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Abstract: Clay-based materials are the most traditional components of buildings. To improve their
performance in a sustainable way, agents can be mixed to fired clay acting as a pore-forming factor.
However, firing temperatures highly influence their microstructure which is closely linked to a
material’s final performance as a ceramic block. To highlight the influence of the firing temperature
on microstructure, and more specifically on the pore size distribution of clay-based materials, three
innovative porous materials were manufactured. These materials were produced by mixing clay
and pore-forming agents. They were characterized by optical and scanning electronic microscopy,
x-ray diffraction, mercury intrusion and nitrogen adsorption. These techniques allow the phase
identification of materials, show sample microstructure and quantify the pore size distribution
at different scales. Furthermore, geometric parameters of sample microstructure such as grain
diameter and roundness are estimated by using computer software. To conclude, results provide
an enlightenment about the influence of material microstructure on the pore size distribution at
two firing temperatures. These results can be useful to allow the tune of porous characteristics and,
therefore, contribute to the production of more sustainable construction materials.

Keywords: microstructural characterization; clay-based materials; pore size distribution

1. Introduction

Some researchers highlighted an influence of firing temperature on clay materials’ microstructures,
as well as on physical and mechanical properties [1–6] while others analyzed pore size distribution
of natural [7,8] and fired clays [9,10]. Mineralogical composition and particle size link was also
studied by [11]. Yet, papers correlating firing temperature, microstructure and pore size distribution
in fired clays are few. To fill this gap, this paper investigates the influence of composition and firing
temperature on the microstructural evolution of three clay-based materials and links the referred
properties to pore size distribution.

Materials 2019, 12, 946; doi:10.3390/ma12060946 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/12/6/946?type=check_update&version=1
http://dx.doi.org/10.3390/ma12060946
http://www.mdpi.com/journal/materials


Materials 2019, 12, 946 2 of 16

Fired clay is a common building material [12] and Brazil is one of the world’s largest producers
of clay-based ceramic [13]. Different types of additives can be incorporated to fired clay in order to
improve its properties [14]. For instance, these additives act as pore-forming agents increasing thermal
and acoustical insulation capacity while maintaining load bearing capacity, reducing bulk density and
improving hygric performance [15,16]. Additives can also be incorporated to clay to lower the sintering
temperatures and, thereby, realize energy saving estimated at between 1.2 and 5.5 m3 of natural gas
gross per tonne fired product [17]. In this case, low-cost and easily found mineral absorbents were
chosen to act as pore-forming agents such as: perlite and attapulgite.

Perlite is a glassy volcanic rock that can expand up to 30 times of its volume when fired up to
1200 °C [18]. It is usually used in thermal or acoustic insulation, water retention and soil aerator for
agriculture and horticulture due to its high porosity and low density [19]. Commercial palygorskite
(attapulgite) has many applications in different areas such as catalysis, agriculture and environmental
protection also due to its high adsorption capacity [20]. The attapulgite provided for this work has
been sold as a road absorbent granule absorbing oil, lubricants, flammable and other pollutants.

The size and the distribution of pores in a material is very important to understand their
hygric, mechanical and thermophysical behavior. To find out whether pore size distribution affects
microstructural properties with firing temperature, a detailed microstructural characterization of
clay-based materials has been performed. Results from an experimental campaign that includes
elemental and phase composition, microstructure morphology at micro and nanoscales and pore
distribution quantification are presented. For this purpose, nitrogen adsorption technique based
on the Brunauer–Emmett–Teller (BET) theory [21] is very useful to access pore information but
it is limited to small pores. In order to have more accurate data of larger pores, the mercury
intrusion porosimetry (MIP) technique is also used. It is an analogous process with N2 adsorption
but it uses mercury as the pore filler instead of nitrogen. However, the MIP method tends to
underestimate the volume of the smallest pores due to the ink-bottle-shaped pores which means
that large pores with small openings are identified as having a small diameter making the BET
method more appropriate to measure small pores. Therefore, a combination of MIP and N2 gas
adsorption can provide information for the entire pore-size range. Typically, the pore diameter
determination range of high-pressure mercury porosimetry is 10–300 µm and nitrogen adsorption
is 1–100 nm [22]. Elemental composition was given by energy-dispersive X-ray spectroscopy (EDS).
Nevertheless, a ceramic material is not only governed by its chemical composition, but also by its
crystalline structure. For instance, two ceramics with an identical composition but a different crystal
structure may behave very differently [23]. Thus, X-ray diffraction (XRD) aided to characterize phase
composition. Morphology from a scale of micrometers was obtained with optical microscopy (OM) and
analyzed with the software Quantikov [24]. In addition, structures from nanometers were illustrated
with the images from scanning electron microscopy (SEM).

2. Materials

Pore-forming agents perlite and attapulgite were obtained from Eurosorb CO., in Thourotte,
France. Clay was provided from a tile and brick company located in Curitiba, Brazil. Samples were
prepared by mixing clay with 20% in mass of absorbents. Clay was previously dispersed in water by
mixing during 10 min. All compositions were mixed during additional 20 min. The mixtures were
then transferred to the mold conferring their final shape. The initial cure was carried out at controlled
temperature (30 °C ± 2 °C) for 48 h. After this period, samples were removed from the molds and
fired at 105 °C for the following 24 h. After curing, samples were sintered in a furnace at the firing
temperatures of 800 °C and 1000 °C for 1 h. The fabrication conditions of the samples were based
on the process that is commonly used to produce bricks and tiles as well as the choice of these two
firing temperatures.
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3. Methods

X-ray diffraction (XRD) analyses were performed using a Rigaku D/MAX Ultima diffractometer
from CDTN (Centro de Desenvolvimento da Tecnologia Nuclear, Brazil). The samples were analyzed
as powders after a heat treatment at 800 °C and 1000 °C. Clay of the base material was dried and
crushed. Absorbents (Attapulgite and Perlite) were also crushed and analyzed for initial composition
identification, which enables the examination of absorbents influence when they are mixed to clay and
sintered. Data were collected on a range of 2θ from 4° to 80° at a scan speed of 2°/min, current intensity
of 30 mA and voltage of 40 kV and using a CuKα radiation source (λ = 1.5405 Å). The identification of
the mineral phases was carried out using Jade 0.9/MDI software and PDF2 database.

Optical microscopy observations were conducted using a polarized microscope (Leica 4500)
with a image capture system from Fluid Inclusions and Metallogenesis Laboratory at CDTN (Centro
de Desenvolvimento da Tecnologia Nuclear) and samples were prepared as polished thin sections.
The main textural features observed in the optical microscopy were analyzed and measured using the
software Quantikov. It provides the following microstructural parameters: the area, the perimeter,
the length, the diameter, roundness and a statistic distribution of the grain size and phases in the
microstructure of the material [24].

The microstructural study was complemented by the scanning electron microscope (Vega3, Tescan)
from Materials Technology and Manufacturing Processes Laboratory at PUCPR, equipped with an
energy dispersive X-ray spectroscope (EDS). The polished thin sections were gold coated in the Quorum
Q150R ES rotary-pumped coating system. The images were obtained using secondary electron (SE)
detector, operated at a 10.0 kV accelerating voltage for morphology visualization.

Pore size distribution was obtained by two methods: nitrogen adsorption and mercury intrusion
porosimetry (MIP). The NOVA 2000e, Quantachrome from Ecomateriales laboratory at UANL
(Universidad Autónoma Nuevo León, Mexico), is a surface area analyzer equipment that was used to
obtain pore size distribution of samples using the Brunauer–Emmett–Teller (BET) theory [21]. Nitrogen
was the gas used as adsorbate since it does not react chemically with the material surface allowing the
quantification of surface area and pore size. Besides of pore size distribution, BET theory allows the
calculation of materials specific surface. Mercury intrusion porosimetry (MIP) from École des Mines
d’Alès in France was used to access larger pores that BET technique cannot measure. Therefore, MIP
combined with nitrogen adsorption provided the complete range of pore size distribution as well as
pore shape and pore surface area.

4. Results and Discussion

4.1. Phase Identification and High Temperature Behavior

The characterization of the phases was carried out initially through XRD for the identification
of the very fine phases and, mainly, the clayey type. However, quantification of the phases by this
method was disregarded. Since the high intensities of the quartz and microcline peaks are related
to the degree of crystallinity of these minerals when compared to the clay minerals, they can not be
attributed to the proportion of these minerals.

The mineralogical composition of the clayey material consists predominantly of kaolinite, quartz,
microcline and muscovite, characteristic of kaolinic clays. Figure 1a shows a comparison of the XRD
spectra generated for the initial clay and the fired ceramic material at 800 °C and 1000 °C denoting a
variation of the phases with the sintering temperature of the material. The kaolinite peaks disappear
with the heating process which was expected since kaolinite loses its (OH) lattice water between
500 and 600 °C transforming to a new phase known as metakaolinite [25]. The XRD pattern of the
metakaolinite corresponds to that of an amorphous material [26]. Therefore, at 800 °C kaolinite and
metakaolinite peaks are not observed. However, muscovite peaks were observed at this temperature.
At 1000 °C, only the peaks of the quartz and microcline remained.
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In the ceramic material with the addition of attapulgite, the comparison of the diffraction results
in the attapulgite pellets and the fired material at 800 °C and 1000 °C showed that the influence on
the mineralogical composition is predominantly of the clay base material (Figure 1b). The attapulgite
granules were crushed and the powder was analysed by XRD. The attapulgite pellets are essentially
composed of: paligorskite, lizardite and muscovite/illite and quartz. In the ceramic material with
attapulgite sintered at 800 °C, the paligorskite and lizardite peaks do not appear, remaining only the
muscovite, quartz and microcline. At 1000 °C, only peaks of quartz and feldspar are observed, as in
the base material.

Paligorskite is the main constituent mineral of attapulgite granules and its sorption and high
natural porosity characteristics are dependent on the outer surface and the size of its molecular
channels [27]. The morphological and structural characteristics of paligorskite [28,29] and the
variations that occurred during the heat treatment processes [27,30,31], have been exhaustively studied.
In this work, we found that the paligorskite undergoes drastic structural variations during heating.
At 120 °C half of the coordinated water is lost and the structure folds during the removal of 50–65%
of the structural water. The disappearance of palygorskite is consistent with structural variations
occurring with the increasing of firing temperature, where dehydration and dehydroxylation is
complete between 400 and 500 °C, depending on the rate of heating [27]. The temperature to which
these samples were submitted to is much higher than the one shown in all the experimental works.
The transformation of paligorskite in other phases with the heating will release water and generate
variation in the internal structure of the granules, which may facilitate the start of the melting, justifying
the characteristics of the diffractograms, with lower peak definition.

In the perlite-containing ceramic material, the influence of the additive can still be observed at
800 °C, but at 1000 °C, only quartz and feldspar remained in the base material. The perlite forms a broad
peak with a maximum elevation of 2θ at 22°. At 800 °C, the diffractogram shows background variation,
coincident with the perlite curve. Muscovite, quartz and microcline peaks were also observed, as in
the base material. At 1000 °C, there is no more influence of perlite, nor does it act as an amorphous
material (Figure 1c).
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Figure 1. Cont.
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Figure 1. X-ray pattern to show the phase evolution of (a) clay, (b) clay with attapulgite and (c) clay
with perlite when firing temperature is increased. Qtz = Quartz, Kaol = Kaolinite, Mc = Microcline,
Ms = Muscovite, Lz = Lizardite, Pal = Palygorskite (abbreviations from [32]).

4.2. Microstructure Morphology

4.2.1. Clay

Figure 2a,b are representative samples of the base clay material, without the additives. It is
characterized by containing fragments of quartz crystals, feldspar and iron hydroxides, and to a lesser
extent fragments of rocks, supported by a clayey matrix. The staining of the matrix varies from light
beige to reddish, with the darker portions resulting from the presence of colloidal iron hydroxides.

In the sample fired to 800 °C, two granulometric bands of fragments are observed: larger, between
500 and 1000 µm, and small ones, smaller than 50 µm. It was also identified the presence of iron oxide
and hydroxide crystals, occurring as subhedral crystals. In the clay matrix, the crystals of quartz and
feldspar are distinguishable by optical microscopy and the presence of fine muscovite is highlighted
(Figure 2a).

However, in the sample fired at 1000 °C (Figure 2b), the muscovite disappears, the matrix is
darker with several types of rock fragments and minerals, in which shapes and sizes are similar to
those found in the sample fired to 800 °C. The fragments of quartz and feldspar are more difficult to
distinguish through the optical properties, since the twinnings in the feldspar disappear.

4.2.2. Clay with Attapulgite (CATT)

In the samples in which attapulgite particles were added, microcracks appeared around the
fragments with the heating process, generating a crack porosity [33]. At 800 °C (Figure 2c), attalpulgite
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particles exhibit partial fusion features, with light, medium and dark portions. These structures may
be rounded or irregular, but generally, the central portions are the darkest. The lighter portions of the
attapulgite particles still preserve the optical properties of the original material, however the darker
portions become extinct, indicating fusion. Also, some particles are partially fractured, and the opening
of these fractures also generate the crack porosity. In the clayey matrix there are still fine muscovite
crystals, mainly observed with crossed nicols. The circular crack porosity, similar to a corona, found
around some attapulgite particles, may be complete, but it is generally narrow and does not occur in
all grains. It does not occur neither around the remaining crystals nor rock fragments of the clayey
base material.

1 

 

 

Figure 2. Photomicrographs of the clay samples without addition of absorbents showing the main
characteristics of the clayey base material fired at 800 °C: (a) larger fragments of quartz crystals (Qtz)
and feldspar (Kfs) supported by a clay matrix with small crystals of quartz and feldspar. Samples fired
at 1000 °C: (b) darker clay matrix with fragments of rock (R × F) and quartz agglomerates (natural
light). Samples containing attapulgite particles fired at 800 °C: (c) general characteristic of the sample
showing the different behavior of the attapulgite particles with the heating, generation of a crack
porosity around some particles and the presence of fractures in the particles of attapulgite and particles
with darker central portion indicating initiation of a fusion process (natural light) and (d) detail of the
thicker coronas and that the firing process generated the fracture and fragmentation of some attapulgite
particles and formation of channels to a lesser extent fired at 1000 °C. (e) small channels connecting the
perlite particles fired at 800 °C and (f) formation of channels in greater proportion and size for samples
fired at 1000 °C.
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In the sample fired to 1000 °C (Figure 2d), it is observed that both the matrix and the attapulgite
particles are darker, characterizing the burning of the material. The crack porosity coronas around
the attapulgite particle are more abundant and thicker at this temperature. This crack porosity can be
interconnected when there is a fracturing of attapulgite particles. To a lesser extent, crack porosity may
form irregular channels in the matrix.

4.2.3. Clay with Perlite (CPER)

In the samples with addition of perlite (Figure 2e,f), the main texture formed with the firing
process is a crack porosity in the form of channels, which tend to bind one particle to another. At 800 °C
(Figure 2e), the perlite still preserves its internal structure, formed by rounded fractures. There are
small irregular channels forming that interconnect the perlite particles and the rock fragments and
larger crystals of the base material. These channels can be observed even in the cross section of
the sample, indicating that it occurs in the three dimensions of the material. At 1000 °C (Figure 2f),
the channels are more abundant and thick, but there is a larger interaction with the rock fragments and
the iron crystals/oxides/hydroxides.

4.3. Microstructural Evaluation

The observation of the samples by optical microscopy allowed to identify the main structural
characteristics of the different compositions and their responses to the heating process. Initially,
the characteristics of the base material, clay, were studied to understand its behavior, aiming a
comparison pattern with the ceramic material with addition of the pore-forming agents. The textures
and microstructures observed in the photomicrographs were treated using the program Quantikov [24]
to size the visually observed differences (Figure 3).

1 

 

 

Figure 3. Examples of structures identification and quantification by the software Quantikov. (a) Clay
fired at 800 °C, (b) clay fired at 1000 °C, (c) clay with attapulgite fired at 800 °C, (d) clay with attapulgite
fired at 1000 °C, (e) clay with perlite fired at 800 °C, (f) clay with perlite fired at 1000 °C.
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The clay material, used as the base reference, has the maximum amount of 5.7% of fragments
supported by the clay matrix. These fragments were identified as quartz crystals, microcline, iron
oxides and hydroxides and rock fragments. The largest proportion of these fragments is lower than
10 µm: 36% in the sintered sample at 800 °C (Figure 3a) and 46% in the sample sintered at 1000 °C
(Figure 3b). Approximately 80% of the fragments are smaller than 50 µm. Larger fragments with a
length of approximately 100 µm represent less than 4% of the total. The degree of roundness of these
fragments is 0.7, and is not influenced by temperature (Table 1). The matrix remained homogeneous,
showing no generation of microstructures observable by optical microscopy.

Samples with attapulgite addition were treated in two steps, initially the particles were measured
to evaluate their behavior with the heating process. Subsequently, only the crack porosities observed
in the images were measured. In the sample sintered at 800 °C, the attapulgite particles ranged from
256 to 1036 µm, with a bimodal behavior, with a moda at 300 µm and another at 500 µm (Figure 3c).
In the sample sintered at 1000 °C, the particles ranged from 165 to 1127 µm (Figure 3d). The decrease
in the minimum particle size can be explained by the fracturing and fragmentation of the particles,
which occurred with the temperature rise, as observed on the image (Figure 2d). The maximum size
may be considered the same, which shows that the melting occurred during firing process did not
generate a change in the volume of the particles that remained entire (Table 1).

In the samples with attapulgite, the formation of a crack porosity was observed, concentrating
predominantly around the particles. Among the various quantified parameters, the main information
refers to their corresponding area. In the sample fired at 800 °C, the area of the crack porosity represents
2.8% of the total, and at 1000 °C, 4.8%. The total area is also almost double (Table 1). These data prove
the visual information, that the crack porosity increases greatly at 1000 °C (Figure 4b), when compared
to the sample fired to 800 °C (Figure 4a). The width of this porosity is very variable, although it is
visually estimated that there is an increase at 1000 °C, the appearance of new coronas around a larger
number of narrower attapulgite particles masks this statistic.

1 

 

 

Figure 4. Crack porosity identification by the software Quantikov (a) crack porosity in clay with
attapulgite fired at 800 °C, (b) crack porosity in clay with attapulgite fired at 1000 °C, (c) channels at
clay with perlite fired at 800 °C and (d) channels at clay with perlite fired at 1000 °C.
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The perlite was added to the base material in the proportion of 20% by weight. Measurements in
samples fired at 800 °C and at 1000 °C represent 25% in area. Although the original perlite fragments
are rounded, there is a large variation in the size of the particles whose diameters range from 262 to
3598 µm at 800 °C (Figure 3e) and 380 to 3293 µm at 1000 °C (Figure 3f). The degree of roundness
of the preserved particles is 1, however, the average degree of rounding found in both samples is
0.77 (Table 1). These variations can be explained by the breaking of the particles during the transport
and elaboration of the material. In the samples with perlite, the crack porosity with heating was also
observed. It has an irregular shape, similar to micro channels, ranging from 18 to 225 µm in diameter
at 800 °C, representing about 1.6% of the sample area. In the sample sintered at 1000 °C, the area of this
porosity increases to 3.8% and the maximum width reaches 361 µm. The channels are more continuous,
thicker and in greater proportion, as observed in the Figure 4c,d.

The grain size plays an important role in the onset of microcracking [34,35] which explains the
microcracks generation in the ceramic with pore-forming agents since both atapulgite and perlite had
much larger dimensions than the crystals or rock fragments found in the clay. The different shapes
of crack porosity can be explained by the mismatch in anisotropic thermal expansion and elastic
properties between randomly oriented grains during the cooling of polycristalline ceramics from the
firing temperature generating microstresses along grain boundaries [33].
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Table 1. Quantification of the CATT, CPER and CLAY microstructural parameters .

Parameter
CATT 800 °C CATT 1000 °C CPER 800 °C CPER 1000 °C CLAY 800 °C CLAY 1000 °C

Grain Corona Grain Corona Grain Grain Grain Grain

Area (µm2)

Total 2.32 × 107 3.86 × 106 2.66 × 107 6.53 × 106 1.09 × 108 9.75 × 107

Mean 2.90 × 105 32,434 2.06 × 105 27,681 8.11 × 105 9.37 × 105

Sdv 1.85 × 105 51,439 1.76 × 105 38,973 1.24 × 106 5.89 × 106

Max 8.06 × 105 3.49 × 105 9.53 × 105 2.39 × 105 9.71 × 106 2.68 × 106

Min 49,384 1133.6 20,476 318.8 51,581 94,340

Diameter (µm)

Mean 591.16 170.7 484.01 163.88 886.17 1058.2 32.475 38.052
Sdv 195.87 119.2 203.15 100.48 546.85 362.77 24.754 30.891
Max 1036.5 681.86 1127.3 565.12 3598 1892.4 255 426.57
Min 256.6 30.88 165.23 20.62 262.25 354.66 9.6624 9.6624

Roundness

Mean 0.74 0.43 0.74 0.39 0.77 0.77 0.69 0.71
Sdv 0.087 0.15 0.083 0.1 0.084 0.071 0.096 0.094
Max 1 0.78 1 0.84 1 1 1 1
Min 0.52 0.14 0.52 0.15 0.57 0.58 0.44 0.44

Number of objects 80 119 129 236 137 104 856 1063

Objects/µm2 5.23 × 10−7 8.75 × 10−7 8.43 × 10−7 1.74 × 10−6 3.17 × 10−7 2.35 × 10−7 2.55 × 10−5 3.16 × 10−5

Fraction (%) 15.19 2.84 17.4 4.8 25.77 22.05
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4.4. Morphology of Pores

The images obtained by electron microscopy show the shape and arrangement of the crystals,
the granules and the primary porosity in the ceramic material (Figure 5). However, quantification of
this porosity through image analysis proved to be much more difficult due to the random orientation
of the crystals.

1 

 

 

Figure 5. SEM images showing clay morphology at two different firing temperatures and 4500×
magnification (a) 800 °C and (b) 1000 °C. Composition of perlite and clay at a magnification of 1000×:
(c) 800 °C and (d) 1000 °C. Attapulgite with clay at a magnification of 10000×: (e) 800 °C and (f) 1000 °C.
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The morphological characteristics of the clayey base material show that the filossilicate leaves
are still well defined in the sample fired to 800 °C (Figure 5a). Although the diffraction data showed
that the kaolinite did not withstand the temperature rise and that only part of them were transformed
to muscovite, the shape of the crystals was preserved. When compared to the images of the clayey
material fired at 1000 °C (Figure 5b), there is a softening of the texture, the leaves of the phyllosilicates
are less defined, they began to melt, indicating the decrease of the porosity with the increase of
the temperature.

In the material with pore-forming agents, the matrix exhibits the same behavior of the clay
base material with the heating, except for the generation of the crack porosity shown in Section 4.2.
These absorbents have a much higher primary porosity than the clay base material, but with distinct
characteristics. The perlite granules have a rounded, rough surface that is formed essentially of
glassy material with bubbles, which often overlap. With the heating process, it was observed that the
internal structure of the perlite granules in the sample at 800 °C (Figure 5c) are very similar to those of
the original sample which is expected since perlite starts to melt above temperatures of 900 °C [19].
At 1000 °C (Figure 5d) the internal structure of the perlite is less homogeneous, the size of the bubbles
decreases, the thickness of the edges of the bubbles is larger, part of the bubbles are filled with vitreous
material and smooth portions are formed, evidencing the partial melting of the material.

The attapulgite granules are originally less rounded than the perlite ones, their surface is smoother
with lamellar internal structure. The attapulgite granules in the sample sintered at 800 °C (Figure 5e)
still preserve the lamellar texture, although the paligorskite is not stable anymore at this temperature.
In the sample sintered at 1000 °C (Figure 5f), the internal texture of the attapulgite is predominantly
fine granular, formed by short prisms smaller than 0.5 µm of length. This texture is consistent with the
XRD data showing the predominance of quartz and microcline in attapulgite at the same temperature.

4.5. Pore Quantification

A comparison of pore size distribution (PSD) obtained from MIP and N2 adsorption experiments
for samples sintered at 800 °C and 1000 °C shows a different trend when the pore-forming agents
attapulgite and perlite are incorporated in clay and at two firing temperatures. The BET based
technique was performed using nitrogen as the adsorbate at a bath temperature of 77.3 K. The relation
between pore diameter and pore volume was determinated by the Barrett–Joyner–Halenda (BJH)
method and illustrated in Figure 6a,b. It shows that, compared to other samples, the composition
with attapulgite (CATT) has a microstructure with a greater number of small pores when it is sintered
both at 800 °C and 1000 °C. However, for CLAY and CPER, increasing firing temperature decreases
the number of small pores (Figure 6a,b). The surface area and the monolayer adsorption, originated
from the adsorption isotherm, were calculated using the BET based method. Additionally, total pore
volume and the mean mesopore diameter were estimated by the BJH analysis and all these data are
summarized in Table 2. It can be seen that, clay surface area and total pore volume were increased
when attapulgite and perlite were added to the base material for both firing temperature. Moreover,
the average pore diameter, decreased for all samples when sintering temperature raises. Incorporating
attapulgite and perlite to clay, diminishes the pore diameter value at 800 °C, but at 1000 °C, CPER
exhibits a higher value of pore diameter than the one for clay. [36] found a positive correlation between
pore diameter and pore volume but not with specific surface area for mesoporous silica suggesting
that mesopore networks present different levels of corrugation. In this case, surface area and total pore
volume are positively related counter to pore diameter. MIP results show that the clay base material
has predominantly pores of 100 nm at 800 °C (Figure 6c). Raising firing temperature did not affect
substantially clay pore size but diminished the number of pores of this diameter (Figure 6d). When
perlite is added to clay and fired at 800 °C, the mixed material presents a microstructure with a bimodal
pore distribution where diameters mostly at 10 nm and at 10 µm (Figure 6c). Figure 6d revels that
increasing firing temperature, changes CPER pore distribution with diameters values situate mostly
at 100 nm and in the interval from 1 µm to 100 µm. CATT has a bimodal pore distribution of mainly
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100 nm and 10 µm at 800 °C and still has a bimodal distribution at 1000 °C, with an increment of the
number of these pore groups.

1 

 

 
Figure 6. Pore size distribution from nitrogen adsorption test: (a) samples sintered at 800 °C and
(b) samples sintered at 1000 °C and from mercury intrusion test: (c) samples sintered at 800 °C and
(d) samples sintered at 1000 °C.

Table 2. N2 adsorption measurements for CATT, CPER and CLAY samples at different firing temperatures.

Sample Specific Surface
Area (m2/g)

Total Pore Volume
(cm3/g) Pore Diameter (nm)

CLAY 800 °C 18.3 0.12 5.46
CLAY 1000 °C 7.02 0.05 1.84
CATT 800 °C 29.53 0.16 2.36

CATT 1000 °C 11.94 0.09 1.61
CPER 800 °C 19.1 0.13 3.66
CPER 1000 °C 9.24 0.08 2.42

The smaller pores measured by nitrogen adsorption (BET) were not observed by optical
microscopy and, although some of them have been observed by electron microscopy, it was not
possible to quantify them with the use of this technique. On the other hand, the mercury porosimetry
data can be correlated to the microstructures studied. Samples show distinctly two groups of porosity:
pores in the order of 102 nm and pores of the order of 104 nm. The pores of the first group can be
correlated to porosity found in the three samples (clayey base material, clay with perlite and clay with
attapulgite). The second group refers to the crack porosity, formed during heating process for the
samples with the pore-forming agents, as observed in the optical microscopy images.

At 800 °C, in the sample with attapulgite addition, the first group of pores has a bimodal
distribution, where the pores with smaller diameter are related to attapulgite granules and the pores
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with larger diameter refer to the clayey material of the matrix and are coincident with the peak of the
clayey base material. In the sample with addition of perlite, the opposite occurs because the perlite
porosity is much larger, as shown in Figure 6c,d.

In samples sintered at 1000 °C, there is a reduction of original porosity and the increasing of the
crack porosity both with perlite and attapulgite addition to clay. Although the crack porosity area of
the samples containing attapulgite, observed in the images and measured by Quantikov, is greater
that the one found for the samples with perlite, the Hg porosimetry method shows that the amount
of measured pores is higher in the sample with perlite than for the one with attapulgite. This can
be explained by the shape of these crack porosities: the attapulgite corona-shaped pores are isolated,
whilst the crack porosity of the sample with perlite is interconnected, facilitating the percolation
of fluids.

5. Conclusions

This paper presented a detailed microstructural characterization of a clay material, a clay with
addition of attapulgite and a clay with addition of perlite. Results were obtained for all samples at the
firing temperatures of 800 °C and 1000 °C.

The following conclusions can be extracted from this study:
(a) The observation of the textures of the clay base material by optical and electronic microscopy

showed that there was no generation of crack porosity with the firing temperature. The addition of
attapulgite generated crack porosity in a shape of corona around the particles. Comparing materials
sintered at 800 and at 1000 °C, there is an increase in the area and quantity of these coronas. The coronas
shape, circular but isolated, will act as a closed porosity. In the sample with perlite addition, a crack
porosity was generated in the form of channels, which increased in size and width with the increase of
firing temperature, forming a network with high connectivity.

(b) The mineralogical study through XRD showed that there was variation of phases with the
firing of the material. Attapulgite granules, initially formed by paligorskite, lizardite, muscovite and
quartz are partially amorphized and the remaining minerals re-equilibrate. Paligorskita and lizardite
disappear. At 800 °C there are still muscovite peaks, quartz and enstatite. At 1000 °C, the quartz and
enstatite peaks predominate. Paligorskite is a mineral with high natural porosity and sorption capacity,
hence, its disappearance or rebalancing for other mineral phases leads to a decrease in the primary
porosity of the material. The amorphization observed in the diffraction occurs due the partial melting
of the material, as observed in optical and electronic microscopy. Perlite granules showed evidence of
partial melting and decreased internal porosity when sintered at 1000 °C .

(c) The generation of the crack porosity can be compared with the mercury porosimetry data.
The increased interconnectivity of crack porosity in the samples with perlite at 1000 °C may explain
the increase in pore size showed by the porosimetry test. In the sample with attapulgite, although the
increase in crack porosity at 1000 °C is clearly observed in the pore group of greater size, the measured
porosity is lower compared to one obtained by the addition of perlite at the same temperature. This
behavior is due to the fact that this porosity remains isolated.
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