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E.Guiot Geometric properties of a class of generalized conics

-Introduction

The surfaces formed by rotation of a conic section around its axes of symetries (sphere, paraboloid, ellipsoid, hyperpoloid) are commonly used to produce simple optical components, such lenses of mirrors. These compounds allow the creation of numerous optical systems, ranging from simple light projectors to telescopes, or others. The reason for using these surfaces is related to the optical properties of conics, as they have been defined (see for example reference [START_REF] Akopyan | Geometry of Conics[END_REF]).

The present article is devoted to the study of the optical properties of a class of generalized conics, which has recently been highlighted [START_REF] Guiot | New solutions to the central force problem: a class of generalized conic trajectories[END_REF]. This class of curves (which therefore accepts conics as special cases) was obtained by the generalization of an optical property of an initial conic. Quite logically, optical properties common to the entire class can be established. These results can open the way to new simple optical systems (diopters, lenses or mirrors), which could represent progress in geometric optics. This work can therefore be linked to concerns of contemporary physics, with the aim of improving current systems (reduction of optical abberations, improvement of the functioning of lasers, etc.).

The class we are going to present accepts a wide variety of classic plane curves, naturally the conics but also the straight line, the cardioid, the Bernouilli' lemniscate and the logaritmic spiral, as they are presented, for example, in references [START_REF] Yates | A Handbook on Curves and Their Properties[END_REF][START_REF][END_REF]. One of the interests of this article is to evoke these curves using an original approach, by connecting them by a common optical property. Some results are reobtained in another way (this will be the case for the Lemniscate and the spiral). But the major interest of this article is to present a common optical property to all these curves, which, for a part of them,, allow us to consider the implementation of new optical systems.

The article is therefore organized as follows: firstly, by a short presentation of the property which has been generalized and published elsewhere [START_REF] Guiot | New solutions to the central force problem: a class of generalized conic trajectories[END_REF]. Then, the general optical law will be gradually presented. To conclude, some potential applications in geometric optics will be detailed.

Consider a point 𝑀 located on a conic, whose foci are 𝐹 and 𝐹′. The optical properties of the conics provide information about the direction of the tangents to this curve. For example, in the case of a hyperbola, they state that the tangent at 𝑀 is the bisector of the angle 𝐹′𝑀𝐹 (Figure 1). The geometric property that has been generalized is a direct consequence of these properties. It consists of a relation of proportionality between two distances : the first is the radial distance 𝐹𝑀, the second is 𝐹𝐼, where 𝐼 is the intersection of the normal to the curve at 𝑀 with the principal axis (𝐹, 𝒙) of the conic. (Note that (𝐼𝑀) is thus the direction of the radius of curvature at 𝑀). More precisely, this relationship can be written

𝐹𝐼 = 𝑒𝐹𝑀 = 𝑒𝑟(𝜃)
, where 𝑒 is the eccentricity of the conic and 𝜃 the polar angle. This property, valid for all kind of conic (ellipse, parabola, hyperbola) can easily be demonstrated [START_REF] Lebossé | Géométrie, classe de mathématiques[END_REF].

The generalization is made by introducing a rotating axis of polar angle (𝑛𝜃 + 𝛽), where 𝑛 is a dimensionless number and 𝛽 a constant angle. Let 𝐼 be the intersection of the normal to the curve with this axis and 𝑂 the origin of the reference frame (Figure 2). This approach involves determining the set of points whose the distances 𝑂𝐼 and 𝑂𝑀 are linked by a relationship as follows :

𝑂𝐼 = 𝑒 ′ 𝑂𝑀 = 𝑒′𝑟(𝜃)
, where 𝑒′ is a constant dimensionless number. All the points 𝑀 then form the curves (𝐶) corresponding to a class of generalized conics. We can make certain observations: case 𝑛 = 0 of course corresponds to conics. Additionally, the origin of the coordinate system is not necessarily a focus of the curves, except in this case.

The mathematical demonstration to obtain these curves has been provided in the reference [START_REF] Guiot | New solutions to the central force problem: a class of generalized conic trajectories[END_REF]. The curves class was defined by the following mathematical relationships:

{ 𝑛 ≠ 1 𝑟(𝜃) = 𝐶 1 (1 + 𝑒′ cos(𝜃(𝑛 -1) + 𝛽)) 1 1-𝑛 (1.1) 𝑛 = 1 𝑟(𝜃) = 𝐶 2 𝑒 𝑒 sin 𝛽 1+𝑒 cos 𝛽 𝜃 (1.2) }
Where 𝐶 1 and 𝐶 2 are two constant lengths. We recognize the conics defined from one of their focus (𝑛 = 0). The ellipse defined from its center is corresponding on ( 𝑛 = -1,0 < 𝑒 < 1). The cases 𝑒 ′ = 1 allow to obtain several other classical curves : Straitgh line (𝑛 = -1) Cardoid ( 𝑛 = 2), double circle passing through the origin ( 𝑛 = 3), circle (𝑛 = 1, 𝛽 = 0), logaritmic spiral(𝑛 = 1, 𝛽 ≠ 0). The Lemniscate of Bernouilli is corresponding on the case 𝑛 = 5. Indeed (2.1) becomes

𝑟(𝜃) = 𝐶′ 1 (1 + cos 4𝜃) 1 4 ⁄ = 2 1 4
⁄ 𝐶′ 1 √cos 2𝜃

In the same way, the rectangular hyperbola is corresponding on 𝑛 = -3.

Therefore, normals to curves can be obtained by plotting the distance 𝑒′𝑂𝑀 on the (𝑛𝜃 + 𝛽) axis, which makes it possible to determine the position of point 𝐼 (see for example Figure 3). When 𝑒 ′ = 1, The method is simplified. In fact, in this case, the triangle 𝑂𝑀𝐼 is isosceles (an example is provided in Figure 4). It is therefore possible to obtain, for all the curves defined by the relations (1.1) and (1.2) methods, often original, for drawing the normals. Moreover, an optical law can be deduced, that we will now present.

-Theorem of angle

In certain cases, the geometric property that has been highlighted makes it possible to reobtain results from classical geometry, in an original way. This is the case, for example, of Bernouilli's lemniscate angle theorem, which was presented by the German mathematician Hermann Vechtmann in the 19th century [START_REF] Vechtmann | De curvis leminiscatis[END_REF]. It provides that the angle 𝑖 between the normal at the lemniscate at 𝑀 makes an angle 𝑖 = 2𝜃 with (𝑂𝑀), and an angle 𝛾 = 3𝜃 with the (𝑂, 𝒙) axis (see Figure 5). As it is visible, this result can easily be re-demonstrated. Indeed, we know that the triangle 𝑂𝑀𝐼 is isosceles, since 𝑂𝑀 = 𝑂𝐼, and that 𝐼 is located on the (5𝜃) axis. We obtain directly angular equalities as follows :

{ 𝜋 -5𝜃 + 𝜃 + 2𝑖 = 𝜋 𝜋 -5𝜃 + 𝑖 + 𝜋 -𝛾 = 𝜋 }
From which we deduce the result of Vechtmann. This approach can be extended to the whole class and allows us to obtain a more general theorem. To do this, we introduce the following system (Figure 6).

(𝑂, 𝒙) is a fixed axis and radial vector 𝒆 𝒓 makes an angle of 𝜃 with it. (𝑂, 𝒆 𝟏𝒓 , 𝒆 𝟏𝜽) is a polar system of coordinate such 𝒆 𝟏𝒓 and 𝒆 𝒓 makes an angle of (𝑛 -1)𝜃 + 𝛽, where 𝛽 is a fixed angle. The angle 𝑖 is formed by the two straigth lines (𝑂𝐼) and (𝑂𝑀). (2)

Again, an interesting simplification is obtained for 𝑒 ′ = 1. In this case, (2) becomes as follows: The law described by ( 2) is valid for all the curves contained in the class, which implies a wide variety of solutions, since 𝑛 is not necessarily an integer.

cos 𝑖 = 1 + cos((𝑛 -1)𝜃 + 𝛽) [2 + 2 cos((𝑛 -1)𝜃 + 𝛽)]

-Optical property

These results allow us to establish a general law concerning the optical properties. Consider an incident ray 𝑅 𝐼 directed towards the origin 𝑂 of the curve (Figure 9). This ray therefore makes an angle 𝑖 with the normal to the curve, defined by relation ( 2). This angle is the angle of incidence of the ray, which makes it possible to deduce the direction of the rays refracted or reflected by the line, considering it as a diopter or a mirror.

Let us examine the second case. According to the laws of optical reflection, the reflected ray will be directed at an angle 2𝑖, as defined in relation ( 2) in the plane of the curve. Again, an interesting simplification is obtained in the cases where 𝑒 ′ = 1 (Figure 9). 

-Circle and Logarithmic spiral

The special case corresponding to 𝑛 = 1 is given with the relation :

𝑟(𝜃) = 𝑎𝑒 𝑒 sin 𝛽 1+𝑒 cos 𝛽 𝜃
if 𝛽 = 0 it is a circle of radius 𝑎. This case is trivial : previously results lead to the fact that radius of curvature and of circle are confused, and that angle of incidence is null. Therefore, an incident ray directed towards the center of the circle is reflected on itself, which is the principle of the spherical mirror.

More complex is the case of the logaritmic spiral (𝛽 ≠ 0) (Figure 12). To simplify we consider only the case 𝑒 = 1. As usual, the direction of the radius of curvature (𝐼𝑀) is obtained by reporting the length 𝑂𝑀 on the (𝑛𝜃 + 𝛽) = (𝜃 + 𝛽) axis. Considering the triangles 𝐼𝐻𝑀 and 𝐼𝑂𝑀 we can write the system of angular equations as follows :

{ 𝜋 2 + 𝛼 + 𝑖 = 𝜋 𝜋 2 -𝑖 + 𝛼 + 𝛽 = 𝜋 }
Finally we obtain :

𝑖 = 𝛽 2
, which is consistent with the relation (3) for 𝑛 = 1. The angle 𝑖 is constant, that explain why the spiral is also called "equiangular spiral".

The article detailed a class of plane curves which are defined by a simple polar equation, depending on two fundamental parameters, 𝑒′ and 𝑛. The cases corresponding to 𝑒 = 1 seem particularly interesting (see Figure 13). Several fundamental optical systems are made from these lines, making revolving around their axis. 𝑛 = -1 leads to the plane mirror or diopter, 𝑛 = 0 to the parabolic mirror, 𝑛 = 1 to the sphérical mirror. In addition, all these systems obey a common optical law deduced from (3). Some cases are listed in the table 1 :

Generalized conic 𝑒 = 1, 𝛽 = 0 Direction of reflected ray Perpendicular Hyperbola 𝑛 = -3 (-3𝜃) Straigth line 𝑛 = -1 (-𝜃) Parabola 𝑛 = 0 (0) circle 𝑛 = 1 (𝜃) Cardioid 𝑛 = 2 ( 
2𝜃) Circle passing through the origin 𝑛 = 3 (3𝜃) Lemniscate of Bernouilli 𝑛 = 5 (5𝜃) Table 1 : optical law of several generalized conics Certain curves allow the implementation of optical systems, given the optical properties of parabola which have been generalized. Let us consider the case of mirrors subjected to a beam of light, passing through the origin of the coordinate system, and with a 2-dimensional opening angle 𝛼. If these mirrors are generated from the curves corresponding to 𝑒 = 1, then the reflected beam will have the opening angle given by |𝑛𝛼|.

This property can be of interest. We suggest, for example, lines close to the parabola, i.e. with parameters (𝑛 ≈ 0, 𝑒 = 1) (Figure 14). Which ultimately leads to the correct result, given by :

𝐴𝑆 = 𝐴′𝑆

Note that this result is obtained this time without approximation, which means that the stigmatism is perfect for this system.

Diopters

Detailed curves can also be considered to produce diopters or lenses. Consider, for example, systems as follows (Figure 16). 

Conclusion

In conclusion, it appears that many potential applications could be extracted from the curves presented in this article, to produce diopters, lenses or mirrors. We do not study particular cases and we are content to present the general optical law. Note that this law consists of a generalization of the optical properties of conics, which is particularly evident when the initial conic is a parabola.
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 1 Fig 1. Hyperbola. Optical property : the tangent (𝑇) to the curve at M is the bisector of the triangle 𝐹𝑀𝐹′ Consequence : 𝐹𝐼 = 𝑒𝐹𝑀
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 2 Fig 2. Generalization of the property on the (𝑛𝜃 + 𝛽) axis.

Fig 3 .

 3 Fig 3. 𝑛 = -2 , e' = 0.75 The radius of curvature at M intersects at I such that: 𝑂𝐼 = 𝑒′𝑂𝑀 on the (-2𝜃) axis.

Fig 4 .

 4 Fig 4. 𝑛 = 4. The direction of radius of curvature (𝐼𝑀) at M intersects at I such that: 𝑂𝐼 = 𝑂𝑀.
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 5 Fig 5. Lemniscate. 𝑛 = 5, 𝛽 = 0. 𝑂𝐼 = 𝑂𝑀. 𝑖 = 2𝜃 and 𝛾 = 3𝜃
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 6 Fig. 6 : systems of coordinate
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 12 That we can simplify:2𝑐𝑜𝑠 2 𝑖 = 1 + cos((𝑛 -1)𝜃 + 𝛽) Thus cos 2𝑖 = cos((𝑛 -1)𝜃 + 𝛽)And solutions are as follows :Classical cases can reobtained. To simplify we choose 𝛽 = 0. Consider for example 𝑛 = -1 and 𝑛 = 0, which corresponds respectively to the straight line and to the parabola (Figures (7.
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 221122 Fig . 7.2 : Parabola. 𝑛 = 𝑂, 𝑂𝐼 = 𝑂𝑀 𝑖 = 𝜃/2

FigFig 10. 2 :

 2 Fig 9. Incident and reflected ray

  Fig 12 : Logarithmic spiral 𝑛 = 1. 𝑂𝐼 = 𝑂𝑀, 𝑖 = 𝛽/2

  Fig 13 : Several possible lines .

FigFigure 15 . 1 :

 151 Fig 14. Reflector. 𝑛 = 0.2 and 𝑛 = -0.2 The light source S is located at O

  Figure 15.1 : 𝐴′ is the image of the object 𝐴 by the mirror of index 𝑛 = 0.8. (𝐼𝑀) is the normal to the mirror at 𝑀.Figure 15.2 (right panel) : plane Mirror

Fig 16 . 2 𝑛 1 Fig 17 .

 162117 Fig 16. Converging lens and generalized conic 𝑛 = 0.2 𝑛 1 and 𝑛 2 are here two different optical index

Case 𝒏 > 𝟎 : in Figure 15.1 consider the triangles 𝐴𝑀𝑂 and 𝑂𝑀𝐴′. The following relationships can be deduced :

Knowing that

, it comes :

And (4) becomes :

Note that this equation is obtained without approximation. Certain well-known particular cases can be reobtained again knowing this general relationship. It is the case for the spherical mirror, corresponding to 𝑛 = 1, 𝛽 = 0 et 𝑖 0 = 0 (given by ( 3)). In the usual small angle approximation we obtain cos 𝜃 ≈ 1 et 𝑂𝑀 ≈ 𝑂𝑆, and (5) becomes,

, which is the correct result (disregarding algebraic distances).

Case 𝒏 > 𝟎 : The same approach leads this time to the equation as follows :