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MARKED LENGTH SPECTRUM RIGIDITY FOR ANOSOV SURFACES

Let Σ be a smooth closed oriented surface of genus ě 2. We prove that two metrics on Σ with same marked length spectrum and Anosov geodesic flow are isometric via an isometry isotopic to the identity. The proof combines microlocal tools with the geometry of complex curves.

1. Introduction 1.1. Main results. On a smooth closed connected oriented manifold Σ, a metric g is Anosov if its geodesic flow on the unit tangent bundle SΣ satisfies the Anosov property defined in (2.9). While negatively curved metrics are typical examples of Anosov metrics, the set of Anosov metrics is a considerably larger open set compared to that of negatively curved metrics (cf. [START_REF] Eberlein | When is a geodesic flow of Anosov type? I[END_REF]). However, this set is less well understood: for instance it is still unknown whether the set of Anosov surfaces is path-connected or whether any manifold (of dimension ě 4) that admits an Anosov metric also admits a negatively curved metric. Anosov metrics coincide with the C 2 -interior of metrics without conjugate points [START_REF] Oswaldo | On the creation of conjugate points[END_REF], and they can also exist isometrically embedded in R 3 [START_REF] Victor | Anosov geodesic flows for embedded surfaces[END_REF], unlike negatively curved metrics.

On Σ, we shall denote by M Anosov pΣq the set of all Anosov metrics (assuming it is non-empty) and by M Anosov pΣq :" M Anosov pΣq{Diffeo 0 pΣq the moduli space of Anosov metrics, where we denote by Diffeo 0 pΣq the group of diffeomorphisms isotopic to the identity. Let C be the set of free homotopy classes on Σ. This set is countable and in natural correspondence with conjugacy classes of π 1 pΣ, ‹q. It is well-known that for an Anosov metric g there exists a unique closed geodesic γ g pcq in each free homotopy classes c P C. The marked length spectrum is then defined as the map (1.1) L : M Anosov pΣq Ñ p0, 8q C , L g pcq :" g pγ g pcqq, where g pγq denotes the length of the curve γ computed with respect to g. It is conjectured that the marked length spectrum map (1.1) is injective. For negatively curved metrics, this is known as the Burns-Katok conjecture [START_REF] Burns | Manifolds with nonpositive curvature. Ergodic Theory Dynam[END_REF]. The purpose of the present paper is to establish this conjecture when dim Σ " 2, that is, when Σ is a surface.

Theorem 1.1. Let Σ be a smooth closed connected oriented surface. Then the marked length spectrum L : M Anosov pΣq Ñ p0, 8q C is injective. In other words, if g 1 and g 2 are two Anosov metrics on Σ with same marked length spectrum (that is, L g 1 " L g 2 ), then there exists a smooth diffeomorphism φ : Σ Ñ Σ, isotopic to the identity, such that φ ˚g1 " g 2 .

Remark 3.12 below shows that the main theorem also applies to metrics with C 4 -regularity. The theorem can be seen as the closed surface analogue of Pestov and Uhlmann's celebrated boundary rigidity result for simple surfaces [START_REF] Pestov | Two dimensional compact simple Riemannian manifolds are boundary distance rigid[END_REF]. A surface is simple if it has strictly convex boundary, is nontrapping, and has no conjugate points (like the Anosov property, this is a C 2 -open condition in the metric). In this case, there is a unique geodesic joining any two boundary points, similar to the boundary at infinity of the universal cover of an Anosov surface (which is a disk). The boundary rigidity problem seeks to determine the metric (up to an isometry that is identity on the boundary) from the boundary distance function.

Equality of boundary distance functions for two simple metrics induces a conjugacy between their geodesic flows fixing the boundary of the unit tangent bundle. Similarly, equality of marked length spectra for Anosov surfaces induces a conjugacy between their geodesic flows homotopic to the identity (i.e. fixing the boundary at infinity of the universal cover). A potential approach to both problems is to show that the conjugacy is the lift of an isometry (up to an innocuous action of one of the two flows). Croke [START_REF] Christopher | Rigidity for surfaces of nonpositive curvature[END_REF] and Otal [START_REF] Otal | Sur les longueurs des géodésiques d'une métrique à courbure négative dans le disque[END_REF][START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF] used this approach to prove both boundary rigidity and marked length spectrum rigidity for non-positively curved surfaces. In contrast, Pestov and Uhlmann [START_REF] Pestov | Two dimensional compact simple Riemannian manifolds are boundary distance rigid[END_REF] showed that the scattering relation determines the boundary values of holomorphic functions, and relied on the solution of the Calderón problem to prove boundary rigidity for all simple metrics. The problem of marked length spectrum rigidity for Anosov surfaces in the closed setting has remained open until the present work. A posteriori, we will also prove that conjugacies must have the expected form, see Corollary 1.3 below.

Our proof draws inspiration from Pestov-Uhlmann's approach that depends on utilizing "fiberwise holomorphic" smooth invariant functions for the geodesic flow to recover the conformal structure of the surface. However, in the case of closed surfaces, there is no natural Calderón problem connected to the marked length spectrum as in [START_REF] Pestov | Two dimensional compact simple Riemannian manifolds are boundary distance rigid[END_REF], and the smooth invariant functions need to be replaced by suitable singular invariant distributions, which has made it difficult to apply this strategy in our context until now. We take a different route and use the period matrix to recover the conformal structure via the Torelli theorem, see the strategy outline below. We believe that boundary rigidity for simple surfaces in fact follows from Theorem 1.1 in conjunction with the embedding theorem [START_REF] Chen | Riemannian Anosov extension and applications[END_REF]; this will be discussed elsewhere.

As mentioned above, prior to Theorem 1.1, the only known cases of injectivity of the marked length spectrum for closed surfaces were essentially limited to metrics with non-positive curvature ([Cro90, Ota90a] and the subsequent generalization by Croke, Fathi, and Feldman [START_REF] Croke | The marked length-spectrum of a surface of nonpositive curvature[END_REF]). These proofs do not extend to the Anosov setting as they rely crucially on the assumption that the Gauss curvature is non-positive (or that the Morse correspondence preserves angles); thus a new approach is needed to establish Theorem 1.1. For dimensions greater than or equal to three, fewer results exist. Given two Anosov metrics in the same conformal class, Katok's argument in [START_REF] Katok | Four applications of conformal equivalence to geometry and dynamics[END_REF] provides injectivity of the marked length spectrum. Almost all other results require non-positive sectional curvature: Hamenstädt [START_REF] Hamenstädt | Cocycles, symplectic structures and intersection[END_REF] proved the conjecture when one of the two metrics is locally symmetric, relying on the entropy paper of Besson-Courtois-Gallot [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF]. Recently, the first two authors of this paper proved the conjecture in any dimension when the curvature is non-positive [START_REF] Guillarmou | The marked length spectrum of Anosov manifolds[END_REF] and the metrics are assumed to be close. An alternative proof based on the concept of geodesic stretch can be found in [START_REF] Guillarmou | Geodesic stretch, pressure metric and marked length spectrum rigidity[END_REF]. Finally, in the Anosov setting and without requiring curvature assumption, the second author and Cekić proved in [CL21, Corollary 1.4] that the marked length spectrum is locally injective near a generic Anosov metric in any dimension.

As a direct consequence of Theorem 1.1, the proof of [CD04, Theorem 1.1] provides a more general version of Theorem 1.1 related to the minimal filling problem of Gromov, see [START_REF] Christopher | Rigidity theorems in Riemannian geometry[END_REF]Question 6.8] where this is discussed.

Corollary 1.2. Let Σ be a smooth closed connected oriented surface and g 1 , g 2 P M Anosov pΣq. If L g 1 ě L g 2 , then vol g 1 pΣq ě vol g 2 pΣq with equality of volumes if and only if there exists a smooth diffeomorphism φ : Σ Ñ Σ, isotopic to the identity, such that φ ˚g1 " g 2 .

In Corollary 1.2, the volumes of the metrics are computed with respect to the Riemannian measure. Corollary 1.2 follows from the positive Livšic Theorem of Lopes and Thieullen [LT05] and Theorem 1.1, see [START_REF] Croke | Lengths and volumes in Riemannian manifolds[END_REF] for a proof. Finally, Theorem 1.1 also implies a classification result for smooth conjugacies of Anosov geodesic flows over surfaces: Corollary 1.3. Let Σ be a smooth closed connected oriented surface, let g 1 , g 2 P M Anosov pΣq and denote by pϕ g i t q tPR the geodesic flow over the unit tangent bundle SΣ i of pΣ, g i q for i " 1, 2. If φ : SΣ 1 Ñ SΣ 2 is a diffeomorphism such that φ ˝ϕg 1 t " ϕ g 2 t ˝φ, @t P R, then there exists a time t 0 P R and an isometry F : pΣ, g 1 q Ñ pΣ, g 2 q such that φ " ϕ g 2 t 0 ˝F 1 , where F 1 : SΣ 1 Ñ SΣ 2 is defined as F 1 px, vq :" pF pxq, dF x pvqq.

Taking g 1 " g 2 in Corollary 1.3, we thus find that the set of self-conjugacies of an Anosov geodesic flow over a surface is given (after taking the quotient by the flow) by the finite group of isometries of the metric. In the case of non-positively curved surfaces, Corollary 1.3 was first obtained in [START_REF] Christopher | Rigidity for surfaces of nonpositive curvature[END_REF]Theorem B]. In [CFF92, Theorem C] an argument is given that shows that in fact the claim in Corollary 1.3 follows from the marked length spectrum rigidity. The only point to note is that [CFF92, Lemma 4.3] holds for an Anosov metric: indeed, a self-conjugacy isotopic to the identity must map a closed geodesic to itself (since there is a unique closed geodesic in each free homotopy class) and by density of closed orbits and transitivity it must be of the form ϕ t 0 . In dimensions three and higher, finiteness of the group of self-conjugacies (after modding out by the flow itself) is known in some cases such as 1{4-pinched negatively curved manifolds, we refer to [START_REF] Damjanović | Pathology and asymmetry: centralizer rigidity for partially hyperbolic diffeomorphisms[END_REF] for further details.

1.2. Strategy. The proof strategy involves demonstrating that the marked length spectrum L g captures the complex structure of the metric rgs up to biholomorphisms isotopic to the identity, and hence determines the class of the underlying complex structure in Teichmüller space (Proposition 3.10). Once this is established, the injectivity of the marked length spectrum in the same conformal class, as shown by Katok [Kat88], leads to a straightforward proof of Theorem 1.1.

To establish that L g determines the complex structure, we show that it encodes the period matrix of the underlying Riemann surface (Proposition 3.1) and then observe that the argument may be repeated on any finite cover to recover the structure in Teichmüller space. This relies on the fact that given two different points in Teichmüller space, there is a finite cover of the surface where the lifted complex structures are in different orbits of the mapping class group (Lemma 3.11).

To recover the period matrix, we introduce an algebra A `pSΣq of fiberwise holomorphic flow-invariant distributions on SΣ that are distributions invariant under the geodesic flow and have a specific Fourier decomposition in the circle fibers of SΣ (see §2.2.3). Their first Fourier mode corresponds to genuine holomorphic differentials on the Riemann surface. It is worth noting that the existence of such a well-behaved algebra of distributions is a non-trivial fact and relies on advances in tensor tomography on surfaces [START_REF] Gabriel | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF][START_REF] Guillarmou | Invariant distributions and X-ray transform for Anosov flows[END_REF].

Finally, we introduce a generalized intersection number of elements in A `pSΣq with closed geodesics, extending the usual definition of the intersection number for currents à la Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], Otal [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF], and others. This allows for the recovery of integrals of holomorphic 1-forms on closed geodesics, and thus the period matrix, from the conjugacy class of the flow (Lemma 3.8 and Remark 3.9). 1.3. Organization of the paper. The proof of Theorem 1.1 relies on several tools, which we introduce in Section 2. Specifically, §2.1 provides a brief review of the geometry of complex curves, while §2.2 is devoted to the geometry and harmonic analysis of the unit tangent bundle of a surface. In §2.3, we delve into hyperbolic dynamics and tensor tomography. Finally, we present the proof of Theorem 1.1 in Section 3.
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Tools

Complex geometry.

In what follows, Σ is a smooth closed oriented surface of genus ě 2.

2.1.1. General facts. Let g be a smooth Riemannian metric on Σ. The conformal class rgs of g (and the orientation of Σ) induces a complex structure J P C 8 pΣ, EndpT Σqq on Σ, turning it into a Riemann surface which we shall denote by pΣ, Jq.

We denote by T pΣq the Teichmüller space of Σ, that is, the space of complex structures J on Σ modulo the equivalence relation that J " J 1 iff there exists a diffeomorphism ψ : Σ Ñ Σ, isotopic to the identity, such that ψ ˚J " J 1 . Such an equivalence class of complex structures will be denoted by rJs. The mapping class group MCGpΣq is defined as the quotient of orientation preserving diffeomorphisms Diff `pΣq modulo isotopy.

There is a well-defined action of MCGpΣq on T pΣq (by pullback). The quotient space MpΣq :" T pΣq{MCGpΣq is called the moduli space of (complex structures on) Σ. We refer to [START_REF] Farb | A primer on mapping class groups[END_REF] for a general introduction to the mapping class group of closed surfaces.

2.1.2. Period matrix. Jacobian. Let ta i , b j u be a canonical basis of the homology H 1 pΣ, Zq on the surface Σ. Let pΣ, Jq be a Riemann surface structure on Σ and denote by H 0 J pΣ, K m q the space of holomorphic sections of the mth power of the canonical bundle K :" T C Σ 1,0 of pΣ, Jq, for m ě 1. It is well-known that there exists a unique basis tζ i u of holomorphic Abelian differentials in H 0 J pΣ, Kq such that ż

a j ζ k " δ jk ,
see [FK92, Proposition, page 63] for instance. The period matrix of pΣ, Jq is then defined as the matrix ΠpJq whose jk-entry is

ΠpJq jk " ż b j ζ k .
It is a symmetric matrix with positive definite imaginary part. The space of symmetric matrices with positive definite imaginary part and size given by the genus of Σ is called the Siegel upper half-space HpΣq. Hence, we get a well-defined period matrix map Π : T pΣq ÝÑ HpΣq.

We will need the Torelli theorem in the following form:

Theorem 2.1. Assume that Σ has genus ě 2. If ΠpJ 1 q " ΠpJ 2 q, then there exists an orientation-preserving diffeomorphism ψ : Σ Ñ Σ such that ψ ˚J2 " J 1 .

We refer to [FK92, Theorem III.12.3] for a proof. Actually, it can be proved that rψs P MCGpΣq lives in a degree 2 extension of the Torelli group that is, it acts as ˘1 on homology H 1 pΣ, Zq but this will not be needed in what follows.

2.2. Unit tangent bundle of the surface. Let SΣ :" tpx, vq P T Σ | |v| g " 1u be the unit tangent bundle of pΣ, gq and π : SΣ Ñ Σ the projection.

2.2.1. Geometry of SΣ. Let pϕ t q tPR be the geodesic flow on SΣ and X its infinitesimal generator. Let V be the vertical vector field generating the SOp2q-rotation group pR θ q θPr0,2πs in the fibers and let V :" RV . Define H :" ´rX, V s and H :" RH. The vector fields tX, H, V u form an orthonormal basis on SM for the Sasaki metric (the natural lift of g to SΣ). We also define (2.1) η ˘:" 1 2 pX ¯iHq.

These operators are called the raising (`) and lowering (´) operators.

The Liouville 1-form λ P C 8 pSΣ, T ˚pSΣqq is defined by λpXq " 1 and λpHq " λpV q " 0. It is invariant by the geodesic flow, that is, L X λ " 0. Moreover, dλ is a 2-form that is non-degenerate on the contact plane RH ' RV and such that ι X dλ " 0. Hence µ :" ´λ ^dλ is a volume-form, invariant by the geodesic flow, called the Liouville volume form. Equivalently, µ is the Riemannian volume form induced by the Sasaki metric on SΣ. From now on, the L 2 space on SΣ is defined as L 2 pSΣq :" L 2 pSΣ, µq.

We define the 1-forms β, ψ on SΣ by βpHq " 1 " ψpV q and βpXq " βpV q " 0 " ψpXq " ψpHq. It can then be checked that (2.2) dλ " ψ ^β, µ " λ ^β ^ψ.

We set pE 0 q ˚:" Rλ, H ˚:" Rβ and V ˚:" Rψ. We refer to [START_REF] Gabriel | Geodesic flows[END_REF] and [PSU23, Chapter 3] for further details on the geometric structure on SΣ, see also Figure 1 below for a representation of the bundles introduced above.

2.2.2. Powers of the canonical line bundle. We introduce the complex line bundle Ω 1 Ñ Σ whose fiber over x P Σ is given by:

pΩ 1 q x :" tupx, ¨q | u P C 8 pSΣq, V u " iuu .
The line bundle Ω 1 is isomorphic to the canonical line bundle K of the underlying Riemann surface pΣ, Jq, that is, there exists a fiberwise linear map π 1 : K Ñ Ω 1 given for all x P Σ by

π 1 : K x Q f Þ Ñ pS x Σ Q v Þ Ñ f pvqq P pΩ 1 q x .
The powers Ω n :" Ω bn 1 for n P Z, correspond to pΩ n q x " tupx, ¨q | u P C 8 pSΣq, V u " inuu and π n :

K bn x Q f Þ Ñ pS x Σ Q v Þ Ñ f pv, .
.., vqq P pΩ n q x is an isomorphism. For n ě 0 (resp. n ď 0), it can be checked that π n : K bn Ñ Ω n intertwines the operators B and η ´(resp. B and η `), see [PSU14, Lemma 2.1] and the discussion below. Hence, from now on, we will freely identify K bn with Ω n via π n. We denote its adjoint by π n˚( with respect to the natural inner products on K bn and Ω n ). Note that p2πq ´1π n˚π n is the identity on C 8 pSΣ, K bn q and (2.3)

1 2π π n ˚πn˚: L 2 pSΣq Ñ L 2 pSΣq
is the L 2 -orthogonal projection onto the n-th Fourier mode. Any function f P L 2 pSΣq can thus be decomposed as f " ř nPZ f n , where f n :" p2πq ´1π n ˚πn˚f . Define

(2.4) H 0 pΣ, Ω n q :" tu P C 8 pSΣq, V u " inu, η ´u " 0u .

We shall denote by H 0 J pΣ, K bn q the complex vector space of holomorphic differentials of degree n. The subscript J indicates that this is computed with respect to the complex structure J. Observe that by the previous discussion, π n identifies H 0 J pΣ, K bn q with H 0 pΣ, Ω n q for n ě 0. By the Riemann-Roch theorem, the following holds true: Lemma 2.2. As complex vector spaces, the dimensions of ker η ˘|C 8 pΣ,Ωnq are given by the following: ' Kernels of η `: For n ď ´2, dim ker η `" ´p2n `1qpg ´1q; for n " ´1, dim ker η `" g; for n " 0, dim ker η `" 1; for n ě 1, η `is injective. ' Kernels of η ´: For n ě 2, dim ker η ´" p2n ´1qpg ´1q; for n " 1, dim ker η ´" g; for n " 0, dim ker η ´" 1; for n ď ´1, η ´is injective.

We refer to [PSU14, Lemma 2.1] for a proof. We let K :" ' ně0 K bn . Observe that H 0 J pΣ, Kq :" ' ně0 H 0 J pΣ, K bn q is naturally a graded Abelian unital algebra (the constant function 1 Σ is the unit) and that there is a natural algebra homomorphism

H 0 J pΣ, Kq Ñ C 8 pSΣq.
Here, sections of H 0 J pΣ, Kq are understood in the algebraic sense, that is, they correspond to finite sums of holomorphic sections. 2.2.3. Fiberwise holomorphic distributions. Notion of degree. Denote by D 1 pSΣq the space of distributions on SΣ seen as the topological dual of volume forms, that is:

D 1 pSΣq :" pC 8 pSΣ, Λ 3 T ˚SΣqq 1 .
Elements in D 1 pSΣq are "generalized" functions which can be paired intrinsically against smooth volume forms. The wavefront set WFpf q of a distribution f P D 1 pSΣq describes the (co)directions in T ˚pSΣq in which the distribution is irregular, see [H 03, Chapter 8] for a detailed account.

The vector field X acts on D 1 pSΣq by duality, namely, given u P D 1 pSΣq and ω P C 8 pSΣ, Λ 3 T ˚SΣq, pXu, ωq :" ´pu, L X ωq. As for L 2 -functions, any f P D 1 pSΣq can be decomposed as a sum of Fourier modes

(2.5) f " ÿ nPZ f n ,
where f n P D 1 pSΣq satisfies V f n " inf n and f n :" 1 2π π n ˚πn˚f . A distribution (or a function) is said to have finite Fourier degree if the sum (2.5) only contains a finite number of terms. It is said to be fiberwise holomorphic (resp. antiholomorphic) if (2.5) only contains f n terms for n ě 0 (resp. non-positive). Equivalently, defining the Szegö projections S ˘: D 1 pSΣq Ñ D 1 pSΣq by (2.6) S

`˜ÿ nPZ

f n ¸:" ÿ ně0 f n , S ´˜ÿ nPZ f n ¸:" ÿ nď0 f n ,
a distribution f is fiberwise holomorphic iff S `f " f and antiholomorphic iff S ´f " f . A distribution is even (resp. odd ) if its decomposition (2.5) only contains even (resp. odd) terms. The operators η ˘act as raising/lowering operators on the Fourier decomposition (2.5), that is:

η ˘: C 8 pΣ, Ω n q Ñ C 8 pΣ, Ω n˘1 q
is continuous. Hence, the operator X " η ´`η `acts on the decomposition (2.5) as

X ˜ÿ nPZ f n ¸" ÿ nPZ η `fn´1 `η´fn`1 . Let (2.7) A ˘pSΣq :" f P D 1 pSΣq | Xf " 0, S ˘f " f ( ,
be the algebra of flow-invariant fiberwise holomorphic (resp. antiholomorphic) distributions. It can be checked that A ˘pSΣq is indeed an algebra, regardless of the underlying Riemannian geometry of the surface, that is, multiplication is well-defined and continuous with respect to the D 1 pSΣq topology, see [BLP23, Theorem 1.1]. Nevertheless, the algebra property will not be needed in the proof of Theorem 1.1.

Definition 2.3. We define deg : A `pSΣq Ñ Z ě0 and σ : A `pSΣq Ñ H 0 J pΣ, Kq as follows: given f " ř ně0 f n P A `pSΣq, σpf q P H 0 J pΣ, Kq is the first non-zero Fourier mode f n 0 and degpf q :" n 0 .

Similarly, a nonpositive degree map deg : A ´pSΣq Ñ Z ď0 can be defined for fiberwise antiholomorphic invariant distributions. The function deg on A `pSΣq is a valuation map (although, we do not have a field but rather a ring, which is why the valuation takes values in Z ě0 , not Z). We have the obvious properties:

(2.8) degpf `gq ě minpdegpf q, degpgqq, degpf gq " degpf q `degpgq.

In the following, we will denote by A ěn pSΣq the fiberwise holomorphic invariant distributions of degree ě n.

2.3. Hyperbolic dynamics. We now further assume that pΣ, gq is an Anosov metric, that is, the geodesic flow on SΣ is Anosov (or uniformly hyperbolic).

2.3.1. Definition. First properties. Recall that the geodesic flow pϕ t q tPR is Anosov if there exists a flow-invariant continuous splitting

T pSΣq " RX ' E s ' E u
and uniform constants C, λ ą 0 such that (2.9) |dϕ t pwq| ď Ce ´λt |w|, @t ě 0, @w P E s , |dϕ ´tpwq| ď Ce ´λt |w|, @t ě 0, @w P E u .

By [START_REF] Klingenberg | Riemannian manifolds with geodesic flow of Anosov type[END_REF] (see also [START_REF] Mañé | On a theorem of Klingenberg[END_REF] for an alternative proof), the bundles E s and E u are known to intersect the vertical bundle V trivially, that is

(2.10) E s X V " E u X V " t0u.
Moreover, there exists C 2´p SΣq functions r ˘solutions to the Ricatti equations Xr ˘`r 2 ˘`π ˚κ " 0, where κ denotes the Gauss curvature on pΣ, gq, such that

E s " RpH `r´V q, E u " RpH `r`V q.
If κ ă 0, then r ´ă 0 while r `ą 0. We set Y s :" H `r´V , Y u :" H `r`V . Note that the basis tX, Y s , Y u u is positively-oriented.

The dual bundles are defined by pE 0 q ˚pE s ' E u q " 0 " pE s q ˚pE 0 ' E s q " pE u q ˚pE 0 ' E u q, where E 0 :" RX. It can be checked that pE s q ˚(resp. pE u q ˚) satisfies similar estimates (2.9) to E s (resp. E u ) with dϕ t being replaced by dϕ ´J t (inverse transpose). Equation (2.10) becomes in the cotangent bundle (2.11)

pE s q ˚X H ˚" pE u q ˚X H ˚" t0u. H V Y u Y s X C β λ E s E u (E u ) * (E s ) * H H * V V * B Figure 1.
The various subbundles in tangent and cotangent space. Theorem 2.4 (Tensor tomography). Assume that pΣ, gq is Anosov. If Xu " f with f, u P C 8 pSΣq and f has degree n, then u has degree maxpn ´1, 0q, and u " 0 if f has degree 0.

Theorem 2.4 was first proved in negative curvature in [START_REF] Guillemin | Some inverse spectral results for negatively curved 2-manifolds[END_REF] and generalized to the Anosov setting in [START_REF] Dairbekov | Some problems of integral geometry on Anosov manifolds[END_REF] for n " 0, 1, [START_REF] Gabriel | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF] for n " 2, and [START_REF] Guillarmou | Invariant distributions and X-ray transform for Anosov flows[END_REF] for n ě 3. Note that Theorem 2.4 is equivalent to the fact that the X-ray transform operator I g n : C 8 pΣ, S n T ˚Σq Ñ 8 pCq defined by

I g n hpcq :" 1 L g pcq ż Lgpcq 0 h γptq p 9
γptq, ..., 9 γptqq dt is injective when restricted to divergence-free symmetric n-tensors, see [Lef, Chapter 2] for instance. For n " 2, this operator is the linearization (at g) of the marked length spectrum operator g Þ Ñ L g .

Proofs

In this section, we first prove that L g determines the class rJ g s P MpΣq in the moduli space. Note that all the objects defined above (complex structures, stable and unstable bundles, etc.) now depend on the metric g 1 or g 2 and we shall add a subscript to distinguish them. The following is key to Theorem 1.1: Proposition 3.1. Let g 1 , g 2 be two smooth Anosov metrics on Σ. If L g 1 " L g 2 then rJ 1 s " rJ 2 s in MpΣq. Equivalently, there exists an orientationpreserving diffeomorphism ψ : Σ Ñ Σ such that ψ ˚J2 " J 1 and ψ ˚g2 " e 2f g 1 for some f P C 8 pΣq.

This should be compared with the case of a surface with boundary, see [START_REF] Pestov | Two dimensional compact simple Riemannian manifolds are boundary distance rigid[END_REF][START_REF] Guillarmou | Lens rigidity for manifolds with hyperbolic trapped sets[END_REF]. The proof of Proposition 3.1 is the content of §3.1 and §3.2. We then prove in Proposition 3.10 that we can recover from L g the class rJ g s P T pΣq in Teichmüller space, and then the conformal factor of the metric (the latter is a standard argument due to Katok [START_REF] Katok | Four applications of conformal equivalence to geometry and dynamics[END_REF]).

3.1. The algebra isomorphism. Consider an algebra homomorphism Φ : A `pSΣ 1 q ÝÑ A `pSΣ 2 q with A `pSΣ i q defined by (2.7). We say that it is proper if Φp1 SΣ 1 q " 1 SΣ 2 (the constants are mapped to the constants) and if, when f P A `pSΣ 1 q and degpf q ě 1, then degpΦpf qq ě 1. Equivalently, Φ : A ě1 pSΣ 1 q ÝÑ A ě1 pSΣ 2 q is a homomorphism. This definition also naturally extends for algebra homomorphisms Φ : A `pSΣ 1 q ÝÑ A ´pSΣ 2 q (in which case deg ě 1 is mapped isomorphically to deg ď ´1).

There is a natural identification of SΣ 1 with SΣ 2 by simply scaling the fibers via the map

s : SΣ 1 ÝÑ SΣ 2 , v Þ Ñ v{|v| g 2 .
The following holds:

Proposition 3.2. Assume that L g 1 " L g 2 . Then there exists a smooth diffeomorphism φ : SΣ 2 Ñ SΣ 1 such that: (i) φ ˝ϕg 2 t " ϕ g 1 t ˝φ, for all t P R, (ii) s ˝φ : SΣ 2 Ñ SΣ 2 is isotopic to the identity, (iii) φ induces a proper algebra isomorphism: φ ˚: A `pSΣ 1 q ÝÑ A ˘pSΣ 2 q, by pullback of distributions.

At this stage, it is not yet clear that φ ˚maps fiberwise holomorphic invariant distributions of the first metric to those of the second, and it could happen that φ ˚interchanges fibrewise holomorphic with antiholomorphic. We will refer to these cases as the p˘q cases.

Remark 3.3. Actually, one can show that if g 1 and g 2 are connected by a path of metrics that are all Anosov, then φ ˚: A `pSΣ 1 q ÝÑ A `pSΣ 2 q preserves fiberwise holomorphic invariant distributions. This is based on the fact that weak unstable leaves admit a natural orientation and that such a φ would have to preserve this orientation. However, path-connectedness on the space of Anosov metrics on surfaces is an open question. Note that for negatively curved metrics, path-connectedness follows from the uniformization theorem and a straightforward computation (together with the fact that Teichmüller space is path-connected).

We introduce C Ă tpv, ξq P T ˚pSΣq | ξpXpvqq " 0u, the closed cone enclosed by pE s q ˚and pE u q ˚in the half-space tξpV pvqq ě 0u, see Figure 1 for a description. Lemma 3.4. Let f P A ˘pSΣq. Then WFpf q Ă ˘C and π n˚f P C 8 pΣ, K bn q for all n P Z.

Proof. We only treat the p`q case as the p´q one is similar. Observe that f P A `pSΣq is fiberwise holomorphic, i.e. S `f " f so (3.1)

WFpf q " WFpS `f q Ă tpv, ξq P T ˚pSΣq | ξpV pvqq ě 0u , by using the wavefront set description of the Schwartz kernel of S `, see [Gui17a, Lemma 3.10]. Moreover, Xf " 0 so by elliptic regularity one has WFpf q Ă tpv, ξq P T ˚pSΣq | ξpXpvqq " 0u , while by standard propagation of singularities (see [Hör09, Theorem 26.1.1]) WFpf q is invariant by the symplectic lift of pϕ t q tPR . But the maximal flowinvariant subset of T ˚pSΣq contained in tξpV pvqq ě 0, ξpXpvqq " 0u is C, so this proves the claim. Finally, π n˚f P C 8 pΣ, K bn q as the pushforward operator π n˚o nly selects the wavefront set of f in pE 0 q ˚' H ˚(see [START_REF] Friedlander | Introduction to the theory of distributions[END_REF]Proposition 11.3.3] for instance) which is empty as C XpE 0 q ˚'H ˚" t0u.

We now prove Proposition 3.2.

Proof of Proposition 3.2. Two Anosov geodesic flows are orbit equivalent via a Hölder homeomorphism isotopic to the identity (see [START_REF] Ghys | Flots d'Anosov sur les 3-variétés fibrées en cercle[END_REF][START_REF] Gromov | Three remarks on geodesic dynamics and fundamental group[END_REF] and [GKL22, Lemma B.1]). The equality of the marked length spectra L g 1 " L g 2 and the Livšic theorem imply that such orbit equivalence can be upgraded to a conjugacy φ. Moreover, such a conjugacy is necessarily smooth for threedimensional contact Anosov flows: the C 1 -regularity follows from [START_REF] Feldman | Semirigidity of horocycle flows over compact surfaces of variable negative curvature[END_REF] and the C 8 regularity from [START_REF] De | Invariants for smooth conjugacy of hyperbolic dynamical systems[END_REF] (see also [START_REF] Gogolev | Smooth rigidity for 3dimensional volume preserving Anosov flows and weighted marked length spectrum rigidity[END_REF] for a more general smoothness result on conjugacies of three-dimensional volume preserving Anosov flows).

As φ maps E s 2 (resp. E u 2 ) to E s 1 (resp. E u 1 ), we get that ker dλ 2 " E s 2 ' E u 2 is mapped by φ to ker dλ 1 . Hence, φ ˚λ1 " λ 2 and φ ˚p´λ 1 ^dλ 1 q " ´λ2 ^dλ 2 , that is, φ preserves the Liouville volume form hence the orientation. As φ preserves the orientation, Σ is connected, and dφ J pλ 1 q " λ 2 , we deduce that C 1 :" dφ J pC 1 q " ˘C2 . Indeed, since dφ J maps connected sets to connected sets, pE u 1 q ˚to pE u 2 q ˚and pE s 1 q ˚to pE s 2 q ˚, dφ J pC 1 q must be one of the 4 cones in the right Figure 1 (inside the subspace tξpX 2 pvqq " 0u). Now, if C 1 were mapped by φ to one of the other two cones on Figure 1, φ would reverse the orientation, which is absurd.

We now claim that if C 1 " `C2 , then φ ˚: A `pSΣ 1 q Ñ A `pSΣ 2 q is a proper algebra homomorphism, while if C 1 " ´C2 , then φ ˚: A `pSΣ 1 q Ñ A ´pSΣ 2 q is a proper algebra homomorphism. Let f P A `pSΣ 1 q and define f 1 :" φ ˚f P D 1 pSΣ 2 q. By Lemma 3.4, the wavefront set of f is contained in C 1 so the wavefront set of f 1 is contained in the cone C 1 " dφ J pC 1 q " ˘C2 .

The proof being similar in the p´q case, we will now assume that C 1 " `C2 . Then S ´f 1 P C 8 pSΣ 2 q and, since X 2 f 1 " φ ˚pX 1 f q " 0, we also have that X 2 pS ´f 1 q " η `f 1 0 `η`f 1 ´1. By the tensor tomography Theorem 2.4, we deduce that S ´f 1 is of degree 0. Hence f 1 is fiberwise holomorphic. It then remains to show that φ ˚: A `pSΣ 1 q ÝÑ A `pSΣ 2 q is an algebra isomorphism but this is straightforward as it admits an inverse pφ ´1q ˚(and the product property is obviously satisfied). We now show that φ ˚is proper. Obviously, φ ˚p1 SΣ 1 q " 1 SΣ 2 . Now, assume that f P A `pSΣ 1 q has degpf q ě 1 and consider f 1 :" φ ˚f . The term of degree 0 of f 1 " ř kě0 f 1 k is a constant which can be computed as follows:

f 1 0 ˆvolpSΣ 2 q " ż SΣ 2 f 1 µ 2 " ż SΣ 2 φ ˚pf µ 1 q " ż SΣ 1 f µ 1 " f 0 ˆvolpSΣ 1 q " 0.
This proves the claim. The p´q case is treated similarly.

3.2. Extension operator. Period preservation. The aim of this paragraph is to show that, in some sense, the algebra isomorphism φ ˚maps holomorphic differentials of the first surface to the second, and that it preserves periods. We first claim that the map

(3.2) π 1˚: A ě1 pSΣq ÝÑ H J pΣ, Kq
is well-defined. Indeed, a fiberwise holomorphic invariant distribution f P A ě1 pSΣq satisfies Xf " 0 so its first Fourier mode f 1 satisfies η ´f1 " 0 which, in turn, is equivalent to Bπ 1˚f " 0 by §2.2.2.

A key input that we now use is that the map (3.2) is known to be surjective by [START_REF] Gabriel | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF]Theorem 1.5]. This allows to define a right-inverse e 1 such that e 1 : H 0 J pΣ, Kq ÝÑ A ě1 pSΣq, π 1˚˝e1 " 1 H 0 J pΣ,Kq , which we call the extension operator. Remark 3.5. A similar right-inverse e ´1 can also be defined for π ´1˚: A ď´1 pSΣq ÝÑ H J pΣ, K ´1q. More generally, using the spectral theory of Anosov flows, it was proved in [Gui17a, Corollary 3.8] that the map π n˚: A ěn pSΣq ÝÑ H J pΣ, K n q is surjective for all n ě 0 (along with other more general results on the existence of flow-invariant distributions with prescribed n-th Fourier mode). However, this will not be needed in the rest of the paper.

Let

F : H 0 J 1 pΣ, Kq ÝÑ H 0 ˘J2 pΣ, Kq be the map defined by one of the two following commutative diagrams: (i) In the p`q case,

A ě1 pSΣ 1 q φ ˚/ / A ě1 pSΣ 2 q π 1˚ H 0 J 1 pΣ, Kq e 1 O O F / / H 0 J 2 pΣ, Kq (ii 
) In the p´q case,

A ě1 pSΣ 1 q φ ˚/ / A ď´1 pSΣ 2 q π ´1˚ H 0 J 1 pΣ, Kq e 1 O O F / / H 0 ´J2 pΣ, Kq
Note that, in the p´q case, if f P A ´pSΣ 2 q, then π ´1˚f P C 8 pΣ, K ´1 J 2 q is a p0, 1q-form for the complex structure J 2 satisfying B J 2 f " 0, and it can be naturally identified with a p1, 0q-form f P C 8 pΣ, K ´J2 q for the complex structure ´J2 satisfying B´J 2 f " 0.

The following result unlocks Theorem 1.1:

Proposition 3.6. The map

F : H 0 J 1 pΣ, Kq ÝÑ H 0 ˘J2 pΣ, Kq is a period-preserving C-linear isomorphism in the following sense: for all rγs P H 1 pΣ, Zq, ω P H 0 J 1 pΣ, Kq, (3.3) ż rγs ω " ż rγs F ω. 
That F is an isomorphism follows immediately from the period preservation (3.3). Hence, the only non-trivial part of Proposition 3.6 is (3.3). Here and below, given a homology class rγs P H 1 pΣ, Zq, we shall denote by γ g i a closed oriented geodesic (for the metric g i , i " 1, 2) representing rγs, and γ, when no preferred metric is chosen. We then set S 1 γ " π ´1pγq Ă SΣ to be the circle bundle over γ. If r0, g pγqs Q τ Þ Ñ γpτ q is an arc-length parametrization of γ, we can parametrize S 1 γ by coordinates pτ, θq P R{p g pγqZq ˆR{p2πZq such that: S 1 γ " tpγpτ q, R θ 9 γpτ qq | τ P r0, g pγqs, θ P r0, 2πsu

where R θ denotes rotation by angle θ in SΣ. Note that the tangent space of S 1 γ at the point pτ, θq is spanned by ppcos θqX `psin θqH, V q. We then endow S 1 γ with the orientation given by pcos θ λ `sin θ βq ^ψ. From now on, S 1 γ will always denote the oriented submanifold of SΣ with orientation given by the 2-form above. The following holds:

Lemma 3.7. In the coordinate system pτ, θq, dλ " sin θ dθ ^dτ .

Note that for θ P p0, πq, this is a negative multiple of the 2-form defining the orientation on S 1 γ.

Proof. This follows from (2.2), see also [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF]p. 156].

We next derive the following remarkable formula: Lemma 3.8. Let f P A ˘pSΣq and γ be a closed oriented geodesic. Then the pairing pS 1 γ, f dλq is well-defined and

(3.4) ˘2i ż S 1 γ f dλ " ż rγs π ˘1˚f ,
where rγs P H 1 pΣ, Zq denotes the homology class of the geodesic γ.

Actually, if f P C 8 pSΣq (or if f is merely a distribution but the pairing with S 1 γ makes sense), we will prove the formula

(3.5) i π ż S 1 γ f dλ " ż g pγq 0 f 1 pγpτ q, 9 γpτ qqdτ ´ż g pγq 0 f ´1pγpτ q, 9 γpτ qqdτ,
where τ Þ Ñ γpτ q is an arc-length parametrization of the geodesic. It then suffices to observe that (3.4) is a mere rewriting of (3.5) since for f P A ˘pSΣq, π ˘1˚f is an (anti-)holomorphic differential (and the factor 2π comes from (2.3)).

Remark 3.9 (Generalized intersection number). The pairing pS 1 γ, f dλq should be thought of as a generalized intersection number, following the terminology used by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], Otal [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF] and others. The difference is that we allow f to be any fiberwise holomorphic invariant distribution in A `pSΣq whereas, in some sense, the aforementioned authors only allowed f to be a constant, which is a (very) particular case of a fiberwise holomorphic distribution. Moreover, we integrate over the full circle bundle S 1 γ whereas these authors integrate over S 1 γ `, that is, for angles θ P p0, πq. The usual intersection number of the Liouville current η (that is, the Liouville form modded out by the flow direction in the universal cover) with the geodesic γ is commonly denoted by ιpη, γq and is equal to 2 g pγq (or g pγq, depending on the convention). It simply corresponds for us to pS 1 γ `, dλq.

Proof of Lemma 3.8. By the wavefront set calculus (see [H 03, Corollary 8.2.7] for instance), the pairing pS 1 γ, f dλq is well-defined as long as

(3.6) N ˚pS 1 γq X WFpf dλq " H.
Now, the conormal N ˚pS 1 γq to S 1 γ is a line contained in pE 0 q ˚' H ˚and by Lemma 3.4 and (2.11), the intersection (3.6) is indeed empty. Hence, the pairing pS 1 γ, f dλq is well-defined and extends the pairing computed for f P C 8 pSΣq. As a consequence, it suffices to establish (3.5) for smooth functions and (3.4) then follows immediately. Now, if f P C 8 pSΣq, we can decompose f in Fourier modes along S 1 γ and write (3.7) f pτ, θq " ÿ kPZ a k pτ qe ikθ .

Then, using (3.7) and sin θ " p2iq ´1pe iθ ´e´iθ q, we get: Note that the minus on the first line comes from the fact that dλ is a negative multiple of the 2-form defining the orientation on S 1 γ. The previous equality corresponds exactly to (3.5).

If ω P H 0 J pΣ, Kq, rγs P H 1 pΣ, Zq and γ is any closed geodesic representative for the metric g whose homology class is rγs, Lemma 3.8 yields

(3.8) 2i ż S 1 γ e 1 ω dλ " ż rγs ω.
We can now complete the proof of Proposition 3.6.

Proof of Proposition 3.6. We first treat the p`q case. Let rγs P H 1 pΣ, Zq and let γ g 1 pcq, γ g 2 pcq be two geodesic representatives for rγs (with respect to g 1 and g 2 ) in the same free homotopy class c P C. Since φ is isotopic to the identity by Proposition 3.2, we get that rφpS 1 γ g 2 pcqqs " rS 1 γ g 1 pcqs in H 2 pSΣ 1 , Zq.

We also claim that the pairing pφpS 1 γ g 2 pcqq, e 1 ω dλ 1 q is well-defined, similarly to Lemma 3.8. Indeed, the tangent space to S 1 γ g 2 pcq does not intersect the closed cone B 2 Ă tpv, wq P T pSΣ 2 q | λ 2 pwq " 0u enclosed by E s 2 and E u 2 , and containing H 2 , see Figure 1. Since φ preserves the orientation, following the same arguments as in Proposition 3.2, the tangent space to φpS 1 γ g 2 pcqq is also a 2-plane avoiding the closed cone B 1 and thus its conormal avoids the closed cone C 1 which contains WFpe 1 ω dλ 1 q by Lemma 3.4, so the pairing is well-defined.

Moreover, given a fiberwise holomorphic invariant distribution f P A `pSΣ 1 q, observe that f dλ is a closed 2-form. We claim that ż

S 1 γg 1 pcq e 1 ω dλ 1 " ż φpS 1 γg 2 pcqq e 1 ω dλ 1 .
Indeed, choose the harmonic representative α P H 2 pSΣ 1 q of f dλ that is, such that rαs " rf dλs in H 2 pSΣ 1 , Cq. By the Hodge decomposition Theorem, we have α " f dλ `du, where u P D 1 pSΣ 1 q and WFpuq " WFpf q. Hence, both pairings pS 1 γ g 1 pcq, duq and pφpS 1 γ g 2 pcqq, duq are well-defined by the wavefront set calculus (same arguments as for f dλ) and equal to 0 since du is exact.

Then, we get:

ż S 1 γg 1 pcq e 1 ω dλ 1 " ż S 1 γg 1 pcq α " ż φpS 1 γg 2 pcqq α " ż φpS 1 γg 2 pcqq e 1 ω dλ 1 ,
where the second equality simply follows from the fact that α is harmonic and rS 1 γ g 1 pcqs " rφpS 1 γ g 2 pcqqs in H 2 pSΣ 1 , Zq.

As a consequence, given ω P H 0 J 1 pΣ 1 , Kq we get by (3.8) and the discussion above that ż

rγs ω " 2i ż S 1 γg 1 pcq e 1 ω dλ 1 " 2i ż φpS 1 γg 2 pcqq e 1 ω dλ 1 " 2i ż S 1 γg 2 pcq φ ˚pe 1 ω dλ 1 q " 2i ż S 1 γg 2 pcq φ ˚pe 1 ωq dλ 2 " ż rγs π 1˚φ ˚pe 1 ωq " ż rγs F ω.
This concludes the proof in the p`q case. In the p´q case, it should be observed that φ actually flips the orientation of rS 1 γg 2 pcqs, that is rφpS 1 γg 2 pcqqs " ´rS 1 γ g 1 pcqs in H 2 pSΣ 1 , Zq, which gives: We can now conclude the proof of Proposition 3.1.

ż rγs ω " 2i ż S 1 γg 1 pcq e 1 ω dλ 1 " ´2i ż φpS 1 γg 2 pcqq e 1 ω dλ 1 " ´2i ż S 1 γg 2 pcq φ ˚pe 1 ω dλ 1 q " ´2i
Proof of Proposition 3.1. If L g 1 " L g 2 , we get by the above results that F : H 0 J 1 pΣ, Kq ÝÑ H 0 ˘J2 pΣ, Kq is a period-preserving C-linear complex isomorphism. Hence, by the Torelli Theorem 2.1, we get that pΣ, J 1 q and pΣ, ˘J2 q have same period matrix, so they are biholomorphic and differ in the Teichmüller space by an element rψs P MCGpΣq. Note that in the p´q case, rψs would reverse the orientation which is absurd as rψs P MCGpΣq, hence only the p`q case survives which is the content of Proposition 3.1.

3.3.

End of the proof. We now prove that L g determines the class of rJ g s P T pΣq in the Teichmüller space of Σ. Proposition 3.10. Let g 1 , g 2 be two smooth Anosov metrics. If L g 1 " L g 2 then rJ g 1 s " rJ g 2 s in T pΣq. Equivalently, there exists a diffeomorphism ψ : Σ Ñ Σ isotopic to the identity such that ψ ˚g2 " e 2f g 1 for some f P C 8 pΣq. Proposition 3.10 will follow from Proposition 3.1 and the following: Lemma 3.11. Let J 1 and J 2 be two complex structures on Σ compatible with orientation such that rJ 1 s ‰ rJ 2 s in T pΣq. Then, there exists a finite cover Σ 1 Ñ Σ such that the lifts rJ 1 1 s, rJ 1 2 s P T pΣ 1 q are not in the same MCGpΣ 1 qorbit.

Let us first derive Proposition 3.10 from that.

Proof of Proposition 3.10. If L g 1 " L g 2 on Σ, then the same equality L g 1 1 " L g 1 2 holds on any finite cover Σ 1 Ñ Σ. Thus, the desired conclusion follows by combining directly Proposition 3.1 with Lemma 3.11.

The proof of Lemma 3.11 was kindly explained to us by M. Wolff.

Proof of Lemma 3.11. In order to simplify notation, given a free homotopy class c P C we write g pcq for the length of the unique g-geodesic in the free homotopy class c. We use the identification of Teichmüller space T pΣq with marked hyperbolic structures on Σ. Let rh 1 s, rh 2 s P T pΣq be the (distinct) hyperbolic structures given by J 1 and J 2 . Let α P CpΣq be a free homotopy class of simple closed curves on Σ such that h 1 pαq ‰ h 2 pαq. Note that such a class always exists otherwise we would have rh 1 s " rh 2 s by the 9g ´9 Theorem (see [START_REF] Farb | A primer on mapping class groups[END_REF]Theorem 10.7]).

We then consider a finite cover Σ 1 Ñ Σ which unfolds every simple closed curve, except α. More precisely, for K ą 0 fixed, we consider a finite cover π : Σ 1 Ñ Σ such that the following holds: denoting by h 1 1 , h 1 2 the lifts of h 1 , h 2 , there exists a free homotopy class of simple closed curves α 1 P CpΣ 1 q on Σ 1 such that π : γ h 1 1 pα 1 q Ñ γ h 1 pαq is 1-to-1, and for every free homotopy class of simple closed curves β P CpΣ 1 q such that β ‰ α 1 , h 1 1 pβq ą K (see [ABMP22, Appendix A, Theorem C] for the existence of such a covering). In particular, choosing K ą 0 such that K ą h 1 pαq, we can guarantee that γ h 1 1 pα 1 q is the systole of pΣ 1 , h 1 1 q with length h 1 pαq. Now, as Σ is compact, there exists a constant C ą 1 such that for all c P C (not necessarily simple), 1{C ď h 1 pcq h 2 pcq ď C.

We fix K ą 0 in the construction above such that K{C ą maxp h 1 pαq, h 2 pαqq. We claim that γ h 1 2 pα 1 q is also the systole of pΣ 1 , h 1 2 q with length h 2 pαq. Indeed, observe first that π : γ h 1 2 pα 1 q Ñ γ h 2 pαq is also 1-to-1 (so h 1 2 pα 1 q " h 2 pαq), and for every free homotopy class of simple closed curves β P CpΣ 1 q, β ‰ α 1 , one has:

h 1 2 pβq " h 1 1 pβq ¨ h 1 2 pβq h 1 1 pβq " h 1 1 pβq ¨
h 2 pπpβqq h 1 pπpβqq ą K{C ą maxp h 1 pαq, h 2 pαqq ě h 1 2 pα 1 q. As a consequence, the systoles of pΣ 1 , h 1 1 q and pΣ 1 , h 1 2 q have different lengths, so rh 1 1 s and rh 1 2 s are not in the same MCGpΣ 1 q-orbit. Finally, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. If L g 1 " L g 2 , Proposition 3.10 yields that there exists ψ : Σ Ñ Σ isotopic to the identity such that ψ ˚g1 " e 2f g 2 . But then, applying Katok's argument [START_REF] Katok | Four applications of conformal equivalence to geometry and dynamics[END_REF] for conformal metrics with same marked length spectrum, we get that f " 0. This concludes the proof.

We conclude with a remark on Theorem 1.1 for metrics with low regularity: Remark 3.12. Theorem 1.1 still holds for metrics with C 4 -regularity. Indeed, if g 1 and g 2 are C k -regular, the unit tangent bundles SΣ 1,2 are also C kregular and the geodesic vector fields X 1,2 are C k´1 . The conjugacy φ in Proposition 3.2 is then C k´1 by [GR22, Theorem 1.1, item 1]. By [PSU14, Theorem 5.5], the right-inverse e 1 defined in §3.2 can be constructed with values in H ´1pSΣq flow-invariant distributions, and the proof of [PSU14, Theorem 5.5], based on the Pestov identity, applies with metrics which are only C 2 -regular.

In order to prove that φ ˚maps A `pSΣ 1 q to A ˘pSΣ 2 q in Proposition 3.2, one can use the notion of H s wave-front set WF s of distributions (for s ě ´1) in the Sobolev space H ´1pSΣ 1,2 q, see [Hör97, Section 8.2] for a definition. Indeed, the action by pullback by φ ˚of distributions in H ´1pSΣ 1 q is welldefined and maps to distributions with regularity H ´1pSΣ 2 q if φ is at least C 2 , using that C 2 embeds into H 1 , the dual of H ´1. For u P H ´1pSΣ 1 q, the pull-back φ ˚u P H ´1pSΣ 2 q is such that dφ J sends WF s puq to WF s pφ ˚uq if φ is C k´1 and ´1 ď s ď k ´2. The tensor tomography result of Theorem 2.4 applies to functions and 1-forms in H 2 (and for C 2 -regular metrics in order to apply [PSU14, Theorem 5.5] based on the Pestov identity). Hence, we need to work with the WF s puq wave-front set with s ě 2 and this forces k ě s `2 ě 4.

Finally, in the pairing formula of Lemma 3.8, S 1 γ is C k´1 (since γ Ă SΣ is itself C k´1 as an integral curve of the C k´1 -vector field X), and the restriction of an H ´1pSΣq distribution to S 1 γ is H ´1´1{2´ε -regular (for every ε ą 0); moreover, the contact form λ is C k´1 , thus dλ is C k´2 . The pairing pS 1 γ, f dλq is then well-defined as long as k ´2 ą 1 `1{2 `ε, that is k ě 4. The end of the proof goes through as in the smooth case. Overall, one can run the arguments with C 4 -regular metrics.

  2.3.2. Tensor tomography. The tensor tomography problem consists in studying the transport equation Xu " f , where u, f P C 8 pSΣq are smooth, f has finite Fourier degree equal to n, and showing that u has finite Fourier degree bounded by maxpn ´1, 0q.

żS 1

 1 γg 2 pcq φ ˚pe 1 ωq dλ 2 "