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Abstract: Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microor-
ganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein
using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the
intracellular pigments, and ultimately their purification using column chromatography. The results
show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane
mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable,
then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally
80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by
thin-layer chromatography and nuclear magnetic resonance.

Keywords: Yarrowia lipolytica; pigment; violacein; deoxyviolacein; fermentation; purification;
column chromatography

1. Introduction

Microbial dyes and pigments have gained momentum during the last decade due
to the detrimental effects of synthetic dyes and consumers’ aversion to their consump-
tion [1]. As such, biosynthetic pigments, microbial or otherwise, have rightly benefited
from increased interest [2], which has further fueled active research in genetic engineering,
fermentation, and extraction technologies. Unlike the process that enables the synthesis
of their synthetic counterparts, the process of producing microbial pigments as secondary
metabolites has less direct negative impact on the environment, as it limits the industry’s
dependence on petroleum extraction. In addition to aesthetic coloring properties that
change the color of textiles and other surfaces, microbial dyes and pigments often possess
functional antioxidant, or antitumor, and antimicrobial properties [3]. The latter of these
properties could very well be exploited in efforts to create functional clothing (e.g., medical
gowns). However, despite their interesting range of properties, certain natural dyes can be
hazardous to human health and therefore need to be thoroughly researched before use [4].
Violacein is a bis-indole pigment synthesized as a secondary metabolite by a number
of bacterial species, the most notable of which are Janthinobacterium violaceum, Duganella
violaceinigra, and Chromobacterium violaceum [5–8]. Research suggests that violacein has
a wide range of properties, with current literature suggesting it has reasonable efficacy
as an antifungal [9,10], antitumoral [11], antipyretic [12], and antiviral agent [13]. Other
research also suggests that it may have immunomodulatory properties [14] as well as sup-
pressive and inhibitory activity against Staphylococcus aureus and other multidrug-resistant
pathogens [15,16].
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In microorganisms naturally capable of producing violacein, the pigment is produced
by the enzymatic oxidation and condensation of two L-tryptophan molecules through the
action of five enzymes, encoded by the genes VioA, VioB, VioC, VioD, and VioE [17]. This
pathway also leads to the synthesis of deoxyviolacein, which, according to the available
literature, seems always to accompany the synthesis of violacein, with the latter being the
dominant component [18]. What is referred to in the literature as crude violacein is a mixed
pigment output composed of violacein, deoxyviolacein, and derivatives from the same
pathway. This metabolic pathway is well characterized; therefore, various heterologous
production chassis have been considered for the safe and effective production of violacein.
Most previous research seems to focus on conventional model organisms, with Escherichia
coli at the center [19–21]. To a lesser extent, the nonconventional yeast Yarrowia lipolytica
has been used for such production [22,23]. Y. lipolytica, a GRAS oleaginous yeast, is a
versatile production chassis whose potential in this application among myriad others is
bolstered by the availability of a large panoply of genetic toolkits enabling its genetic
manipulation. To date, Y. lipolytica has been successfully modified to synthesize a wide
range of fatty acids [24,25] and flavonoids, among other molecules of interest, which it
produces as secondary metabolites [26,27]. Another unique feature of this microorganism
is its ability to utilize numerous carbon sources including dextrose and glycerol. It has also
been successfully modified to utilize and thus valorize a wide range of industrial wastes
and effluents [28,29].

The production of violacein has been carried out on a small scale, although a number of
studies have described the production of violacein at relatively larger bioreactor scales using
conventional model organisms [20], Janthinobacterium lividum [30], Citrobacter freundii [18],
and novel violacein-producing bacterial species isolated from diverse environments [31].
The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein
using a genetically modified Y. lipolytica strain as a production chassis, the subsequent
extraction of the intracellular pigments, and ultimately their purification using column
chromatography. This study is the first describing the optimization of solvents used for the
separation of violacein and deoxyviolacein.

2. Results and Discussion
2.1. Pigment Recovery

The pigments were recovered after fermentation in 96% ethanol, using a double-jacket
vessel. The total mass of crude violacein produced by the Y. lipolytica within a 168-h was
300 mg, which represents 2% of the total weight of the recovered biomass. The extraction
yield was evaluated by periodic sampling and quantification of the violacein. Ninety-two
percent of the total amount of pigment was extracted in the first 8 min of the first extraction
(Figure 1), with the modest remainder of the violacein extracted in the second extraction.
In fact, the overall viscosity and relative cohesion of the biomass resulted in a slower
dispersion of the cells into smaller clumps with a greater biomass/solvent contact surface.

After analyzing the pigment extract by HPTLC we found that the pigment-rich sol-
vent resulting from the first extraction was mainly composed of deoxyviolacein, which
accounted for 61.7% v/v of the pigment load. The result of the second extraction contained
more violacein than deoxyviolacein, with violacein accounting for 55.7% of the total pig-
ment load. The pigment load of the third extraction consisted exclusively of violacein. The
1:1:1 mixture contained approximately 50% violacein and 50% deoxyviolacein. The results of
the first extraction do not agree with those reported in the literature, where crude violacein is
composed mainly of violacein compared to deoxyviolacein [32]. The variance in the propor-
tions of violacein/deoxyviolacein between the solvents resulting from all three extractions
could indicate that deoxyviolacein has a greater affinity for ethanol than does violacein.

2.2. Optimization of Solvent Composition for Pigment Separation

In order to select the appropriate solvent for the separation of violacein and deoxy-
violacein, several mixtures of organic solvents were evaluated, including cyclohexane,
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ethanol, methanol, ethyl acetate, and acetonitrile, with or without the addition of triethy-
lamine. The best compromise was obtained with a mixture of cyclohexane and ethyl acetate,
of which different compositions were tested. The results of the TLC migration assays are
summarized in Figure 2. Solvent “G” showed an adequate capacity to separate both pig-
ments without causing significant trailing and thus pigment mixing as observed with
solvent “H”. Solvent “D” appeared to elute mainly deoxyviolacein, the less polar pigment, as
evidenced by the migrating purple spot and the static blue spot. Therefore, alternating be-
tween solvents “D” and “G”, ethyl acetate/cyclohexane, (40:60) and ethyl acetate/cyclohexane
(65:35), respectively, was considered as part of the purification protocol.
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Figure 2. Determination of optimal solvent ratio for violacein/deoxyviolacein separation. Thin layer
chromatography assays to evaluate the efficacy of the solvent mixtures considered. The sequence of
pigment deposits, from left to right, is as follows: Extraction 1 (E1), Extraction 2 (E2), Extraction 3
(E3), 1:1:1 mixture. (A–H) correspond to the solvents’ ethyl acetate/cyclohexane ratio of 10:90, 20:80,
30:70, 40:60, 50:50, 60:40, 65:35, and 80:20, respectively.

By comparing different solvent compositions, it can be seen that a higher polar frac-
tion of the solvent produces a more pronounced migration. Therefore, cyclohexane was
considered as a wetting agent for the silica 60 stationary phase.

2.3. Separation of Violacein and Deoxyviolacein Using Column Chromatography

Once the appropriate solvents for pigment separation were selected, violacein and
deoxyviolacein were separated by column chromatography. The 1:1:1 configuration was
chosen as the separation sample because it would be more representative of a 1:30 w/v
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biomass-to-solvent ratio. In addition, optimizing an appropriate method for this configura-
tion would eliminate the need to develop methods adapted to the yield of each extraction.
Using the same column, larger amounts of either solvent would result in larger bands that
would not be adequately separated and resolved over the length of the column.

Solvent configuration “G” has the ability to separate both compounds and provide
sufficiently distinct spots. In addition, this solvent combination had a relatively low affinity
for lipophilic compounds, making it suitable for the purification of a complex matrix
containing the lipids also produced by Y. lipolytica as secondary metabolites in addition to
cell debris. The stationary phase consisted of cyclohexane-saturated silica 60, which has a
remarkably low affinity for violacein. A 4 cm × 50 cm column (SEVAL, Poggibonsi, Italy)
was used. The bottom of the column was coated with a small amount of cotton covered
with a thin layer of fine sand. Then 300 g of silica wetted with cyclohexane was poured into
the column and compacted by carefully draining the solvent. After pouring and subsequent
adequate compaction of the silica by draining the solvent, 200 mg of analyte was added
and then wrapped in a layer of fine sand to minimize the risk of disruption (Figure 3A).
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Figure 3. (A) Chromatography column load with pigment extract. (B) Solvent “G” was added until
two distinct colors were observed at the extremities, with violacein at the top and deoxyviolacein at
the bottom. (C) Solvent “D” was added until the deoxyviolacein was sufficiently distant from the
violacein. (D) Purified extracts were analyzed on a TLC plate.

Solvent “G” was first used until both pigments were clearly visible and distinguishable
(Figure 3B). To create a noticeable separation between them, solvent “G” was substituted
with solvent “D”, which favored the migration of the deoxyviolacein and a virtual stasis of
the violacein band (Figure 3C). Upon recovery of the deoxyviolacein, the solvent “D” was
replaced by solvent “H” until the violacein component of the pigment load was recovered.
The recovered pigment load was then dried by evaporating the solvent under reduced
pressure and analyzed using a TLC plate (Figure 3D). The results show that the violacein
and deoxyviolacein were well purified, with one major band of each of pigment (traces of
deoxyviolacein were observed in the violacein fraction, and vice versa).

2.4. NMR Spectroscopy Analysis of Pigments

In order to identify the pigments and confirm their purity, data on the indolic amine
group and the two amides were evaluated using NMR spectroscopy. For the sake of
simplicity, numbers were assigned to each of the amide protons (2 and 3) and to the indolic
N-H proton (1) contained in the molecule, and the chemical shifts detected by 1H-NMR
associated with each of them were compared with the values reported in the literature.
Figure 4A shows the common molecular structure of violacein and deoxyviolacein. In the
case of violacein, R would be a hydroxyl group whereas in the case of deoxyviolacein, R
would be hydrogen.
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Figure 4. (A) Common molecular scaffold of violacein and deoxyviolacein with numbers assigned
to each amide and indolic proton. For violacein, R would be a hydroxyl group; for deoxyviolacein,
R would be hydrogen. (B) 1H-NMR spectrogram for deoxyviolacein. (C) 1H-NMR spectrogram
for violacein.

The results are in agreement with those reported by Wille and Steglich [33] regard-
ing the chemical synthesis of violacein and deoxyviolacein (Figure 4B,C and Table 1),
which are a benchmark for numerous studies aimed at identifying and purifying these
pigments [34–36]. The chemical shift in the indolic proton (1) appears to be clearly different
for the two products and could therefore be used in conjunction with the chemical shifts in
the amides to properly characterize them. Moreover, the value associated with the hydroxyl
group chemical shift for violacein obtained in this study is equal to the value of 9.33 ppm
reported in the study by Wille and Steglich [33].

Table 1. Comparison between the 1H NMR shifts for the indolic and amide protons measured by Wille
and Steglich [33], and those obtained in the current study for the confirmation of molecular identity.

Position of NH
Functional Groups Violacein Deoxyviolacein

Wille and Steglich [33] This Study Wille and Steglich [33] This Study

1 11.88 ppm 11.92 ppm 12.09 ppm 12.12 ppm
2 10.72 ppm 10.74 ppm 10.78 ppm 10.83 ppm
3 10.60 ppm 10.61 ppm 10.61 ppm 10.66 ppm

Although it is commonly reported in the literature that deoxyviolacein is produced in
modest amounts compared to violacein, the amounts produced by Y. lipolytica JMY7019
were equivalent to those of violacein in the 1:1:1 mixture, which is representative of a
single-batch extraction. The production of both compounds and their effective purification
can contribute to a potentiation of the scientific research centered around these seemingly
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quite polyvalent molecules. Current purification protocols with results intended for quali-
tative research rely on the use of flash chromatography [37,38], high-performance liquid
chromatography [39], or vacuum liquid chromatography [36,40]. Compared to the present
study, the purification protocols described in the literature were not provided in detail
and no optimization related to the solvents used was described. While flash chromatog-
raphy can offer numerous advantages over column chromatography, especially in terms
of running time, it is hampered by a decreasing reliability as the amount of analyte in-
creases [41,42], and its efficacy is highly dependent on column length and packing [41].
While these drawbacks are comparable to those of conventional column chromatography,
the latter has the advantage of not relying on expensive disposable cartridges fitted into
apparatuses with elevated high initial cost and non-negligible costs related to runtime and
maintenance. A notable disadvantage of HPLC compared to other techniques mentioned is
scale. Indeed, the method is hampered by its inability to separate compounds in significant
enough volumes and high enough concentrations. In fact, the use of more concentrated
analytes to mitigate these disadvantages increases the likelihood of having to deal with
detrimental coelutions. Vacuum liquid column chromatography, which could help to
improve the current protocol, has previously been used with a number of benign solvents
including petroleum ether, ethyl acetate [36], methanol, chloroform, and n-hexane [40].
Comparatively, the solvent matrices used in these configurations are more complex than
the combination used in the current study and are therefore more difficult to recycle and
reuse for similar purposes.

3. Materials and Methods
3.1. Yarrowia lipolytica Strain

The Y. lipolytica strain JMY7019 used in this study was kindly provided by the Micalis
Institute, INRAE (Jouy-en-Josas, France). Its construction has been described in an article
on the extraction of violacein synthesized by this strain using anionic surfactants [22]. The
working cell bank (microbial stock) was prepared as follows: a cell sample was aseptically
taken from the agar plate using a sterile loop and placed in a sterile baffled flask filled with
the optimized culture medium (see Section 3.2 for composition). The inoculated medium
was then incubated for 24 h at 28 ◦C with shaking at 170 rpm stirring (Thermo Scientific
MaxQ 6000, Aubervilliers, France). After 24 h of incubation, the cells were cryopreserved
by adding 1 mL of the culture medium into the cryotubes (VWR, Rosny-sous-Bois, France),
supplementing this volume with 1 mL of a 1:1 (v/v) glycerol/water mixture, and gently
shaking the tube to homogenize the suspension. The tubes were stored at −80 ◦C in an
ultra-low-temperature freezer (Panasonic MDF-U700VX, Couëron, France).

3.2. Culture Medium

The culture medium used in this study consisted of yeast nitrogen base (YNB) without
amino acids or ammonium sulfate (1.7 g/L) and with dextrose (30 g/L), tryptophan
(1 g/L), phenylalanine (0.2 g/L), tyrosine (16 mg/L), leucine (0.2 g/L), yeast extract
(3 g/L), NH4Cl (1 g/L), and saline solution (1×). The composition of the 1000× concentra-
tion saline solution with a final volume of 1 L was as follows: H3PO4 85% liquid—107 g,
KCl—20 g, NaCl—20 g, MgSO4·7H2O—27 g, ZnSO4·7H2O—7.7 g, MnSO4·H2O—0.47 g,
CoCl2·6H2O—0.3 g, CuSO4·5H2O—0.6 g, Na2MoO4·2H2O—0.094 g, H3BO—0.3 g, and wa-
ter to obtain a total volume of 1 L. The medium was buffered with 50 mM KH2PO4/Na2HPO4,
pH 6.8. All the components were prepared separately and sterilized either by autoclaving
(20 min at 121 ◦C for the YNB, dextrose, leucine, phenylalanine, and yeast extract stock
solutions) or by filtration, using 0.2 µm nylon filters for the other components to avoid their
thermal degradation.

3.3. Pigment Production

The production of the pigments (violacein and deoxyviolacein) by Y. lipolytica JMY7019
was performed in two 1-L baffled Erlenmeyer flasks each containing 250 mL of culture
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medium, prepared as described in Section 2.2. The inoculation was performed aseptically
using 2 mL of the cryogenically stored working cell bank. The cultures, performed in
duplicate, were then incubated in a shaker (Thermo Scientific MaxQ 6000, Aubervilliers,
France) at 28 ◦C with constant shaking at 170 rpm. After incubation for 168 h, the contents
of the Erlenmeyer flasks were transferred to 250 mL Eppendorf centrifuge tubes and
centrifuged at 4600 rpm for 15 min at 4 ◦C using a Heraeus Multifuge 3 S-R (Villebon-sur-
Yvette, France). The supernatants were discarded, and a total of 15.4 g of wet biomass
was obtained.

3.4. Extraction of Pigments Using a Thermoregulated Double-Jacket Vessel

A 10:1 ratio (volume (mL) to biomass weight (g)) of 96% ethanol (ThermoFisher,
Illkirch, France) was used for the pigment extraction. The solvent was first poured into
a 200 mL double-jacketed vessel (VRC SAS, Luçon, France) and heated to 28 ◦C under
stirring at 200 rpm. A JULABO 1000F (Colmar, France) equipped with a DYNEO DD visual
interface was used as the thermostat to maintain a constant temperature. The stirring
apparatus was a Caframo BDC250 (Illkirch, France). Once the temperature was stabilized
at 28 ◦C, the biomass was added for the pigment extraction. Samples of 1 mL were taken
periodically and centrifuged for 10 min at 13,500 rpm using a VWR MicroStar (Rosny-sous-
Bois, France). The supernatant was used for pigment quantification. After 1 h of extraction,
the total suspension in the vessel was transferred to a 250 mL Eppendorf centrifuge tube
and centrifuged at 4600 rpm for 15 min at 4 ◦C using a HERAEUS Multifuge 3SR (Villebon-
sur-Yvette, France). The supernatant was immediately isolated and stored at 4 ◦C, whereas
the recovered biomass was subjected to an additional extraction under the same conditions.
In total, three analogous 1 h extractions were performed.

3.5. Pigment Quantification

The quantification of the violacein and deoxyviolacein was performed by measuring
the optical density at 570 nm using a Thermo Electron Biomate 3 spectrophotometer (Illkirch,
France). The value obtained was then divided by the molar attenuation coefficient for crude
violacein found in the literature (10.955 g·L−1·cm−1) [43].

3.6. Pigment Separation Using Thin-Layer Chromatography

A series of solvent configurations were tested using thin-layer chromatography (TLC)
to determine a stationary phase and a mobile phase that could be used together to separate
the pigment output of the Y. lipolytica JMY7019. To this end, 5 µL of each extraction output,
the pigment-loaded solvent, and a 1:1:1 mixture of the three extraction outputs were applied
equidistantly on a 4 × 8 cm TLC plate. The order in which the samples were applied was as
follows: Extraction 1, Extraction 2, Extraction 3, 1:1:1 mixture. Comparable sheets with the
same samples were then placed in a 5 × 2 × 8 cm3 development chamber with 10 mL of
solvent for a total of 3 min. The solvent combinations used are summarized in Table 2, and
all the solvents were of analytical grade (Carlo Erba, Val-de-Reuil, France). Other organic
solvent mixtures consisting of different combinations of cyclohexane, ethanol, methanol,
ethyl acetate, and acetonitrile were evaluated, with or without the addition of triethylamine.
Since the cyclohexane and ethyl acetate combinations showed the most promising results,
our study focused on these two combinations.

Table 2. Solvent mixtures investigated using thin-layer chromatography to be used for column
chromatography.

A Ethyl acetate/cyclohexane (10:90) E Ethyl acetate/cyclohexane (50:50)
B Ethyl acetate/cyclohexane (20:80) F Ethyl acetate/cyclohexane (60:40)
C Ethyl acetate/cyclohexane (30:70) G Ethyl acetate/cyclohexane (65:35)
D Ethyl acetate/cyclohexane (40:60) H Ethyl acetate/cyclohexane (80:20)
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3.7. Pigment Purification Using Column Chromatography

Once the separation was optimized by TLC, the pigments were purified by column
chromatography. For this purpose, a 60 mL 1:1:1 v/v/v mixture of all the extraction outputs
(pigments in 96% ethanol) was introduced into a round-bottom flask. The ethanol was
partially evaporated using a Heidolph Instruments rotary evaporator system (Schwabach,
Germany), and 0.5 g of silica 60 (Sigma Aldrich, Saint-Quentin Fallavier, France) was
added to dry-load the pigment. The remainder of the solvent was then evaporated to
dryness using the same evaporation system setup, and a homogeneously colored purple
powder was obtained. To quantify the amount of adsorbed violacein and to verify that
homogeneous silica coloration had occurred, three samples weighing 3.7 ± 0.18 mg were
isolated from the bulk of the powder and placed in 2 mL Eppendorf tubes. Each of these
tubes was filled with 1 mL of 96% ethanol and vortexed to allow a complete desorption of
the pigment matrix and its diffusion into the solvent. The tubes were then centrifuged at
13,500 rpm for 10 min before spectrophotometric quantification of the supernatant crude
pigment as described in Section 3.5. The average percentage of violacein in the samples
was 3.3 ± 0.2%.

3.8. Pigment Analysis
3.8.1. Pigment Analysis Using High-Performance Thin-Layer Chromatography (HPTLC)

The analysis of the violacein and deoxyviolacein in the original biosynthesized mixture
was performed by HPTLC (CAMAG, Muttenz, Switzerland). This allowed the proportion
of each pigment in the mixture to be determined. To this analysis, samples were first diluted
in 96% ethanol and transferred to standard vials sealed with septum caps. A CAMAG ATS
4 applicator tool (CAMAG, Muttenz, Switzerland) automatically drew 2 to 10 µL of the
sample and applied it to an F254 silica-covered glass plate (Merck, Saint-Quentin Fallavier,
France). The plate was then transferred to a CAMAG ATC2 automatic developing chamber
which was first saturated with 15 mL 65:35 ethyl acetate/cyclohexane vapor and wherein
15 mL of the same solvent was automatically poured into the bottom of the integrated glass
chamber. Upon completion of the solvent migration, pigment separation was observed on
the silica plate. The plate was then placed in a CAMAG TLC scanner 4 (CAMAG, Muttenz,
Switzerland), which scanned the solvent fronts at a wavelength of 570 nm and processed
the data to obtain the proportions of each compound in the anolyte.

3.8.2. Pigment Analysis Using Nuclear Magnetic Resonance (NMR)

After purification of the violacein and deoxyviolacein, the solvent was evaporated
using a rotary evaporation system, and each of the pigments was dissolved in 0.5 mL of
deuterated dimethyl sulfoxide (DMSO-d6) prior to analysis by proton nuclear magnetic
resonance (1H NMR) spectroscopy at 400 MHz; a BRUKER ASCEND 400 instrument was
used to confirm the identity of the compounds and to verify that effective separation had
occurred. The results obtained were compared with those of Wille and Steglich [33], who
synthetized violacein and deoxyviolacein and confirmed the purity of the compounds
using 1H NMR spectroscopy.

4. Conclusions

The literature on the separation of violacein and deoxyviolacein describes a number
of methods with varying degrees of efficacy and innocuousness. The method described in
this paper focuses on the use of column chromatography using silica 60 as the stationary
phase and ethyl acetate/cyclohexane as the mobile phase. Compared to HPLC, our method
allows for the recovery of higher amounts of pigments. The recovered products were pure
as determined by 1H-NMR spectroscopy. The method can be optimized to determine the
pigment load ceiling to maximize efficiency. These positive effects can be further enhanced
by incorporating solvent recirculation through the column. In this scheme, solvents of
known composition would be reintroduced into the column over multiple cycles to induce
the desired effects throughout the column without the need to renew the solvent. Coupled
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with a larger column, increased solvent flow, and optimized for the proportions of the
column, such a setup could be enabled by the use of modest amounts of solvent and silica.
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