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Abstract 

This paper uses Hyper-Reduced Order Models (HROMs) to accelerate parametric and sensi-

tivity analyses on reinforced concrete structures subjected to earthquakes. The number of De-

grees Of Freedom (DOFs) is reduced using a Proper Orthogonal Decomposition (POD) 

reduced basis. The nonlinear terms of the matrix system are approximated using an Unassem-

bled Discrete Empirical Interpolation Method (UDEIM) or an Energy Conserving with Sam-

pling and Weighting procedure (ECSW). Both strategies are compared regarding accuracy and 

time-savings on a L-shaped three-story building modeled by damaging multifibre beam ele-

ments. The efficiency of the HROMs is assessed in the case of parametric analyses about the 

external loading (e.g., ground motions) or mechanical properties (e.g., elastic modulus, or ten-

sile strength). Results (1) show that both methods correctly model the nonlinear response of the 

structure with a strain energy error of less than 0.5 % and a speed-up factor between 20 and 

32 during the online phases, and (2) prove that the POD-ECSW is more accurate than the POD-

UDEIM despite an offline phase that requires more CPU time. 

 

Keywords: Earthquake Engineering, Reinforced Concrete, Multifibre Beam Elements, Model 

Order Reduction, Proper Orthogonal Decomposition, Unassembled Discrete Empirical Inter-

polation Method, Energy Conserving with Sampling and Weighting. 
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1 INTRODUCTION 

An important part of Reinforced Concrete (RC) structures design is the capability to with-

stand dynamic loadings (e.g., earthquakes, or wind). Accurately assessing such structural re-

sponses requires 3D nonlinear dynamic Finite Element (FEM) analyses. However, it is not easy 

since it can be costly in Central Processing Unit (CPU) time. As a result, knowing that FEM 

analyses usually do not exceed 12 hours in a civil engineering design office, other approaches 

are used instead for design purposes. Among them, the widespread quasi-static “push-over” 

method allows computing the loading demand on each structural component (e.g., column, or 

beam) for several earthquakes without performing dynamic FEM analyses ([1], [2]). This ap-

proach is well suited for design but is limited compared to dynamic FEM analyses since the 

higher eigenmodes and the earthquake-induced cyclic loading are not considered. As a result, 

torsional effects or local collapse mechanisms cannot be modeled correctly, as well as hysteretic 

energy dissipations (e.g., frictional sliding) or stiffness recovery when the cracks are closing. 

To consider all these phenomena, nonlinear dynamic FEM analyses must be repeated with sev-

eral ground motions coming from one or several directions. Reducing the computational cost 

of such sensitivity analyses is thus useful in an industrial context. The development of pseudo-

dynamic and real-time hybrid tests over the last decades also pushed forward the need for non-

linear numerical models of RC structures that can be run in quasi-real time ([3], [4]). As the 

commands of the actuators are based on the response of a nonlinear numerical model, the CPU 

time must be less than 10 ms per time step in real-time. Lower values can sometimes be required 

depending on the delays related to the components of the experimental setup (e.g., actuators, 

sensors, or controller boards). Hyper-Reduced Order Models (HROMs) can be used to reach 

these goals. 

In the case of nonlinear systems, a posteriori data-driven methods are commonly applied. 

Training FEM analyses are first run on the nonlinear high dimensional system to generate rel-

evant snapshots. Offline post-processing is then carried out to produce modes that best represent 

the nonlinear response of the model. The modal basis can be computed using a “greedy” fixed 

point algorithm or a Proper Orthogonal Decomposition (POD) method to build orthogonal 

modes incrementally or simultaneously ([5], [6], [7]). Several researchers successfully used the 

POD over the last decades to identify coherent structures [8], perform FEM analyses involving 

turbulent flows ([9], [10]), control dynamic systems [11], detect damage [12], update finite 

element models [13], and reduce structural dynamics models ([14], [15]). This approach dras-

tically reduces the computational cost required to solve nonlinear matrix systems. However, it 

is limited since the computational cost related to the nonlinear terms (e.g., restoring forces) is 

still very high. 

Using hyper-reduction methods avoids this drawback. They consist of approximating the 

nonlinear terms based on samples assessed on a set of elements belonging to a Reduced Inte-

gration Domain (RID). The Discrete Empirical Interpolation Method (DEIM) and its variants 

allow for achieving this purpose [16]. They rely on the “gappy” POD used to reconstruct facial 

images [17], hyper-reduce nonlinear systems in the fluid dynamics framework ([18], [19]), or 

perform process simulations [20]. DEIM approaches can be seen as an improvement of this 

method since a “greedy” algorithm is added to the offline phase to identify the best RID. As it 

is used with the POD to perform FEM analyses, no additional CPU time is required to build 

force snapshots. The procedure also remains the same regardless of the physics since the snap-

shots consider all the nonlinearities (e.g., damage, plasticity, or large deformations).  Several 

collocation techniques allow using all the components belonging to the RID, improving the 

stability and the accuracy of the HROM [21]. The unassembled force snapshots (i.e., computed 



B. Bodnar, W. Larbi, M. Titirla, J.-F. Deü, F. Gatuingt and F. Ragueneau 

 

element per element) can also be used to build the force basis [22]. As each collocation com-

ponent refers to an element instead of a node, the elements belonging to the RID are directly 

selected when the greedy algorithm runs, making the unassembled DEIM (UDEIM) more suit-

able to perform FEM analyses. Better accuracy can thus be reached with smaller RIDs [21]. 

Other improvements were developed over the last decade, such as a localized DEIM ([23], [24]), 

an adaptation to parametric systems ([25], [26]), improved strategies to choose the collocation 

components [27], or applications to geometrically nonlinear static and dynamic systems involv-

ing nonlinear elastic material laws ([28], [21]). The DEIM and its variants are efficient but come 

with a huge drawback since they destroy the symmetry of the matrix system. The approximated 

DEIM reduced tangent operator is not entirely symmetric, which leads to a possible loss of 

stability, variational consistency, and underlying energy function fitting into the Lagrangian 

framework [21]. As a result, only the nonlinear part of the nonlinear terms can be interpolated. 

Other approaches, such as the Energy Conserving Mesh Sampling and Weighting (ECSW), 

need to be used instead to keep the symmetry of the matrix system. It consists of finding the 

smallest number of positive non-null weights applied to a reduced set of elements (belonging 

to the RID) so that the sum of their contribution is equal to the reduced restoring force vector 

up to a tolerance usually lower than 1 %. Contrary to the DEIM, the nonlinear terms are directly 

approximated on a reduced basis. The contribution of each element is computed separately ac-

cording to the available unassembled force snapshots. A greedy Sparse Non-Negative Least 

Square (SNNLS) solver is then used during the offline phase to compute the weights applied to 

the elements belonging to the RID. The ECSW was initially developed in the framework of 

computer graphics [29] and later extended to the finite element framework to solve structural 

dynamics problems ([30], [31]). Several researchers worked later on improvements to reduce 

the computational cost due to the sparse SNNLS solver [32], or to selectively evaluate the non-

linearities at the Gauss point level instead of the element scale [33]. The ECSW proved to be 

more efficient than the DEIM approaches in the case of dynamic FEM analyses involving geo-

metrical nonlinearities and nonlinear elastic materials [21]. 

This paper uses hyper-reduction methods to accelerate earthquake engineering parametric 

and sensitivity analyses on a reinforced concrete structure. To do so, both UDEIM and ECSW 

are compared in terms of accuracy and time-saving. The POD and the UDEIM procedures are 

detailed in Section 2, while the ECSW is described in Section 3. Hyper-reduced models are 

used in Section 4 to accelerate parametric analyses about the external loading (i.e., ground mo-

tion) and material properties (i.e., elastic modulus, tensile strength, and compressive strength 

of concrete) on a L-shaped three-story building made of multi-fiber beam elements. 

2 REDUCED ORDER MODELING USING A POD-UDEIM APPROACH 

Using nonlinear material laws increases the CPU time necessary to compute the nonlinear 

restoring force vector at each time step. In addition, performing all the matrix operations on a 

full basis can be time-consuming, especially if the structure has many DOFs. To reduce the 

computational cost of the Full Order Model (FOM), a POD-UDEIM hyper-reduced order mod-

eling approach is proposed. 

The key idea of the POD is to first perform a small number of nonlinear FEM analyses (e.g., 

by using earthquakes having different peak ground accelerations, frequency, strong motion 

phase duration, or oriented in different directions) on the FOM made of NDOFs free DOFs. Dis-

placement snapshots are then used as training data to compute N nonlinear POD modes by car-

rying out a Singular Value Decomposition (SVD). The n first POD modes are next selected 

according to the criterion (1) to build a reduced modal basis: 
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1 −
∑ 𝜆𝑖
𝑛
𝑖=1

∑ 𝜆𝑗
𝑁
𝑗=1

≤ 𝜀 (1) 

where λi is the ith singular value, N is the number of POD modes, n ≪ N is the number of 

POD modes in the truncated modal basis, and ε is the tolerance used to truncate the modal basis. 

A tolerance ε of 10-2 is recommended to ensure that approximately 99 % of the data quanti-

fied by the singular values is considered in the POD basis [15]. This a posteriori approach 

reduces the number of DOFs as well as the computational cost of the matrix operations. The 

displacement vector 𝒖 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 can thus be expressed in a new basis 𝜱 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 × 𝑛 as de-

scribed in (2): 

𝒖 ≈ 𝜱 · 𝒒          with          𝜱 = [𝝋1 ⋯ 𝝋𝑛] (2) 

where 𝒒 ∈ ℝ𝑛 is the displacement vector in the reduced basis 𝜱, and 𝝋𝑖=1,…,𝑛 ∈ ℝ
𝑁𝐷𝑂𝐹𝑠 is 

the ith POD mode computed using a SVD procedure. 

In addition, a UDEIM operator is added to the solving process. To do so, a second SVD is 

performed on the snapshots related to the nonlinear parts of the unassembled restoring force 

vector (i.e., computed element per element) (3). Ne is the number of finite elements, and Nc is 

the number of force components per element: 

𝒓NL,u(𝒖) = 𝒓u(𝒖) − 𝑲E
u · 𝑩 · 𝒖 (3) 

where 𝑲E
u ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑁𝑒·𝑁𝑐  is the unassembled elastic stiffness matrix, 𝑩 =

[𝑳1
𝑇 ⋯ 𝑳𝑁𝑒

𝑇 ]
𝑇
∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑁𝐷𝑂𝐹𝑠 is a Boolean assembly matrix, and 𝑳𝑖=1,…,𝑁𝑒 ∈ ℝ

𝑁𝑐 × 𝑁𝐷𝑂𝐹𝑠  is 

a collocation matrix used to select the displacements of the nodes connected to the ith finite 

element (4): 

𝒓u = (

𝒓1
u

⋮
𝒓𝑁𝑒
u
)      &     𝑲E

u = (

𝑲E,1
u … 𝟎

⋮ ⋱ ⋮
𝟎 … 𝑲E,𝑁𝑒

u
). (4) 

The m first UDEIM modes are then selected according to (1) to build a second truncated 

modal basis 𝜳 ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑚. So 𝒓NL,u ≅ 𝜳 · 𝒄 where 𝒄 ∈ ℝ𝑚 is the vector containing the sca-

lar weights associated with the truncated modal basis 𝜳 = [𝝍1 ⋯ 𝝍𝑚]. Algorithm 1 is next 

used to find for each UDEIM mode 𝝍𝑖 ∈ ℝ
𝑁𝑒·𝑁𝑐  the best collocation component. 

Algorithm 1: DEIM algorithm. 

Input: A set of DEIM modes 𝜳 = [𝝍1 ⋯ 𝝍𝑚] 
Output: Index of the interpolation DOFs 𝑰𝑫 = [𝐼𝐷1 ⋯ 𝐼𝐷𝑚]  and partition matrix 𝑷 =
[𝒑1 … 𝒑𝑚] 
 

Set 𝐼𝐷1 = index of the maximum component of |𝝍1| 
Set 𝑰𝑑 = [𝒆1 … 𝒆𝑁𝑒·𝑁𝑐] the identity matrix of size Ne·Nc × Ne·Nc 

Initiate matrices : 𝑽 = [𝝍1], 𝑷 = [𝒆𝐼𝐷1], 𝑰𝑫 = [𝐼𝐷1] 

 

For i = 2, …, m do 

Solve 𝑷T · 𝑽 · 𝒄𝑖 = 𝑷
T · 𝝍𝑖 

Compute residual 𝒓𝒆𝒔 = |𝝍𝑖 − 𝑽 · 𝒄𝑖|  
Set 𝐼𝐷𝑖 = index of the maximum component of 𝒓𝒆𝒔 

Augment 𝑽 ← [𝑽 𝝍𝑖], 𝑷 ← [𝑷 𝒆𝐼𝐷𝑖], 𝑰𝑫 ← [𝑰𝑫 𝐼𝐷𝑖] 
End 
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The m components belonging to the RID are selected using a Boolean partition matrix 𝑷 ∈
ℝ𝑁𝑒·𝑁𝑐 × 𝑚. To improve the accuracy of the interpolation operator, the unused components of 

the RID are added to 𝑷. The number of collocation components k is thus higher than the number 

m of UDEIM modes (i.e., k > m). Considering a new partition matrix 𝑷 ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑘 leads to an 

overdetermined matrix system 𝑷T · 𝝍 · 𝒄 ≈ 𝑷T · 𝒓NL,u . The scalar weights 𝒄 ∈ ℝ𝑚  are thus 

computed in the least square sense using a Monroe-Penrose pseudo-inverse (·)+ so that the re-

sidual is minimized in the L2-norm, leading to 𝒄 ≈ (𝑷T · 𝝍)+ · 𝑷T · 𝒓NL,u. It should be noted 

that the selection of the collocation components could be improved by directly adding the ad-

ditional components to 𝑷 when Algorithm 1 runs [21]. Unfortunately, the CPU time related to 

the offline phase drastically increases since the size of the matrix system to solve at each itera-

tion is Nc times higher. In addition, the accuracy of the interpolation operator does not change 

significantly. As a result, the additional components are here added to P a posteriori (i.e., when 

the RID is already defined). 

When the k collocation components are set, the online phases proceed. The material laws are 

only updated on the elements belonging to the RID (i.e., where the nonlinear part of the unas-

sembled restoring force vector needs to be computed). The k collocation components stored in 

𝒓RID
NL,u = 𝑷T · 𝒓NL,u ∈ ℝ𝑘 are then used as samples to build the reduced vector 𝒓 ∈ ℝ𝑛 in basis 

𝜱, as described in (5): 

𝒓(𝜱 · 𝒒) = 𝜱T · 𝑩T · (𝑲E
u · 𝑩 · 𝜱 · 𝒒 + 𝑨 · 𝒓RID

NL,u(𝜱 · 𝒒))   with  𝑨 = 𝜳 · (𝑷T · 𝜳)+ (5) 

where 𝑲E
u ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑁𝑒·𝑁𝑐 is the unassembled elastic stiffness matrix, 𝜱 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 × 𝑛 is the 

basis of POD modes, 𝒒 ∈ ℝ𝑛 is the displacement vector in basis 𝜱, 𝜳 ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑚 is the basis 

of UDEIM modes, 𝑷 ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑘 is the partition matrix, and 𝑨 ∈ ℝ𝑁𝑒·𝑁𝑐 × 𝑘 is the UDEIM in-

terpolation operator. As a result, according to (3), (5) becomes: 

𝒓(𝜱 · 𝒒) = 𝜱T · 𝑩T · ((𝑰d − 𝑨 · 𝑷
T) · 𝑲E

u · 𝑩 · 𝜱 · 𝒒 + 𝑨 · 𝒓RID
u (𝜱 · 𝒒)) (6) 

where 𝑰d ∈ ℝ
𝑁𝑒·𝑁𝑐 × 𝑁𝑒·𝑁𝑐  is an identity matrix, and 𝒓RID

u (𝜱 · 𝒒) ∈ ℝ𝑘  is the unassembled 

restoring force vector assessed on the k collocation components belonging to the RID. The re-

duced tangent stiffness matrix 𝑲T ∈ ℝ
𝑛 × 𝑛 can thus be approximated by derivation of (6) with 

respect to 𝒒 (7): 

𝑲T =
𝝏𝒓(𝒒)

𝝏𝒒
≈ 𝜱T · 𝑩T · ((𝑰d − 𝑨 · 𝑷

T) · 𝑲E
u + 𝑨 · 𝑲T,RID

u ) · 𝑩 · 𝜱 (7) 

where 𝑲T,RID
u =

𝜕𝒓RID
u (𝜱·𝒒)

𝜕𝑩·𝜱·𝒒
= 𝑷T ·

𝜕𝒓u(𝜱·𝒒)

𝜕𝑩·𝜱·𝒒
∈ ℝ𝑘 × 𝑁𝑒·𝑁𝑐 is the unassembled tangent stiffness 

matrix related to the k collocation components belonging to the RID, computed when iterating 

and used as a sample to approximate 𝑲T during the online phase. 

3 REDUCED ORDER MODELING USING A POD-ECSW APPROACH 

The ECSW is a hyper-reduction method that preserves the virtual work of the reduced re-

storing force vector 𝒓̅(𝜱 · 𝒒) ∈ ℝ𝑛 according to a set of training snapshots. It consists of find-

ing an approximation of 𝒓̅(𝜱 · 𝒒) by summing the contributions of 𝑚 elements belonging 

to a reduced integration domain (RID). The contribution of each element of the RID (in-

dexed 𝑒) is weighted by a nonzero positive factor 𝜉𝑒 ≥ 0 to match the energy of the full 

system and ensure positiveness. As a result, the reduced internal forces can be directly ap-

proximated in basis 𝜱 as described in (8): 
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𝒓(𝜱 · 𝒒) ≈ ∑ 𝜉𝑒𝜱
T ·

𝑚

𝑒 ∈ 𝛺̃

𝑳e
T · 𝒓𝑒(𝑳e · 𝜱 · 𝒒) (8) 

where 𝒓𝑒(𝑳e · 𝜱 · 𝒒) ∈ ℝ
𝑁𝑐  is the restoring force vector related to the eth finite element, 

𝑳𝑒 ∈ ℝ
𝑁𝑐 × 𝑁𝐷𝑂𝐹𝑠 is a collocation matrix used to select the displacements of the nodes connected 

to the eth finite element, and 𝛺 is the reduced set of elements belonging to the RID (9): 

𝛺 ∈ {𝑒 ∈ {1,… ,𝑁𝑒} | 𝜉𝑒 ≥ 0}. (9) 

The weighting factors 𝜉𝑒 are defined according to 𝑛𝑠 snapshots of 𝒓u(𝒖) ∈ ℝ𝑁𝑒·𝑁𝑐 com-

puted in the high dimensional full basis, while the displacement basis 𝜱 is built using snapshots 

of 𝒖 ∈ ℝ𝑁𝐷𝑂𝐹𝑠  as described in Section 2. Contrary to the UDEIM, the ECSW does not require 

splitting the restoring force vector into linear and nonlinear parts to ensure stability. The balance 

equation (8) can be written as a matrix system for the 𝑛𝑠 snapshots according to (10): 

𝒀 · 𝝃 = 𝒃     with     𝒃 = (
𝒓1
⋮
𝒓𝑛𝑠

) =

(

 
 
 
 ∑𝜱T ·

𝑁𝑒

𝑒=1

𝑳𝑒
T · 𝒓𝑒

u(𝑳𝑒 · 𝒖1)

⋮

∑𝜱T ·

𝑁𝑒

𝑒=1

𝑳𝑒
T · 𝒓𝑒

u(𝑳𝑒 · 𝒖𝑛𝑠)
)

 
 
 
 

 (10) 

where 𝝃 ∈ ℝ𝑁𝑒  is a vector containing the weighting factors 𝜉𝑒 = 1,…,𝑁𝑒, 𝒃 ∈ ℝ
𝑛·𝑛𝑠 is a vector 

containing the reduced restoring force vectors 𝒓𝑗 = 1,…,𝑛𝑠 (10), and 𝒀 ∈ ℝ𝑛·𝑛𝑠 × 𝑁𝑒 is a matrix 

containing the contribution of each finite element in the reduced basis 𝜱 (11): 

𝒀 = (

𝜱T · 𝑳1
T · 𝒓1

u(𝑳1 · 𝒖1) … 𝜱T · 𝑳𝑁𝑒
T · 𝒓𝑁𝑒

u (𝑳𝑁𝑒 · 𝒖1)

⋮ ⋱ ⋮
𝜱T · 𝑳1

T · 𝒓1
u(𝑳1 · 𝒖𝑛𝑠) … 𝜱T · 𝑳𝑁𝑒

T · 𝒓𝑁𝑒
u (𝑳𝑁𝑒 · 𝒖𝑛𝑠)

). (11) 

The matrix system (10) is exactly fulfilled if each finite element is weighed with one, leading 

to 𝝃 = (1 … 1)T so that all the elements belong to the RID. To achieve a reduction, (10) 

is approximated up to a tolerance τ with a sparse weighting vector 𝝃∗ ∈ ℝ𝑁𝑒 containing as 

many zero entries as possible. Each entry of 𝝃∗ is constrained to be positive to ensure the 

positive definiteness of the virtual work. The constrained optimization problem to solve is 

written in (12): 

argmin#(𝑒 | 𝜉𝑒
∗ ≠ 0)    subject to   ‖𝒀 · 𝝃∗ − 𝒃‖2 ≤ 𝜏‖𝒃‖2   and   𝝃

∗ ≥ 𝟎. (12) 

Despite being Nondeterministic Polynomial time (NP) hard to solve, a solution of (12) can 

be computed using a SNNLS solver as described in Algorithm 2. It uses a greedy method seek-

ing iteratively for a solution fitting the positivity constraint [34]. Note that the matrix 𝒀𝛺̃ is a 

submatrix of 𝒀 obtained by taking only the columns corresponding to the index set 𝛺. 

Once the SNNLS problem is solved, the m nonzero positive weighting factors 𝜉𝑒
∗ are used to 

approximate 𝒓(𝜱 · 𝒒) (8) according to the reduced set of elements defined in (9). The re-

duced tangent stiffness matrix 𝑲T is computed by derivation of (8) with respect to 𝒒 as 

described in (13): 
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𝑲T =
𝝏𝒓(𝒒)

𝝏𝒒
≈ ∑ 𝜉𝑒𝜱

T ·

𝑚

𝑒 ∈ 𝛺̃

𝑳e
T · 𝑲T,e(𝑳e · 𝜱 · 𝒒) · 𝑳e · 𝜱 (13) 

where 𝑲T,e(𝑳e · 𝜱 · 𝒒) ∈ ℝ
𝑁𝑐×𝑁𝑐 is the tangent stiffness matrix related to the eth finite 

element. Contrary to the UDEIM, the ECSW preserves desirable properties like passivity, 

stability, symmetry, and variational consistency since  𝑲T is symmetric. However, its ac-

curacy still depends on the choice of the training dataset for which the equality of the virtual 

work is enforced. The tolerance τ also depends on the case study since its value is worth 

between 10-4 and 10-2 in the literature ([32], [35]). 

Algorithm 2: Sparse Non-Negative Least Square (sNNLS) solver. 

Input: Matrix 𝒀, vector 𝒃, and tolerance 𝜏 ∈ ]0,1[ 
Output: Index set 𝛺̃ and sparse vector 𝝃∗ 
 

Initiate the index set of entries where 𝜉𝑒
∗ > 0: 𝛺̃ = { } 

Initiate the sparse vector: 𝝃∗ = 𝟎 

Initiate the residual: 𝒓𝒆𝒔 = 𝒃 

 

While ‖𝒓𝒆𝒔‖2 > 𝜏‖𝒃‖2 

Compute error measure: 𝝁 = 𝒀T · 𝒓𝒆𝒔 
𝑒 = index of the maximum component of 𝝁 

Augment 𝛺̃ = 𝛺̃ ∩ 𝑒 

Initiate Boolean: 𝜅 = 𝑇𝑟𝑢𝑒 

While 𝜅 = 𝑇𝑟𝑢𝑒 

Initiate trial solution satisfying the positivity constraint: 𝜻 = 𝟎 

Solve on the index set 𝛺̃: 𝜻 𝛺̃ = (𝒀 𝛺̃)
+ · 𝒃 

If min(𝜻) > 0 

Positivity constraint fulfilled: 𝝃∗ = 𝜻 

Update Boolean: 𝜅 = 𝐹𝑎𝑙𝑠𝑒 

Else 

Define the index set 𝛱 where the positivity constraint is not fulfilled: 

𝛱 = {𝑒 ∈ 𝛺̃ | 𝜁 𝑒 < 0} 
Compute the step width 𝛼 to set the maximum violation to zero:  

𝛼 = min{𝜉𝑒
∗ (𝜉𝑒

∗ − 𝜁 𝑒)⁄ |𝑒 < 𝛱} 
Correct constraint violation: 𝝃∗ = 𝝃∗ + 𝛼(𝜻 − 𝝃∗) 
Update the index set 𝛺̃: 𝛺̃ = {𝑒 | 𝜉𝑒 ≠ 0} 

End 

Update residual: 𝒓𝒆𝒔 = 𝒃 − 𝒀 𝛺̃ ·  𝝃 𝛺̃
∗  

End 

End 

The ECSW is compared to the UDEIM in Section 4 in the case of parametric analyses on a 

RC structure subjected to earthquakes. One online phase was repeated with an increasing num-

ber of elements in the RID. Analyses about the properties of the external loading (e.g., earth-

quakes) and material properties were carried out. 



B. Bodnar, W. Larbi, M. Titirla, J.-F. Deü, F. Gatuingt and F. Ragueneau 

4 APPLICATIONS 

4.1 Numerical modeling of RC structure 

The global kinematics of the case study was modeled using Timoshenko multi-fiber beam 

elements (see Figure 1) defined by quadratic and cubic shape functions [36]. 

 
 

(a) (b) 

Figure 1: Simply supported reinforced concrete beam (a), and multifibre mesh with two Timoshenko beam ele-

ments (b). 

Knowing that the length/height ratio of the structural components (e.g., beams, or columns) 

is usually higher than 10 in civil engineering structures, the damage was assumed to be mainly 

due to bending. A “unilateral” damage law with frictional sliding developed to model quasi-

brittle materials under dynamic or cyclic loadings [37] was used for concrete fibers (see Figure 

2 (a) & (b)), while the steel rebars were modeled using a bilinear elastic-plastic law (see Fig-

ure 2 (c)). 

   

(a) (b) (c) 

Figure 2: Uniaxial damage law for concrete with opening/closing of cracks (a) and frictional sliding (b), and uni-

axial bilinear elastic-plastic law with kinematic hardening for steel rebars subjected to cyclic loadings (c). 

4.2 Case study 

The case study was a L-shaped three-story reinforced concrete building defined by 2383 

nodes linked by 2866 multifibre beam elements (see Figure 3 (a)). All the columns were em-

bedded to the floor level, and 14292 free DOFs modeled the structure. All stories were 3 m 

high, and each span was 3 m long. Two stairwells occupying areas of 2 × 2 m² were located at 

the ends of the building. Both were modeled by adding three columns to locally increase the 

stiffness. A mass per unit area of 400 kg/m² was applied to both floors via the longitudinal 

beams, whereas the masses of the stairwells were neglected. 
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The columns had a 15 × 15 cm square cross-section, and the beams had a 15 × 25 cm rec-

tangular one. The diameter of each longitudinal steel rebar was set at 12 mm, and the steel 

coating was 20 mm (cf. Figure 3 (b)). The cross-sections of beams and columns were divided 

into 3 × 5 and 3 × 3 surface elements, respectively. The concrete fibers were located at the in-

tegration points of the surface elements (grey dots), while the steel fibers (blue dots) were lo-

cated at 34 mm from the corners of the cross-sections (cf. Figure 3 (c)). 

 
  

(a) (b) (c) 

Figure 3: Mesh of the building (a), cross-section of the beams (b), and mesh of the cross-section of the beams (c). 

The main eigenmodes and percentages of effective modal mass are summarized in Table 1. 

The structure weighed 255 tons and was mainly affected by the six first eigenmodes along the 

x and y-axes, with a cumulative modal mass reaching 253 tons (i.e., 99.6 % of the total mass). 

A Rayleigh viscous damping ratio modeled the structural damping due to the viscosity of air 

and materials as well as discontinuities at junctions with respect to this frequency range. It was 

set at ξ = 2 % at f1 = 1.10 Hz (first eigenfrequency) and f6 = 3.96 Hz (sixth eigenfrequency) so 

that its value reached a minimum around the main eigenmodes [38]. To induce torsional effects 

at floor level, 0.50 in the x-direction, 0.87 in the y-direction, and 0.30 in the z-direction weighed 

the ground motions. The dead and live loads were applied statically before entering the time 

step loop. 

 

Eigenfrequency % of effective modal mass 

 (Hz) x-axis y-axis z-axis 

1.10 17.5 71.6 ~ 0 

1.11 72.6 18.3 ~ 0 

1.38 1.15 1.10 ~ 0 

3.15 1.08 7.35 ~ 0 

3.18 7.29 1.05 ~ 0 

3.96 0.09 0.12 ~ 0 

Table 1: Main eigenfrequencies and percentages of effective modal mass 

of the model. 

4.3 Vulnerability analysis involving several ground motions 

The POD-UDEIM and the POD-ECSW hyper-reduced order modeling (HROM) methods 

were applied to compute the response of the L-shaped three-story building under earthquake 
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conditions. Several natural ground motions fitting the design spectrum of the “Rhonetal” mi-

crozoning area around Visp in Switzerland (available here) modeled the seismic hazard. POD-

UDEIM and POD-ECSW HROMs were first built according to 3088 snapshots based on the 

full order model (FOM) responses related to the ground motions in Figure 4 (a) & (b). Both 

HROMS were then used to approximate the response related to the ground motion in Fig-

ure 4 (c). All signals were of the same order of magnitude (with peak ground acceleration be-

tween 2.4 m/s² and 2.6 m/s²) and sampled at 100 Hz. Still, their frequency, strong motion 

duration, and number of aftershocks differed. 

   

(a) (b) (c) 

Figure 4: Ground motions used to compute snapshots (a) & (b), and ground motion used to approximate the re-
sponse of the building using HROMS (c). 

The displacement component 𝑢𝑥 of the northwest corner (see yellow star in Figure 3 (a)) is 

plotted in Figure 5 for each ground motion. All calculations were carried out on an Intel® 

Core™ i9-10900K CPU @ 3.70 GHz and 64 GB RAM personal computer using custom pro-

cedures implemented in MATLAB© software. The FEM analyses were performed using an im-

plicit Newmark method (β = 0.25 and γ = 0.50) with a time step Δt equal to 10 ms. A relative 

tolerance of 10-6 controlled the convergence of the Newton-Raphson algorithm. Results show 

that both responses were highly affected in amplitude and frequency by the material nonlinear-

ities. 

   

(a) (b) (c) 

Figure 5: Displacement component ux of the northwest corner related to the 1st (a), 2nd (b), and 3rd (c) ground mo-
tions. 

The snapshots used to build the HROMs were selected every two-time steps (i.e., every 

20 ms) to avoid redundancy of the input data. As a result, 1460 snapshots were related to the 

first ground motion, and 1628 to the second. 

A SVD was performed on the displacement snapshots to build the modal basis 𝜱. A number 

n of 35 POD modes fulfilled the criterion (1) considering a tolerance ε equal to 10-2 [15] (see 

Figure 6 (a)). The three main POD modes drawn in Figure 6 (b), (c), and (d) show that bending 

and torsion mainly affect the nonlinear response of the L-shaped three-story building. The first 

POD mode (R1 = 1.15 Hz) is close to the first eigenmodes of bending along the x and y-axes 

(f1 = 1.10 Hz and f2 = 1.11 Hz). The second (R2 = 3.31 Hz) refers to the second eigenmodes of 
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bending along the x and y-axes (f4 = 3.15 Hz and f5 = 3.18 Hz). The third (R3 = 2.08 Hz) models 

torsional effects about the z-axis and could be compared to the third eigenmode (f3 = 1.38 Hz). 

 

 

R1 = 1.15 Hz 

(a) (b) 

  

R2 = 3.31 Hz R3 = 2.08 Hz 

(c) (d) 

Figure 6: Criterion used to truncate the POD modal basis (a), and shapes and Rayleigh quotients of the first (b), 

second (c), and third (d) POD modes. 

Knowing that the efficiency of UDEIM and ECSW hyper-reduction procedures highly de-

pends on the snapshots, the nonlinear material laws, and the number m of element in the RID, 

a sensitivity analysis compares the accuracy of both methods with a value of m between 50 and 

1000. The online and offline CPU times, the error, and the number of iterations in Figure 7 

quantify the reliability of the HROMs to compute the nonlinear response related to the third 

ground motion. The solutions (𝒖, 𝒓) are compared to the FOM (𝒖FOM, 𝒓FOM) using the strain 

energy error εEd defined in (14): 

𝜀Ed =
‖𝛥𝐸d‖

‖𝐸d
FOM‖

100 %     with     ‖𝛥𝐸d‖ =
1

2𝑁𝑡𝛥𝑡
∫ |𝜟𝒖T(𝑡) · 𝜟𝒓(𝑡)| 𝑑𝑡

𝑁𝑡·𝛥𝑡

0

 (14) 

where 𝐸d
FOM is the strain energy of the implicit Newmark FOM, 𝛥𝐸d is the difference in 

strain energy, 𝑁𝑡 is the number of time intervals, 𝛥𝑡 is the time step, 𝛥𝒖 = 𝒖 − 𝒖FOM is the 

difference in displacements, and 𝛥𝒓 = 𝒓 − 𝒓FOM is the difference in restoring forces. 

Errors in Figure 7 (a) show that the POD-UDEIM is more accurate than the POD-ECSW 

when the RID is less than 250 elements since only the nonlinear part of the restoring forces are 

approximated. This is clearly visible in Figure 8 (a) where only 100 elements are required to 

ensure that the displacement component ux of the northwest corner agrees well in frequency 

with the FOM, while at least 200 are necessary with the POD-ECSW (see Figure 8 (b)). How-

ever, the later becomes more efficient when new elements are added to the RID, leading to a 

residual error approximately equal to 0.15 % when m is higher than 350. This value is twice as 
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high with the POD-UDEIM as it stabilizes at 0.32 %. Knowing that the error is equal to 0.12 % 

with the POD reduced order model, the POD-ECSW is almost as accurate in the present case 

study. 

  

(a) (b) 

  

(c) (d) 

Figure 7: Strain energy error (a), offline CPU time (b), online CPU time (c), and number of iterations (d) with 

respect to the number of elements in the RID (comparison using the third ground motion with 35 POD modes). 

  

(a) (b) 

Figure 8: Displacement component ux of the northwest corner computed with the third ground motion using 

POD-UDEIM (a) and POD-ECSW (b) HROMs (with 35 POD modes). 

Unfortunately, Figure 7 (b) shows that the ECSW is limited since the computational cost of 

the SNNLS solver ensuring the positivity of the weighting factors (see Algorithm 2) increases 

drastically with respect to the number m of elements. In comparison, the DEIM algorithm (see 

Algorithm 1) runs faster considering that it involves only one iterative loop, and that unused 

components can be added a posteriori (as explained in Section 2). As a result, the time neces-

sary to build a RID including 350 elements (i.e., when the residual error is reached) is 8 times 
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higher with the ECSW (lasting 16 min) than with the UDEIM (lasting 2 min). The POD-ECSW 

is thus more efficient than the POD-UDEIM provided that the HROM accelerates a large num-

ber of FEM analyses (i.e., online phases). 

The online CPU times in Figure 7 (c) show that the speed-up factor is approximately the 

same with both methods, as well as the number of iterations required to solve the problem (see 

Figure 7 (d)). Using HROMs with a RID including 350 elements allows computing accurately 

the response of the building in 2 min 45 s, which is 13.8 and 31.6 times faster compared to the 

POD (~ 38 min) and to the FOM (~ 1 h 27 min), respectively. In addition, less iterations are 

required when using reduced or hyper-reduced order models since the nonlinearities are directly 

taken into account in the shape of the POD modes, which further decreases the CPU time. 

Knowing that it is necessary to iterate 27 k times to solve the equation of motion using the FOM, 

the number of iterations is approximately 1.7 times lower using the ROMs, with a value that 

does not exceed 16 k (see Figure 7 (c)). The number of iterations is the same with the POD and 

the POD-ECSW (~ 14.6 k) but its value slightly increases with the POD-UDEIM (~ 15.2 k) 

since the approximated tangent stiffness matrix is not fully symmetric, as explained in Section 1. 

RIDs including 350 elements built using the UDEIM and the ECSW hyper-reduction meth-

ods are drawn in Figure 9 (b) & (c), respectively. Both are compared to the maximal damage 

index distribution related to the third earthquake (see Figure 9 (a)). 

 
(a) 

  

(b) (c) 

Figure 9: Damage index distribution on the FOM with the third earthquake (1845 damaged beam elements) (a), 

and RIDs with 35 POD modes and 350 elements: UDEIM (b) and ECSW with weighting factors (c). 

In the present case study, 19 % of the 1845 elements where damage appears (i.e., 69 % of 

the whole structure) are required to correctly approximate the restoring force vector during the 

online phase. Many of them are located close to the stairwells, where the stiffness increases 

locally (see the colored elements in Figure 9 (b) and Figure 9 (c)). This shows that both hyper-
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reduction methods can approximate strong nonlinearities (e.g., damage) distributed on a large 

number of elements, as it is commonly the case in the earthquake engineering framework. 

4.4 Vulnerability analysis about the material properties 

In Section 4.3, the POD-UDEIM and the POD-ECSW hyper-reduction methods proved their 

efficiency in accelerating vulnerability analyses involving several ground motions. Both meth-

ods were next applied to a parametric analysis about the concrete properties under earthquake 

conditions. The dynamic response related to the ground motion in Figure 10 (a) was computed 

considering that three different concretes can be used to model the L-shaped three-story build-

ing (see Figure 10 (b) & (c)). Table 2 gives the elastic modulus E, the tensile strength ft, and the 

compressive strength fc of each one of them. 

   

(a) (b) (c) 

Figure 10: Ground motion used for the parametric analysis (a), uniaxial damage laws for each concrete with 

opening/closing of cracks (b), and frictional sliding (c). 

Concrete # E ft fc 

 (-) (GPa) (MPa) (MPa) 

1 32.8 2.0 38.0 

2 35.2 2.5 48.0 

3 37.3 2.9 58.0 

Table 2: Properties of the concretes used in the parametric analysis. 

A set of 3000 snapshots was built using the first and third concretes responses, defined by 

elastic modules of 32.8 GPa and 37.3 GPa, respectively. The response of the second, defined 

by an elastic modulus of 35.2 GPa, was then approximated using HROMs. The displacement 

component ux plotted in Figure 11 (a) shows that the higher the tensile strength, the higher the 

energy dissipated by frictional sliding. As a result, differences in amplitude and frequency ap-

pear as damage increases. 

The snapshots were selected every two-time steps (i.e., every 20 ms) from the results of 

dynamic analyses related to the ground motion in Figure 10 (a). A set of 1000 snapshots also 

came from the results of static analyses to be sure that the reduced order model was able to 

apply the dead and the live loads before entering the time step loop regardless of the concrete 

properties. According to Figure 11 (b), a basis 𝜱 of 20 POD modes fulfills the criterion (1) 

when a tolerance of 1 % is used. 

The error and the online CPU times in Figure 12 (a) & (c) quantify the efficiency of the 

POD-UDEIM and the POD-ECSW to approximate the nonlinear response of the L-shaped 

three-story building in the case the second concrete is used. Each online phase includes a static 

analysis that apply the dead and the live loads using a POD ROM, and a dynamic analysis that 
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models the effects of the earthquake using HROMs. As in Section 4.3, both methods are com-

pared with respect to the number m of elements in the RID. Results shows that the POD-ECSW 

is very accurate since only 175 elements are required to reach an error close to 0.30 %. The 

response of the building (see Figure 12 (d)) can thus be accurately computed in 2 min 15 s, 

which is 8.4 and 24.0 times faster compared to the POD reduced order model (~ 19 min) and to 

the FOM (~ 55 min), respectively. 

  

(a) (b) 

Figure 11: Displacement component ux of the northwest corner computed using the FOMs (a), and criterion used 

to truncate the POD modal basis used to perform the parametric analysis (b). 

  

(a) (b) 

  

(c) (d) 

Figure 12: Strain energy error (a), offline CPU time (b), online CPU time (c), and displacement ux of the north-

west corner when the residual error is reached (d) (comparison using the second concrete with 20 POD modes). 

The POD-UDEIM is less efficient since 350 elements are necessary to guarantee the same 

residual error, leading to an online CPU time of 2 min 47 s. As a result, the online speed-up 

factors are lower, with values equal to 6.9 (POD) and 20.2 (FOM). The error stabilizes well 

with both methods even if slight variations may appear since time-dependent internal variables 
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are involved. Note that the offline CPU time of the POD-ECSW (m = 175) is 3.2 times higher 

compared to the POD-UDEIM (m = 350) in the present case study (see Figure 12 (b)). Still, the 

hyper-reduction method needs to be chosen wisely according to the number of online phases 

required to complete the parametric analysis, as suggested in Section 4.3. 

The damage index distribution in Figure 13 (a) shows that nonlinearities appear in 1673 

beam elements (i.e., 58 % of the whole structure) according to the FOM response. The RID 

achieving the residual error is thus 4.8 and 9.6 times smaller using the UDEIM and the ECSW, 

respectively (see Figure 13 (b) & (c)). As in Section 4.3, both methods are thus able to approx-

imate solutions in the case damage appears on a large number of elements, making them suita-

ble for analyses using the concrete properties as parameters. 

 

(a) 

 
 

(b) (c) 

Figure 13: Damage index distribution of the FOM using the second concrete (1673 damaged beam elements) (a), 

and RIDs with 20 POD modes: UDEIM with 350 elements (b) and ECSW with 175 elements (c). 

5 CONCLUSIONS 

This paper compared the efficiency of two data-driven hyper-reduced order modeling meth-

ods, the POD-UDEIM and the POD-ECSW, to accelerate vulnerability analyses on reinforced 

concrete structures subjected to earthquakes. Both methods were applied to parametric analyses 

about the ground motions and the concrete properties. Applications on a L-shaped three-story 

building made of multi-fiber beam elements showed that both methods can successfully ap-

proximate solutions in the case damage appears on a large number of elements. Using HROMs 

made it possible to perform online FEM analyses from 20 and 32 times faster with errors lower 

than 0.5 %. The POD-ECSW revealed to be more efficient than the POD-UDEIM during the 

online phases, allowing for smaller errors, online CPU times, and reduced integration domains. 

However, the computational cost of the SNNLs solver used during the offline phase remains 

significantly higher than the DEIM algorithm, especially with high dimensional systems. As a 
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result, the POD-ECSW saves more CPU time only if the number of online FEM analyses is 

high enough. 

Despite RIDs 5 to 10 times smaller than the high dimensional systems, both methods proved 

accurate enough to correctly model strong distributed nonlinearities (e.g., damage) involving 

time-dependent internal variables. Their reliability when applied to vulnerability analyses (e.g., 

fragility curves) involving earthquakes of differing orders of magnitude (e.g., with peak ground 

acceleration ranging from 0.5 m/s² to 7 m/s²) is still an open question. Additionally, extending 

the method to structures modeled by multilayer shells is relevant since these elements are com-

monly used to model slabs and walls in the earthquake engineering framework. Sensitivity or 

stochastic analyses about the dimensions (e.g., area of the sections) could also be achieved using 

HROMs. 
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