–100 ng/mL in vitro in Hardy et al., 2017 [73] to 150 ng/mL
in vivo and 500 ng/mL ex vivo in François et al., 2017 [29]). The preferential action of ele-
vated FSH levels on the steroidogenic pathway observed in vivo is further illustrated by the
fact that treatment of mini-pubertal mice with exogenous gonadotropins following a super-
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ovulation procedure further increases estradiol levels without promoting preantral/early
antral follicle growth [29]. Taken together, we hypothesize that gonadotropins stimulate
estradiol synthesis in the first follicular waves only when they reach high concentrations,
which are inefficient for follicular growth [29] (Figure 5). This mechanism may prevent
premature ovulation.
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Figure 4. Particular characteristics of the first follicular waves in rodents. The first growing follicles
are located in the central region of the ovary, delimited by dotted grey lines. Although most are
destined to follicular atresia before puberty, a subset is ovulated at puberty and the very beginning of
reproductive life [64,65]. The first follicular waves would be responsible for ovarian endocrine activity
throughout prepubertal life [64]. During mini-puberty, immature follicles at the preantral/early
antral stage show some functional characteristics of preovulatory follicles, such as Cyp19a1 and Lhcgr
expression in granulosa cells [29]. Scale bars: 100 µm.
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loop on the hypothalamus to restrain gonadotropin synthesis and secretion; however, the high levels
of AFP may still limit its action. In contrast, we hypothesize that AMH produced by the subsequent
follicular waves may up-regulate FSH synthesis by the pituitary and possibly LH and FSH levels by
acting on GnRH neurons in the hypothalamus. See references in the text.
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4.3.2. Contribution of AMH Signaling

AMH is expressed by granulosa cells as soon as the primary follicle stage, and it
disappears in antral follicles (except in cumulus cells) and atretic follicles [74]. AMH
may inhibit the recruitment of primordial follicles into the growing pool and decrease
the acquisition of FSH receptivity by antral follicles [75]. In mouse and rat ovaries,
Amh expression in the first follicular waves progressively declines during mini-puberty,
and its expression is essentially ensured by subsequent follicular waves located in the
periphery [66,76]. We found that Amh down-regulation resulted from the mini-pubertal
surge in FSH levels [76]. Similar to the adult ovary, AMH down-regulates Cyp19a1 ex-
pression during mini-puberty [76]. Therefore, we hypothesize that FSH-induced down-
regulation of AMH facilitates FSH-promoting action on estradiol biosynthesis by the first
follicular waves [76], as described in the adult ovary [75,77,78]. Indeed, FSH-induced
repression of Amh expression was observed in preantral follicles collected from mouse
mini-pubertal ovaries and cultured in vitro [73]. The same may be true in mini-pubertal
ewe lambs, where females with high FSH levels show low circulating AMH levels, while
those with low FSH levels exhibit high AMH levels [39]. As highlighted above, AMH could
also exert extra-gonadal actions, at least in rodents. Indeed, it could enhance GnRH neuron
activity in the hypothalamus and LH secretion from the pituitary in adult females [79].
It could also directly act on the pituitary to increase FSH production and secretion in
mini-pubertal females [50]. Although the origin of AMH acting on the hypothalamus and
the pituitary remains elusive, it is tempting to suppose that ovarian AMH contributes to
the activity of the gonadotrope axis during mini-puberty (Figure 5).

4.3.3. Effects of Exposure to Endocrine Disruptor Chemicals (EDCs) on Mini-Pubertal
Estradiol Production

The potential impact of exposure to EDCs, specifically at the time of mini-puberty,
remains largely unexplored. However, several studies have assessed developmental pe-
riods of exposure ranging from fetal to postnatal periods, including mini-puberty. The
presence of metabolites of EDCs such as phthalates in maternal urine or cord blood, pos-
sibly lowering testosterone production, is associated with shorter anogenital distance
and cryptorchidism in boys (for review, [80]). In girls, the relatively subtle changes in
physical parameters during mini-puberty, and the need for more invasive investigations,
may complicate studying EDC effects. However, assessment of pubertal markers in girls
showed associations between phthalate or bisphenol A (BPA) metabolites and altered age
of pubertal onset [81,82].

In recent studies carried out in rodents, we compared the impact of gestational/lactational
versus mini-pubertal exposure to EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD, the “Seveso dioxin”) reported to interfere with ER signaling or steroid synthesis
upon binding to the aryl hydrocarbon receptor (AHR). TCDD affects the ovarian expres-
sion of Cyp19a1 and estradiol production in juvenile and adult ovaries [83–85]. It induces
the expression of detoxifying enzymes, for instance, Cyp1a1, to metabolize xenobiotic
substances [86]. Studies in rodents exposed to TCDD in utero and during lactation up
to weaning at around 20 dpn show that this compound causes delayed puberty, early
alteration of estrous cycles, and impaired fertility [87]. Interestingly, in utero and lactational
exposure to TCDD of female rats (gavage with 200 ng kg−1 BW of the mother at 15.5 dpc)
has no effect on the expression of steroidogenesis-related factors in the ovary during
mini-puberty, although it induces AHR detoxifying machinery [88]. Similarly, intra-
peritoneal TCDD injection of mini-pubertal mice at 13 dpn (5 mg kg−1 BW) has no effect
on steroidogenesis, but it activates the AHR detoxifying pathway in the mini-pubertal
ovary [89]. These observations contrast with the fact that administration of the TCDD in
mice at the approach of puberty stimulates estradiol synthesis in addition to activating the
detoxifying pathway [89].

These findings suggest that although TCDD may activate AHR signaling during mini-
puberty, it does not affect ovarian endocrine activity at this stage. Interestingly, even the
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endogenous AHR pathway is unable to regulate estradiol synthesis during mini-puberty,
unlike peripubertal mice, as suggested by studies on Ahr knock-out (Ahr−/−) mice [89].
These studies suggest that AHR-mediated EDC action depends on the stage of sexual
maturity, as proposed [85]. However, this does not rule out that EDCs to which infants are
exposed during mini-puberty, acting via AHR-independent mechanisms such as phthalates
and BPA, may impact ovarian activity.

5. Putative Physiological Roles of Estradiol during Mini-Puberty
5.1. Developmental Organization of the HPO Axis and Female Behavior

During most of the cycle, low levels of estradiol suppress gonadotropin secretion
through negative feedback exerted on the hypothalamus. In contrast, at the end of the
follicular phase (proestrus in rodents), high estradiol levels trigger positive feedback that
induces a large and continuous increase in GnRH release. This GnRH “surge,” with an
increase in gonadotrope cell responsiveness to GnRH, causes a surge in LH release from
the pituitary. This ovulatory surge of LH occurs in all female mammals and is necessary for
ovulation and sexual receptivity in rodents. The effects of estradiol on the regulation of
GnRH secretion, either negative or positive, are integrated into the hypothalamus at the
level of kisspeptin neurons, which express sex steroid receptors. These neurons represent
major gatekeepers of pubertal onset and female reproduction (for review [90]. They send
projections to cell bodies and terminal nerves of GnRH neurons, thereby activating both
GnRH synthesis and liberation [91,92]. There are two kisspeptin neuronal populations in the
murine hypothalamus, located in the rostral periventricular area of the third ventricle (RP3V)
of the preoptic area (POA) and the arcuate nucleus (ARC). The RP3V population, which
integrates the positive estradiol feedback to induce ovulation, is sexually dimorphic, with
more kisspeptin neurons in females than in males [92].

The high levels of progesterone-induced by the preovulatory estradiol surge followed
by the ovulatory LH surge activate the neural circuitry underlying female sexual behavior,
including the receptive posture, called lordosis [93]. This circuitry includes the olfactory
system and chemosensory areas, including the medial amygdala, the bed nucleus of stria
terminalis, and the ventromedial hypothalamus, which processes the chemosignals into
behavioral responses. All of these structures express high levels of ERα, with particularly
high progesterone receptor expression in the ventromedial hypothalamus.

As reported above, the negative feedback system from the ovary to the hypothalamus
may already be functional at birth. In contrast, the positive feedback loop may not be func-
tional before puberty, possibly because POA kisspeptin neurons are not fully developed or
not yet included in a functional network with GnRH neurons. Nevertheless, prepubertal
ovarian estrogens exert a developmental control of neural structures involved in HPO axis
regulation and female behaviors. Indeed, female mice with deletions in the Cyp19a1 gene
exhibit fewer hypothalamic kisspeptin neurons in the POA at 20 dpn and reduced lordosis
behavior in adulthood [94–96]. Administration of estradiol to these knockout females
during the infantile/juvenile period (15–25 dpn) partially restores these effects [96,97].
In addition, postnatal OVX at 15 dpn reduces the number of kisspeptin neurons in the
POA, and adult estradiol supplementation restores it [98]. Studies of these and other
experimental models have led to the idea that the period around 15 dpn in mice may be a
critical window for exposure to estradiol on kisspeptin neurons, the age at puberty, and
sexual behavior [98] (Figure 6). The possibility of an early estradiol action in females
is further supported by the observation that ERα is expressed from birth (mRNAs and pro-
tein levels) in brain areas that will regulate the HPO axis and behaviors in adults [99–101].
In addition, genetic studies have shown that estrogens produced before puberty act
through neural ERα and ERβ signaling pathways. Early embryonic Esr2 deletion in
the nervous system delays kisspeptin expression in prepubertal females and the onset
of puberty [102]. Furthermore, early Esr1 deletion in kisspeptin neurons or the nervous
system accelerates pubertal onset, suppresses cyclicity and sexual behavior, and leads to an
infertile phenotype [103,104].
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Figure 6. Possible roles of mini-pubertal estradiol on different organs related to reproduction. This
hormone could play a pleiotropic role in the body by regulating the development and differentiation
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areas contributing to sexual and maternal behaviors (amygdala, olfactory system, hypothalamus),
the mammary gland and the uterus. See references in the text.

5.2. Mammary Gland Development

The development of the mammary gland, a process referred to as mammogenesis,
occurs during embryogenesis by the invagination of ectodermal structures to form epithe-
lial buds surrounded by multi-layered mesenchymal cells. Epithelial cell proliferation and
branching lead to the formation of a small ductal tree at birth. In mice, very little growth
occurs between 11.5 and 16.5 dpc, but during the last few days of gestation, there is rapid
proliferation of mammary epithelial cells, accompanied by penetration into the mammary
fat pad precursor tissue. The involvement of ovarian hormones in mammary develop-
ment was proposed from the observed sex dimorphism between males and females. While
early mammogenesis occurs in the absence of gonadal sex steroids in the female mouse [105],
it would be stimulated by high levels of maternal steroids in late gestation when there
is rapid mammary gland growth. In males, the production of testosterone by the fetal
testis leads to the apoptosis of the underlying mesenchymal cells that express the androgen
receptor, and mammary glands remain rudimentary throughout life. In female mice and
rats, extensive proliferation and branching of the mammary duct system occur between
birth and puberty. Mammary gland growth is isometric (meaning that it grows at the same
rate as the body) for 2 to 3 weeks, beginning around 7 dpn, and it becomes allometric
(meaning that it grows faster than the other parts of the body) at puberty. This postnatal
growth results in the development of a large number of end buds; in mice but not in
rats, it could be estradiol-dependent, especially at puberty [106]. The binding of estradiol
and expression of ER is observed in mammary epithelial cells during mini-puberty in the
mouse [107,108]. However, mammary gland development proceeds to some extent in the
absence of estradiol since the conditional loss of ERα in mammary epithelial cells arrests
mammary gland development at the prepubertal stage [109]. However, in the mouse,
most investigations have been carried out during the juvenile and pubertal periods, partly
due to the prevailing view that estradiol production by the ovaries is negligible prior to
puberty and that high levels of AFP prevent estradiol action [107]. Unlike mice, the role
of postnatal estradiol in mammogenesis seems to be confirmed in cattle and goats, which
show positive allometric mammary gland growth at the time of mini-puberty [110–113]
(Figure 6). ERα expression is already detected in mammary epithelial cells at three months
in calves [114]. Ovariectomy of mini-pubertal heifers and goats severely impairs the subse-
quent development of mammary glands, showing poorly organized epithelial structures,
low cell proliferation and tissue remodeling [111,113]. In humans, ERα expression is ob-
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served in epithelial cell nuclei from the 30th week of gestation onwards, and it is markedly
up-regulated shortly after birth [115]. The observation supports the postnatal involvement
of ovarian hormones in mammary gland development that mammary gland diameter
decreases two months after birth in boys but not in girls and the fact that pre-term girls,
who have higher levels of estradiol than full-term girls, one month after birth, transiently
display enlarged mammary glands during mini-puberty [116]. In addition, a 6-week supple-
mentation starting at the birth of extremely premature infants (mean delivery age: 26 weeks)
with estradiol and progesterone leads to a dramatic increase in mammary gland diameter
4 to 5 weeks after birth [117].

5.3. Uterus Development

The uterus consists of two compartments, the myometrium and the endometrium, the
inner mucosal lining of the uterus. The endometrium contains different cells, i.e., epithelial,
stromal, immune, and endothelial cells. The epithelium is divided into two types: the
luminal epithelium and the glandular epithelium forming the uterus glands and displaying
an important role in supporting pregnancy by producing substances essential for the
development and survival of the conceptus. The primitive uterus, also called Müllerian
ducts, is not fully developed at birth in mammals, including cattle, humans, and rodents.
Additional steps, such as differentiation and growth of the myometrium and epithelial
glands, take place postnatally, including during mini-puberty.

The role of ovarian hormones and ER signaling on uterus development has been
widely studied and may be species-dependent. In rodents the uterus grows and develops
normally in the absence of ovaries following neonatal ovariectomy, but only for the first
three weeks after birth. The role of ovarian factors in subsequent uterus development
is shown by observing impaired uterine growth and maintenance of uterine glands in
neonatally ovariectomized females [118–120]. On the other hand, when these females
are supplemented with estradiol or progesterone during the neonatal period, their uterus
develops normally past three weeks of age, implying that early exposure to sex steroids
may have a long-term effect on this organ. ERα is expressed as early as 5 dpn in epithelial
and stromal cells in mice, but it shows a stronger expression in stromal cells [121]. Tissue
recombination studies indicate that epithelial ERα is neither necessary nor sufficient to
mediate the mitogenic action of estrogens on the epithelium. This would be primarily
mediated by stromal ERα via the production of stromal-derived growth factors such as
epidermal growth factor (EGF) and insulin growth factor (IGF) 1 and 2 [122,123]. Adult
mice lacking ERα (Esr1-null) have hypoplastic uteri containing all cell types in reduced
proportions, but fetal uterine organogenesis is normal [124,125]. In these mice, the initial
stages of uterine development and gland formation are normal from birth to 22 dpn, and
these processes are subsequently affected [120,126]. Importantly, when neonatal uteri
of Esr1-null mice are grafted into adult ovariectomized mice, estradiol stimulates graft
growth only in wild-type hosts, suggesting that this hormone stimulates the production
of a systemic growth factor of as yet unknown origin that would rely on extra-uterine
ERα-dependent mechanisms to promote uterine growth and gland formation [122]. Taken
together, these data indicate that estradiol would regulate uterine growth and development
by intra- and extra-uterine ERα-dependent signaling primarily from the juvenile period
in mice.

In sheep, ERα is already expressed during mini-puberty in several cell types of the
uterus, namely glandular epithelium, stromal cells, and myometrial cells [127].
Neonatal ovariectomy reduces uterus growth and the number of glands observed at
56 dpn (mini-puberty) [128]. In addition, in Inverdale ewes carrying a natural homozygous
mutation in the bone morphogenetic protein 15 (BMP15) gene, impaired ovarian function
is associated with a significant reduction in uterine growth and fewer uterine glands [129].
These data imply that ovarian hormones play a role in this process. However, estradiol
is unlikely to contribute to all the developmental and differentiation processes since the
administration of an anti-estrogen (ERα antagonist) from birth to 55 dpn alters endometrial
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glands and ductal gland invaginations, but it does not affect uterus growth [127]. The
deleterious effect of the exposure to supra-physiological doses of estradiol is supported
by the observations that repeated injections of large amounts of estradiol-valerate from
birth to 55 dpn inhibit uterine growth and endometrial gland differentiation, possibly by
repressing ERα expression [127]. In humans, ERα mRNAs are detected in the uterus at
19 weeks of gestation, but the cell type expressing this receptor has not been reported [130].
Uterine length increases in pre-term girls compared with full-term girls at one month of
age, positively correlated with urinary estradiol levels [116]. Additional evidence that the
uterus is already the target of sex steroids after birth is provided by the observation that
a 6-week replacement of estradiol and progesterone in pre-term infants dramatically en-
larges the size of the uterus related to the control group (not replaced) group [117]. Taken to-
gether, these studies suggest that mini-pubertal ovarian activity, possibly through estradiol
action, may regulate uterus development in some species during mini-puberty (Figure 6).

6. Concluding Remarks, Perspectives and Future Directions

Although recent investigations on mini-pubertal girls support the idea that this de-
velopmental phase has an important role in programming fertility by acting on different
levels of the reproductive system, some key experimental clues have been provided by
animal models, which will probably provide additional evidence in the future. As reported
in this review, estrogens appear necessary for the maturation of the Kiss-GnRH system in
the hypothalamus to modulate, in fine, the cyclic regulation of LH as well as sexual and
maternal behaviors. They could also influence the differentiation of both the mammary
gland and the uterus, probably in a species-dependent manner. Therefore, the postnatal
endocrine activity of the ovary could be of major importance for subsequent fertility. A
better understanding of the physiological role of this period and the regulation of the HPO
axis is essential to determine whether this could be a potential time window of vulnerability,
as suspected. Indeed, a visible advance in the age of puberty has been observed in recent
years in girls, and it is estimated that 6–20% of reproductive-aged women have fertility
defects due to polycystic ovarian syndrome (PCOS). Although the etiology of these defects
remains uncertain, it has been suggested that early disturbances of the sex steroid system
during fetal and postnatal life by daily exposure to EDCs with estrogenic, anti-estrogenic,
or anti-androgenic activities could be involved [131,132]. The possible deleterious impact of
EDCs on HPO activity and the differentiation of estradiol target organs during mini-puberty
has yet to be assessed to establish their long-term impacts on reproductive health.
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