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ABSTRACT  

Data reduction in Multidimensional Data Warehouse (MDW) allows increasing the efficiency of 

analysis and facilitating decision-makers’ tasks. In this paper, we model a MDW containing 

reduced data through a set of states. Each state is valid for a certain period of time; it contains 

only useful information according to decision-makers’ needs. In order to carry out analyses in a 

MDW composed of states, an extension of traditional OLAP analysis operators is required. In 

this paper, we define a set of OLAP operators compatible with reduced MDW. For each 

operator, we propose a user-oriented definition along with an algorithmic translation. To show 

the feasibility and the efficiency of the proposed concepts, we implement the analysis operators 

in a R-OLAP framework. 

Keywords: Data reduction, multidimensional design, OLAP analysis operators  

INTRODUCTION 

Multidimensional Data Warehouse (MDW) organizes data in a multidimensional way in order to 

support On-Line Analytical Processing (OLAP). More specifically, a MDW schema is based on 

facts (analysis subjects) and dimensions (analysis axes). The facts contain analysis indicators, 

while a dimensions includes analysis parameters organized in hierarchies from the minimal 

(most detailed) granularity to the maximal (most general) granularity. In a classical MDW, all 

data are permanently stored and new data is periodically added. The increasing volume of MDW 

makes the tasks of decision-makers more difficult since they may be lost during their analyses. 

On the other hand, information is usually timely sensitive; most of detailed information loses its 

value over time. Nevertheless, information at high granularity levels is more stable, and it can 

generally fulfill decision-makers’ needs when analyses are carried out over older data (Skyt, 

Jensen, & Pedersen, 2008). For instance, an analyst may have interest in analyzing sale amounts 

by product’s brand for the last five years. However, as lots of today’s brands did not exist before, 

the brand granularity level may be useless for an older period. As a result, the analyst may have 

no more interest in analyzing sale amounts by brand over the last ten years but by a higher and 

more stable granularity level, such as product’s category. 

Facing large volumes of data among which a great amount of inadequate detailed data are 

found, our aim is to both increase the analysis efficiency and facilitate the analysts’ tasks. To this 

end, we propose a solution for supporting OLAP analyses over only pertinent data as time goes 



on. Firstly, we provide a conceptual MDW model based on data reduction to aggregate and then 

remove useless detailed data. Secondly, we propose a set of algebraic OLAP operators to support 

analyses over reduced data. The execution process of each operator is illustrated with the help of 

an algorithm. At last, we implement the reduced MDW model and the set of analysis operators in 

a R-OLAP framework. The framework aims at proving the feasibility of proposed concepts and 

evaluating the efficiency of carrying out analyses over reduced data. 

This paper is composed as follows. Section 2 studies related works. Section 3 presents 

preliminary concepts of reduced MDW illustrated with a case study. Section 4 describes our 

modeling solution for OLAP analysis operators. Section 5 presents a multi-states analysis 

framework showing the feasibility of concepts. Section 6 provides the results of experimental 

assessments on the efficiency of proposed OLAP operators. 

RELATED WORK 

Model of reduced data 

Reducing data allows both decreasing the quantity of irrelevant data in decision making and 

increasing future analysis quality (Udo & Afolabi, 2011). In the field of MDW, (Skyt et al., 

2008) presents a technique for progressive data aggregation of a fact. This study specifies data 

aggregation criteria of a fact according to granularity levels of dimensions. As mentioned in 

(Iftikhar & Pedersen, 2011), this work is highly theoretical but it fails to provide us a concrete 

implementation strategy. In (Iftikhar & Pedersen, 2011), a gradual data aggregation solution 

based on conception, implementation and evaluation is provided. This solution is based on a 

table containing different temporal granularities: second, minute, hour, month and year. 

However, the work of (Iftikhar & Pedersen, 2011; Skyt et al., 2008) is limited to the reduction of 

a single fact. Moreover, no formal model for reduced multidimensional data has been proposed.  

Other related work concerning the management of data evolution in MDW is also proposed. 

The objective of this work is different from the data reduction. In general, its objective is to 

manage changes in data sources. (Kimball, 1996) put forwards the concept of Slowly Changing 

Dimensions (SCDs). SCDs imply that data may change within a dimension, even though it 

occurs less frequently than in a fact. Three basic modeling solutions have been proposed for 

managing dimensional data changes, namely overwrite old data, create new record for each 

change and keep data changes as alternative values in MDW. (Matteo Golfarelli & Rizzi, 2009) 

point out that not only data but also MDW schema can change over time according to user’s 

requirements. SCDs, however, do not provide solution for handling schema changes.  

Two approaches allowing managing both data and schema changes have been proposed, 

namely schema evolution, and schema versioning (Matteo Golfarelli & Rizzi, 2009). The schema 

evolution approach supports only the lasted MDW version, while the schema versioning 

approach allows keeping different MDW versions by stamping each MDW version with a 

validation period.  

In the schema versioning approach, (Eder, Koncilia, & Morzy, 2002) was the first to address 

questions on multiversion MDW in order to manage both schema and instance changes. A 

metamodel is proposed to stamp each element in OLAP cube with a validity interval, so that 

multiple MDW versions can be managed and queried through the metamodel. However, no 

discussion about how a new version can be derived from a previous one is made in this work. 

(Body, Miquel, Bédard, & Tchounikine, 2002) propose a conceptual model allowing building a 



multiversion fact table. Several structural evolution operators are proposed in this work in order 

to manage the mapping between two MDW versions. (Wrembel & Bębel, 2007) distinguishes 

two types of MDW versions, namely real version and alternative version. The real version is 

determined by changed in application domain and user’s requirements, while the alternative 

version is created to support business simulations and what-if analyses. 15 elementary schema 

change operations and 7 instance change operations are available to modify a MDW version 

(Wrembel, 2009). However, no conceptual model for multiversion MDW is proposed in 

(Wrembel, 2009; Wrembel & Bębel, 2007). (Ravat, Teste, & Zurfluh, 2006) propose a 

conceptual definition for multiversion MDW based on a constellation model. However, the 

implementation framework is not explicitly presented in this work.  

Note that, our objective is to propose a solution for OLAP analyses over reduced data. The 

work on MDW data reduction only partially satisfies our objective since only reduction of the 

fact is involved. Therefore, our first aim is to propose a solution for handling the complete MDW 

schema changes after data reduction. By consequence, all of the dimensions as well as the fact 

should be susceptible to sustain reductions to different granularity levels. The information judged 

useless is aggregated and then deleted from MDW in order to provide only necessary data for 

analysis.  

On the other hand, inspirations of solutions for complete schema changes can be found within 

the field of schema versioning. However, the proposed concepts are not directly applicable. 

Adaptation should be defined especially for the derivation between different schemas in order to 

calculate aggregated data. Moreover, the conceptual solution should be implemented in an 

analysis framework in order to show the feasibility of the proposed concepts. 

Reduced data analysis  

To the best of our knowledge, no solution for OLAP analysis is proposed in the field of data 

reduction in MDW. Only few querying operators (select, project, aggregate) are formally 

proposed in (Skyt et al., 2008).  

Some mechanisms for querying a multiversion MDW can be found. (Morzy & Wrembel, 

2004) propose an extension of SQL vocabulary. Decision-makers can implicitly query multiple 

versions by specifying a temporal interval or the involved versions in a SQL query. After the 

execution of a query, a decision-maker can receive several partial results; each partial result is 

annotated with information concerning the involved MDW version. If possible, several partial 

results are integrated into a consistent set (Mitrpanont & Fugkeaw, 2006).  

However, the work about querying a multiversion MDW is only limited to a special usage of 

SQL. To support on-line interactive analyses, a decision-maker needs more complex 

multidimensional analysis operators. To the best of our knowledge, no work in the field of 

multiversion MDW has involved OLAP analysis operators. Moreover, analysis results are 

possible to be presented separately, which makes the interaction with data more complex.  

Our objective is to define a complete solution for OLAP analyses over reduced data. Neither 

the work over data reduction nor the work of multiversion MDW proposes OLAP operators; the 

work in both fields is limited to either query language or formal querying operators.  

Facing to these issues, we aim at proposing a modeling solution for OLAP analysis operators. 

In contrast with the related work, our proposed analysis operators should facilitate decision-

makers’ tasks by not requiring the different involved schemas. Moreover, after the execution of 



analysis operator, only one global result should be presented to decision-makers in order to 

facilitate the interaction with displayed result. 

CONCEPTS OF REDUCED MDW  

We firstly describe a case study of data reduction in MDW. This case study aims at giving a first 

glance at selective deletion of data in MDW as well as data model notations. After the case 

study, we define a formal presentation of MDW concepts adapted to the reduction context. At 

last we present the basic constraints that a valid reduced MDW should satisfy.  

Case Study 

Referring to one of the reference points in the field of OLAP, our case study is built upon the 

Star Schema Benchmark proposed in (O’Neil, O’Neil, Chen, & Revilak, 2009). The SSB is 

designed to measure the performance of OLAP data warehouse systems. Large volume of data 

can be generated by SSB following a classical star schema model. Our case study consists in an 

extract from SSB, which includes one fact named LINEORDERS. It contains seven measures, 

namely QUANTITY, EXTENDEDPRICE, ORDTOTALPRICE, DISCOUNT, REVENUE, 

SUPLLYCOST and TAX. Each LINEORDER is associated to four dimensions: the time of line 

order (DATE), the customer who takes the order (CUSTOMER), the product part (PART) and the 

corresponding supplier (SUPPLIER). Each dimension contains attributes organized according to 

their granularity level in one or several hierarchies. For instance, the dimension CUSTOMER 

contains two hierarchies: HCUS_MKT and HCUS_GEO. In the dimension CUSTOMER, analysis 

parameters are organized from the lowest granularity level CUSTKEY to the highest level 

ALL_C with two hierarchies. Based on the graphical notation introduced in (M. Golfarelli, Maio, 

& Rizzi, 1998), we propose a conceptual notation of the SSB MDW (cf. figure 1). 

 

Figure 1. MDW schema before data reduction 

 

After populating the dimensions and the fact, we obtain a MDW saturated with all detailed 

information over time. The important volume of detailed data slows down the analyses during a 

decision-making process. Moreover, most of the old detailed data become obsolete as time goes 

by, they are no more used in analysis process and should be deleted according to user’ needs. For 

illustrative purposes, we suppose a decision-maker expresses her/his needs for reducing data in 

the SSB MDW as follows:  



· From 1997 to 1998, analyses are carried out with reference to the lowest levels of 

granularity (CUSTKEY, SUPPKEY, DATE and PARTKEY) (cf. figure 1).  

· In the previous period from 1995 to 1997, except for the dimension DATE, all other 

dimensions are summarized to higher granularity levels (cf. figure 2). For instance, the 

dimension CUSTOMER keeps only CITY, NATION, REGION and ALL_C levels. Useless 

parameters are aggregated and then removed from the schema within this period.  

· Before 1995, only aggregated information by customers’ NATION, YEARMONTH and 

products’ CATEGORY makes sense (cf. figure 3). 

 

Figure 2. MDW schema valid from 1995 to 1997 

 

Figure 3.MDW schema valid from 1992 to 1995 

 

Basic concepts of reduced MDW 

Classical MDW is composed of one single schema which does not support selective deletion of 

useless information over time. In order to manage progressive schema changes, we model a 

reduced MDW with a set of star schemas called states. The current state corresponds to the 

present status of the MDW containing the most detailed information, while past states 

correspond to a succession of reduced states over time in which information is aggregated. 

Let us define N such as N  = {n
1
,n

2
...} is a finite set of names, N ¹Æ; F such as F = {F1,..., Fn} 

is a finite set of facts of a reduced MDW, F ¹Æ. Each fact Fm (Fm Î F) is associated to one and 

only one state of a MDW, where the fact F1 represents the fact in the first state of MDW while 

the fact Fn corresponds to the fact in the n-th state of a MDW; D such as D = { ,..., } is a 

finite set of dimensions, D ¹Æ. Each dimension  (  Î D) is only valid in an unique state, it 

corresponds to the m-th dimension in the states i;  

  



Definition 1. A MDW is defined by S = (n
S
 ; E ; Map), where : 

· n
S
ÎN is the name of the MDW;  

· E = {E1 ;… ; En} is a set of states composing the MDW, E ≠ Æ; The state denoted E1 

corresponds to the current state of MDW; 

· Reduction function Map { E ® E | Map(Ek) = Ek+1 } defines the state named Ek+1 

obtained by the reduction of Ek.  

Definition 2. Each state Ei = (Fi ; Di ; Ti) is a star schema defined for a validation period, 

where 

·  FiÎF is the fact of the state;  

· Di = {  ;… ; }Í D  is a set of dimensions associated to the fact, D . It 

contains at least one temporal dimension; 

· Ti = [tstart
i  ; tend

i  [ is a validation period associated to the state Ei, Ti ≠ Æ Ù tend
i .> tstart

i . The 

validation period is semi-open, i.e. the starting time tstart
i   is included in the interval while 

the end time tend
i  is excluded.  

The union of validation periods of all states corresponds to the validation period of the MDW, 

denoted TTIMES, such as TTIMES = T1È...ÈTn. To define the Ti validation period, we adopt a linear 

and discrete time model approaching time in granular way through time observation units 

(Wang, Bettini, Brodsky, & Jajodia, 1997). A validation period Ti of state Ei is defined by a 

couple of instants. These instants can be fixed (temporal grains such as the year of 1992) or 

dynamic (defined with the instant “tnow”).  

Definition 3. A fact denoted Fi is defined by (n
Fi

, M
Fi

), where  

· n
Fi

 ÎN is the fact name;  

· M
Fi

 = { ; ...; }is a set of measures (also called indicators), M
Fi

 ≠ Æ.  

Definition 4. A dimension denoted  is defined by ( , A , H ), where  

·  ÎN is the dimension name;  

· A = { ; ...; }is the set of the attributes of the dimension, A ≠ Æ;  

· H = { ; ...; } is a set of hierarchies, H ≠ Æ.  

Definition 5.  A hierarchy, denoted Hj (abusive notation of ) is defined by (n
Hj

, P
Hj

, ≺
Hj

, 

Weak
Hj

), where  

· n
Hj

 ÎN is the hierarchy name;  

· P
Hj

 = { ; ...; } is a set of attributes called parameters, P
Hj

 Í A Ù P
Hj 

≠ Æ. Each 

parameter  defines a granularity level of a hierarchy; 

· ≺
Hj

 is an antisymmetric and transitive binary relation between parameters;  



· Weak
Hj

 Í A  is an application that associates to each parameter a set of dimension 

attributes, called weak attributes, Weak
Hj

 Ç P
Hj

 = Æ. A weak attribute allows enriching 

the semantic of the associated parameter, it does not identify any granularity level.  

Hierarchies organize the attributes of a dimension, from the finest graduation (root parameter 

denoted ) to the most general graduation (extremity parameter denoted ). Thus, a 

hierarchy defines the valid navigation paths on a dimension. 

Example 1.The E3 state in the figure 3 is composed of one fact and three dimensions, it is 

valid from 1992 to 1995. The fact named LINEORDER contains seven measures. The first 

dimension CUSTOMER contains a hierarchy named HCUS_GEO on which the parameters are 

organized according to their granularity level: from the lowest level named NATION to the 

highest level ALL_C. The second dimension named PART contains three parameters 

CATEGORY, MFGR and ALL_P within one hierarchy HPART_BR. The third dimension is a 

temporal dimension, named DATE. This dimension is graduated by the parameter 

YEARMONTH, YEAR and ALL_D on the hierarchy HDATE. 

The formal representation of state E3 is as follows:  

E3 = (F3 ; {  ; ;  } ; [t1992 ;t1995[) where 

· F3 = (LINEORDER; { QUANTITY; EXTENDEDPRICE; ORDTOTALPRICE; 

DISCOUNT; REVENUE; SUPLLYCOST ; TAX }) 

·  = (CUSTOMER; { NATION; REGION; ALL_C }; {  }). 

·  = (PART; {CATEGORY; MFGR; ALL_P }; { }). 

·  = (DATE; { YEARMONTH; YEAR; ALL_D }; { }). 

We take the hierarchy H1 on the temporal dimension DATE (abusive notation of ) as an 

example to illustrate the abstract representation for a hierarchy. 

H1= (n
H1

, P
H1

, ≺
H1

, Weak
H1

) where 

· n
H1

 = HDATE; 

· P
H1

 = { YEARMONTH, YEAR, ALL_D }; 

· ≺
H1

 = {( YEARMONTH, YEAR); (YEAR, ALL_D)}; 

· WeakH1 = Æ. 

Derived concepts of reduced MDW 

The basic concepts presented in the previous section allow defining the elements appearing in 

each state of a reduced data model. In order to support analyses over reduced data, it is important 

to identify the elements present only in certain states but not in others. In this section, we present 

three derived concepts defining missing elements in reduced MDW.  



The first derived concepts is called missing attribute. A missing attribute refers to an attribute 

which is present in the first state (i.e. states E1) and absent in at least one older state. We 

associate the missing attributes with certain states in order to indicate the unavailable period. 

Let us define AD  is the set of attributes on all the dimensions D in the state Ek, A
D ≠ ; E’ Í 

E , is a non-empty subset of states, E’ = {Em ;… ; En}, n≥m>1. 

Definition 6: The set of Missing Attributes for a subset of states E’ is denoted MAE’, 

MAE’=AD  \{AD  ;... AD }, which is the difference between the set of attributes in the first state 

E1 and those in the subset of states E’ such as E’ Ì E Ù E1ÏE’.  

Example 2. After removing the CUSTKEY in the hierarchy HCUS_GEO of the dimension 

CUSTOMER before 1997, CUSTKEY becomes a missing attribute in the states E2 and E3, 

denoted CUSTKEY
 
 Î MAE’,E’={

 
E2; E3}. In the same way, after deleting the parameter named 

CITY for the period from 1992 to 1995, CITY becomes a missing attribute in the state E3, 

denoted CITY
 
 Î MAE’, E’={E3}. By consequence, the unaffected parameters NATION and 

REGION are accessible throughout the seven year (from 1992 to 1998); the parameter named 

CITY can be found within states during the last four years (from 1995 to 1998); the parameter 

CUSTKEY is only available from 1997 to 1998.  

The second derived concept refers to missing hierarchy. A hierarchy becomes missing in a 

subset of states E’ (E’ Ì E), when all the parameters in this hierarchy are missing attributes. 

Definition 7: The set of Missing Hierarchies in a subset of states E’ is denoted MHE’, where 

"Hk Î MHE’, " Pk Î P  | Pk Î MAE’. 

The last derived concept is missing dimension, which refers to a dimension where all its 

hierarchies are of type missing hierarchy in a subset of states E’ (E’ Ì E). 

Definition 8: The set of Missing Dimensions in a subset of states E’ is denoted MDE’, where 

"Dk Î MDE’, " Hj Î H  | Hj Î MHE’. 

Constraints 

In order to ensure the coherence of multi-state model, we propose a set of integrity constraints. 

As announced in the papers (Demuth & Hussmann, 1999; Elmasri, 2011), the common integrity 

constraints fall into three types: 

· Explicit constraints, also called business rules, are defined by the designer, such as 

attribute domain in the relational model and constraints between hierarchy components in 

the multidimensional model (Ghozzi, Ravat, Teste, & Zurfluh, 2003). This type of 

constraints falls out of the scope of this paper.  

· Implicit constraints represent integrity rules which are part of the data model. They are 

specified on individual static components, such as primary key and foreign key in the 

relational model. This type of constraints can be found within the definitions presented in 

the section Basic concepts of reduced MDW.  

· Inherent constraints are not specified in a schema; they are supported by the definition of 

the corresponding data model. This type of constraints are presented in this section. 



Constraints over states.  

· A reduced state must contain at most the same number of dimensions than the previous 

one:  two states Ei and Ej with j>i ® |D | ≥ |D | Ù ( ÎD  ®  Î D  

· Validation periods of the states must be contiguous:  a state Ei defined with (Fi; D ; Ti) 

and a state Ei+1 reduced  from Ei ®  =  

Constraints over dimension and hierarchy.  

· A reduced dimension should contain at most the same attributes as the original 

dimension:   attribute of the dimension  obtained by the reduction of the 

dimension  ® | A | ≥ |A | Ù ( " Î A  ® ÎA ) 

· A reduced dimension should contain at most the same hierarchies as the original 

dimension:  of the dimension  obtained by the reduction of the dimension  

® |H | ≥ |H | Ù ( " Î H  ® ÎH ) 

· A reduced hierarchy contains at most the same parameters as the original hierarchy, at 

least two parameters (  and another one):  a hierarchy obtained by the 

reduction of the hierarchy , Þ    

MULTI-STATES ANALYSIS OPERATORS  

A reduced MDW facilitates decision-makers' tasks by keeping only useful data over time. In 

order to carry out analyses over reduced data, a decision-maker needs OLAP operators 

applicable to MDW composed of multiple states.  

In the scientific literature, we can find some classical analysis operators allowing exploiting 

OLAP cubes. (Ciferri et al., 2013; Ravat, Teste, Tournier, & Zurfluh, 2008) propose a set of 

user-oriented OLAP operators supporting displaying, drilling, rotating and selecting operations. 

Even though these operators sustain flexible and adaptable to different classical modeling 

solutions (star and constellation models), they become incompatible with reduced MDW due to 

the following reasons:  

· In a reduced data model, a set of schemas (states) is defined for MDW over time. As 

classical algebraic analysis operators are conceived to manipulate one unique schema, 

they cannot be directly applied to reduced MDW.  

· Regarding to reduced data instances, a reduced MDW does not contain all detailed 

information in older states. Unfortunately, classical analysis operators do not provide 

solutions for handling the selective deletion of detailed information in different states. 

To carry out analyses in reduced MDW, decision-makers need extensions of classical OLAP 

operators that can deal with both schema and instance changes over time. Facing to this issue, we 

extend five commonly-used OLAP operators in order to support basic multi-states analysis in 

reduced MDW. The first one is denoted Display
multi-states

, it allows building the first analysis 



results; the second and third operators are denoted Drilldown
multi-states

 and Rollup
multi-states

 , they 

allow increasing and decreasing analysis granularity respectively; the fourth operator is 

Rotate
multi-states

 operator, it allows changing the content of a currently displayed analysis axis; the 

last operator, denoted Select
multi-states

, allows adding restriction predicates to analysis results.  

In this section, we firstly introduce the principles that the multi-states analysis operators 

follow. Secondly we propose an extension of classical representation solution for analysis 

results. At last we present the five multi-states analysis operators as well as their corresponding 

execution algorithms. The operators and algorithms are represented in algebraic and technology-

neutral form, so that they can be easily implemented in different environments (e.g. R-OLAP, M-

OLAP and H-OLAP).  

Characteristics of multi-states analysis operators 

User-oriented algebraic operators 

Each analysis operator is user-oriented, it defines an elementary analysis operation in the point of 

view of a decision-maker. To facilitate decision-makers' tasks, the multi-states analysis operators 

manipulate conceptual concepts such as fact and dimensions in the context of reduced MDW. 

Decision-makers just need to specify "what-to-do" without worrying about "how-to-do". 

Moreover, decision-makers do not necessarily need to explicitly specify the involved states. 

They simply choose a validation period, the multi-states analysis operators automatically search 

the involved states.  

Bi-directional adaptation  

Analysis cannot be carried out with missing elements (i.e. missing attributes, missing hierarchies 

and missing dimensions). Adaptations should be taken if missing elements are involved during an 

analysis. We distinguish two different adaptation approaches, namely Breadth-first and Depth-

first. 

· The Breadth-first approach gives priority to the span of temporal intervals involved in 

analysis. More specifically, it consists in (a) keeping as much as possible the span of 

involved temporal intervals and (b) increasing the granularity level until we find the first 

common parameter among all involved states.  

· The Depth-first approach attaches importance to the granularity levels of analysis. It 

allows (a) maintaining the chosen granularity levels at the price of (b) reducing the 

temporal intervals to find the subset of states that contains all involved parameters.  

Example 3. If the parameter named CITY (available from 1995 to 1998) is involved in an 

analysis during the period from 1992 to 1998, adaptations can be taken as follows (cf. figure 4):  

· According to the Breadth-first approach, the temporal interval [t1992, t1998[ of analysis 

remains unchanged. We look for the first common parameter among all involved states. 

In this case, the parameter NATION is the first common parameter in the states E1, E2 and 

E3. Therefore the granularity level of analysis increases to NATION level in order to keep 

the same breadth of temporal interval.  

· According to the Depth-first approach, we adjust the span of temporal interval while 

keeping the chosen parameter named CITY unchanged. In this case, we reduce the 



temporal interval to [t1995, t1998[ which is the validation period of the parameter CITY. 

Finally the analysis is carried out by CITY with the adjusted temporal interval from 1995 

to 1998. 

 

Figure 4. Breadth-first and depth-first approaches in the hierarchy HCUS_GEO 

 

 

Analysis results  

As n-dimensional cube is difficult to be exploited by decision-makers (Gyssens & Lakshmanan, 

1997; Maniatis et al., 2005; Ravat et al., 2008), we propose to model analysis results in tabular 

form, called Multidimensional Table. In the context of reduced MDW, analysis result presented 

in Multidimensional Table may come from one or several states of MDW. Since the results of 

each analysis are only valid for a certain period of time (i.e. the union of validation periods of all 

involved states), we extend the classical Multidimensional Table by adding a validation period to 

analysis results. 

Definition 9. A Multidimensional Table, denoted MTi, is defined by (S
i
 ; Ax

i
; R

i 
; I

i
), where: 

· S
i
ÎF  is the displayed fact (analysis subject);  

· Ax
i
 = { , } is the set of analysis axes currently presented, among which  and 

 are the horizontal and vertical displayed axes respectively. Each analysis axis ax
i
 Î 

Ax
i
 is composed of a set of dimensions D , hierarchies H  and parameters P , where 

ax
i
 = (D , H , P ) such as D  Î D, H  Î HD  and P  = < H , 

H , … H >. 

· R
i 
 = <pred1, pred2, …> is a set of selection predicates on non-temporal dimensions and/or 

fact. 



· I
i
 Í TTIMES is a set of selection predicates on the temporal dimension, it represents the 

validation period of MTi. 

Remark. Besides eliminating some displayed instances, the temporal criteria also represents 

the validation period of a MT. For this reason, the selection predicates on the temporal 

dimension are not included in R
i
 but managed separately by I

i
.  

Analysis results may come from several states. Partial results from each state are integrated 

into one MT before being presented to decision-makers. No more information about state of 

MDW is shown in MT (cf. figure 5).  

 

Figure 5. Structure of a Multidimensional Table 

 

It is important to note that the bi-dimensional representation of MT does not implicate the 

analyses should be limited to two dimensions. If the set of displayed parameters (i.e. ) 

includes parameters coming from several dimensions, the corresponding axis in MT (i.e. ax
i
) 

may correspond to multiple dimensions in MDW schema.  

Building the first multidimensional table  

The first MT is obtained by using the Display
multi-state

 operator. This operator define the structure 

of the MT and display the highest granularity levels of the chosen hierarchies of dimension. 

 

Table 1. Algebraic multi-states display operator 

Display
multi-states

 ([I]; ndisplay; Sdisplay; Mdisplay; DL; HL; DC; HC; [Adaptation]) = MT0 ; 

Input  · I Í TTIMES: a set of optional temporal intervals. 

· ndisplay Î N: the name of MDW, ndisplay ≠ Æ 

· Sdisplay Î F: the fact (analysis subject) of MDW to be displayed. 

· Mdisplay = {f1(m1), … fk(mk)}, |Mdisplay| ≥ 1 : a non-empty set of indicators to 

be displayed along with their associated aggregation functions  



· DL Î D, DC Î D: the dimensions to be displayed in the horizontal and 

vertical axis respectively.  

· HL Î H , HC Î H : the hierarchies to be displayed in the horizontal and 

vertical axes respectively. 

· Adaptation = {BREADTH, DEPTH}: an optional parameter to specify the 

adaptation method. If no method is specified, the analysis operator takes 

breadth-first adaptation method by default.  

Output MT0 = (S
0
; Ax

0
; R

0
; I

0
) analysis results MT such as  

· Analysis subject S
0
 = Sdisplay 

· Analysis axes Ax
0
, Ax

0
 = { , } such as 

o = ( , , ) where  

§  = DL Ú  = Æ,  

§  = HL Ú  = Æ, 

§  = < > Ú  =Æ. 

o = ( , , ) where  

§  = DC Ú  = Æ,   

§  = HC Ú  = Æ, 

§  = < > Ú  =Æ. 

· Selection predicates on dimensions and/or fact R
0

 = Æ  

· Validation period I
0
 = I Ú I

0
 = T1 È …È Tn Ú I

0
 = Il* 

*Adjusted temporal interval Il Í I Ù Il  = Tm È …È Tk (1≤m<k<n) 

By using the optional input parameter I (temporal interval of analysis specified by decision-

makers), the Display
multi-states

 searches only relevant states involved in the analysis. In the absence 

of the parameter I, the Display
multi-states

 operator is applied to all the states of MDW before 

constructing the first multidimensional table MT0. By default, after the execution of Display
multi-

states
, the displayed parameters in horizontal or vertical axes are the extreme parameter ALLD in 

the hierarchy  of the dimension D.  

However, in some cases, not all parameters provided by decision-makers can be satisfied. The 

Display
multi-states

 has to adapt the input parameters according to the chosen adaptation method. 

Since a multidimensional table can only contain information available in all involved states, in 

certain cases only one analysis axis can be displayed (i.e.  = Æ or  = Æ). In the case where 

none of the chosen analysis axes can be displayed, we disable the execution of Display
multi-states

 

operator. To be more specific, we propose the following execution algorithm for the Display
multi-

states
 operator to deal with all possible circumstances. Note that the subset of states E' in the 

algorithms is defined as E'= {Ex ;… ; Ey}, n≥y>x≥1. 

  



Algorithm 1: Display
multi-states

 ([I]; ndisplay; Sdisplay; Mdisplay; DL; HL; DC; HC; [Adaptation]) = MT0 ; 

Input: Set of temporal intervals I; MDW’s name ndisplay; analysis subject to be displayed Sdisplay; 

set of indicators with aggragated fucntion to be displayed Mdisplay; horizontal and vertical 

analysis axes DL and DC; horizontal and vertical analysis hierarchies HL and HC; specified 

adaptation method Adaptation. 

Output: the first multidimensional table MT0 

Declare Procedure AdaptationInputsVariables(States; Dim, Hier, [Adaptation]);  

Input : A set of states States; a dimension Dim; a hierarchy Hier,  

an optional adaptation method Adaptation 

Begin procedure  

1. If Dim Î MD
States

 then  

2.     If Adaptation = DEPTH then 

3.         Find the maximal subset of states States' Í States | Dim Ï MD
States'

 

4.         States = States' 

5.     Else 

6.         Dim = Æ, Hier = Æ 

7.     End if 

8. Else 

9.     If Dim ¹ Æ Ù Hier Î MH
States

 

10.         If Adaptation = DEPTH then  

11.             Find the maximal subset of states States' Í States | Hier Ï MH
States’

 

12.             States = States' 

13.         Else 

14.             Find a hierarchy  Î H  Ù  Ï MH
States

 

15.             Hier =  

16.         End if 

17.     End if 

18. End if 

End procedure 

Begin 

1. If I ¹ Æ then, 

2.     Find the maximal subset of states E’Í E, "EjÎ E’ | Tj Ç I ¹ Æ 

3. Else  

4.     E’ = E 

5. End if 

6. Call AdaptationInputsVariables(E’; DL, HL, Adaptation); 

7. Call AdaptationInputsVariables(E’; DC, HC, Adaptation); 

8. If DL = Æ Ù DC = Æ 

9.     Impossible operation, display a warning message. 

10. Else 

11.     For EjÎ E’ 

12.         Translate Display
 
(ndisplay; Sdisplay; Mdisplay; DL; HL; DC; HC) into query Qj 

13.         Global query Q = Q È Qj 

14.         ITM = ITM È (Tk Ç I) 

15.     End for 



16.     MT0 = Result of global query Q with I0 = ITM, R0 = Æ 

17. End if 

End 

Example 4. A decision-maker starts the analysis by displaying the total REVENUE according 

to HCUS_GEO hierarchy on the dimension CUSTOMER and HPART_BR hierarchy on the 

dimension PART from 1995 to 1998. The execution algorithm of Display
multi-states

 ([t1995, t1998[ ; 

SSB, LINEORDER, SUM(REVENUE), CUSTOMER, HCUS_GEO, PART, HPART_BR) is 

processed as follows:  

· As I = [t1995, t1998[ is not an empty set, the line 2 is executed to find the subset of states E’ 

= {E1, E2} involved in the analysis.  

· Since CUSTOMER, PART Ï MD
E’

 and HCUS_GEO, HPART_BR Ï MH
E’

, the procedure 

named AdaptationInputsVariables has not adapted the analysis axes and hierarchies.  

· For E1 and E2, one Display for each state is generated and then translated into a partial 

query. Each partial query is executed separately.   

· The first multidimensional table MT0 is built based on the union of each partial query’s 

results. Its restriction predicate is an empty, while the validation period of MT0 is from 

1995 to 1998 (cf. figure 6).  

 

Figure 6. MT0 after the execution of Display
multi-states

 operator. 

 

As all chosen dimensions and hierarchies are available from 1995 to 1998 (states E1 and E2), 

the Display
multi-states

 is executed without adaptation of input parameters. The returned results are 

the sum of revenues of all the line-orders in the SSB MDW. The decision-maker needs more 

multi-states analysis operators in order to, for instance, navigate at different granularity levels. 

Changing analysis granularity  

We extend two operators which allow changing the granularity levels of analysis, namely 

Drilldown
multi-states 

and Rollup
multi-states

. They both take several variables as inputs: a set of 

optional temporal intervals, a currently displayed multidimensional table, an analysis dimension, 

a parameter and an adaptation method. During execution, both operators exploit the navigation 

paths defined by the currently displayed hierarchy. As output, a new multidimensional table is 

produced containing information at a different granularity level.  

Drilldownmulti-states operator  

The DrillDown
multi-states

 operator allows displaying information at a finer granularity level on 

currently displayed dimension in several states. 

Let ax
K
Î Ax

K
 | ax

K
= (D , H , P ) be the analysis axis affected by the Drilldown

multi-states
 

in the  currently displayed multidimensional table MTk  



 

Table 2. Algebraic multi-states drilldown operator 

DrillDown
multi-states

 ([I]; MTk, Di; Pinf; [Adaptation]) = MTK+1 ; 

Input  · I Í TTIMES: a set of optional temporal intervals  

· MTk: the multidimensional table currently displayed 

· Di = D : one of the analysis axes currently displayed  

Pinf Î A : the chosen parameter or weak attribute on dimension Di, 

 Pinf  and " Pm ÎP , Pinf  Pm 

· Adaptation = {BREADTH, DEPTH}: an optional parameter to specify the 

adaptation method. If no method is specified, the analysis operator takes 

breadth-first adaptation method by default. 

Output MTK+1 = (S
K+1

 ; Ax
K+1 

; R
K+1 

; I
k+1

) analysis results MT such as  

· Analysis subject S
K+1

 = S
K
 

· Analysis axes Ax
K+1

, " Î Ax
K+1

| = ( , , ) such as  

o Dimension = ,  

o Hierarchy  = , 

o Parameter   Í P | ( =Di ® = <Pinf> Ú <Pl*>) Ù 

( ¹Di ®  = < , , …>) 

· Selection predicates on dimensions and/or fact R
K+1

 = R
K
  

· Validation period I
k+1

 = I Ú I
k+1

 = Ik Ú I
k+1

 = Il** 

* Adjusted parameter Pl Î P | Pinf  Pl 

** Adjusted temporal interval Il Í I Ù Il  = Tm È …È Tk (1≤m<k<n) 

 

After executing the DrillDown
multi-states

, the decision-maker obtains a new MT with one 

analysis axis unchanged (i.e. ¹Di ®  = < , , …>) and the other analysis axis 

displaying information at a finer granularity level (i.e. =Di ® = <Pinf>). However, as 

certain parameters at low granularity levels exist only in most recent states but not in former 

ones, it is very likely that some input parameters become missing attributes in some involved 

states. The missing attributes should be adjusted before being displayed in the new MT 

(i.e. =Di ® = <Pl> ). The Drilldown
multi-states

 operator follows the algorithm below 

while being executed.  

  



Algorithm 2: Drilldown
multi-states

 ([I]; MTk; D; P; [Adaptation]) = MTk+1 

Input: Set of temporal intervals I, currently displayed multidimensional table MTk, currently 

displayed dimension D, chosen parameter P, optional adaptation method Adaptation.  

Output: new multidimensional table MTk+1 

Begin 

1. Let Hactual be the actually displayed hierarchy on dimension D in the current MTk,  

Hactual Î H
D
 

2. If I ¹ Æ then, 

3.     Find the maximal subset of states E’ Í E, "EjÎ E’ | Tj Ç I ¹ Æ   

4. Else  

5.     E’ = the set of states involved in MTk, E’Í E 

6. End if 

7. If P Î MA
E’

 then  

8.     If Adaptation = DEPTH then 

9.         Find the maximal subset of states E’’ Í E’ | P Ï MA
E’’

 

10.         E’ = E’’ 

11.     Else 

12.         Let PDrilldown = P 

13.         Let P = Æ 

14.         While PDrilldown  ALLD Ù P = Æ 

15.             If "EjÎ E’ | PDrilldown Î AD then 

16.                 P = PDrilldown 

17.             Else 

18.                 PDrilldown increases one granularity level  

19.             End if 

20.         End While 

21.     End if 

22. End if 

23. If E’ = Æ Ú P = Æ 

24.     Impossible operation, display a warning message. 

25. Else 

26.     For EjÎ E’ 

27.         Let  be the part of MT in the state Ej  

28.         Translate Drilldown
 
( ; D ; P) into query Qj 

29.         Global query Q = Q È Qj 

30.         ITM = ITM È (Tk Ç I) 

31.      End for 

32.     New MTK+1 = former MTk updated with the results of query Q, Ik+1 = ITM, Rk+1 =Rk 

33. End if 

End 

When a missing attribute is involved in an analysis, the DrillDown
multi-states

 operator should 

firstly take adaptive actions based on the chosen adaptation method as follows: 



· According to Depth-first method, the DrillDown
multi-states

 operator keeps the specified 

parameter P unchanged while reducing the temporal intervals. The objective is to find a 

subset of states that each of them contains the parameter P.  

· According to Breadth-first method, the DrillDown
multi-states

 operator augments the chosen 

parameter’s granularity level while keeping the same temporal intervals. This approach 

aims to find the first common parameter among all involved states.  

Example 5. After executing the previous Display
multi-states

 operator, the decision-maker 

continues her/his analysis by consulting orders' revenues by CUSTKEY and CATEGORY for the 

same period as before. Moreover, she/he points out in this analysis the temporal intervals is more 

important than the depth of the involved granularity levels. This analysis needs implies the use of 

two Drilldown
multi-states

 operators.  

· The first Drilldown
multi-states

 operator is carried out on the dimension CUSTOMER. As the 

parameter CUSTKEY only exists in the state E1 from 1997 to 1998 (cf. figure 4), the first 

Drilldown
multi-states

 operator has to adapt itself in accordance to the Breadth-first 

adaptation method: the temporal intervals from 1995 to 1998 remains unchanged, while 

the parameter CUSTKEY is replaced by CITY which is the first common parameter in the 

states E1 (1995-1997) and E2 (1997-1998). 

· The second Drilldown
multi-states

 operator is performed on the dimension PART. Its 

execution does not need any adaptive action, because the parameter CATEGORY is 

always available on the dimension PART from 1995 to 1998 (cf. figures 1 and 2 ). 

The Breadth-first approach results in a combination of analysis operators as follows: 

Drilldown
multi-states

 ( (Drilldown
multi-states

 (MT0, CUSTOMER, CITY, BREADTH)), PART, 

CATEGORY, BREADTH). After executing these two operators, the decision-maker receives the 

analysis results presented in figure 7. 

 

Figure 7. MT1obtained according to Breadth-first approach. 

 

Example 6. Suppose another decision-maker carries out the same analysis described in the 

example 5, but she/he puts more emphasis on the depth of involved granularity level. In this case 

the temporal intervals of analysis have to be reduced to [t1997, t1998[ in order to keep the analysis 

granularity to CUSTKEY level. The Depth-first approach brings about a different combination of 

analysis operators: Drilldown
multi-states

 ((Drilldown
multi-states

 (MT0, CUSTOMER, CUSTKEY, 

DEPTH)), PART, CATEGORY ). The results of analysis are shown in figure 8.  

  



Figure 8. Another version of analysis results obtained according to Depth-first approach. 

 

Rollupmulti-states operator 

The Rollup
multi-states

 operator consists in moving from finer granularity data to coarser granularity 

data on a currently displayed dimension in several states (cf. table 3). 

Let ax
K
Î Ax

K
 | ax

K
= (D , H , P ) be the analysis axis affected by the Rollup

multi-states
 in 

the currently displayed multidimensional table MTk.  

 

Table 3. Algebraic multi-states rollup operator 

Rollup
multi-states

 ([I]; MTk; Di; Psup) = MTK+1 ; 

Input  · I Í TTIMES: a set of optional temporal intervals  

· MTk: multidimensional table currently displayed 

· Di  = D : one of the analysis axes currently displayed  

· Psup Î A : chosen parameter or weak attribute on dimension Di,  

Psup   and " Pm ÎP | Pm  Psup  

Output MTK+1 = (S
K+1

 ; Ax
K+1 

; R
K+1 

; I
k+1

) analysis results MT such as  

· Analysis subject S
K+1

 = S
K
 

· Analysis axes Ax
K+1

, " Î Ax
K+1

| = ( , , ) such as  

o Dimension = ,  

o Hierarchy  = , 

o Parameter   Í P | ( =Di ® = <Psup>) Ù ( ¹Di 

®  = < , , …>) 

· Selection predicates on dimensions and/or fact R
K+1

 = R
K
  

· Validation period I
k+1

 = I Ú I
k+1

 = Ik 

Rollup
multi-states

 operator reveals data at a higher granularity level. As currently displayed 

granularity levels are already the common ones in all involved states, chosen parameter denoted 

Psup presents no doubt in all concerned states. No adaptation method needs to be specified for 

Rollup
multi-states

operator (cf. algorithm 3). 



Algorithm 3: Rollup
multi-states

 ([I]; MTk; D; Psup) = MTk+1  

Input: Set of temporal intervals I, currently displayed multidimensional table MTk, currently 

displayed dimension D, parameter Psup.  

Output: new multidimensional table MTk+1 

Begin 

1. Let Hactual be the actually displayed hierarchy on dimension D in the current MTk 

Hactual Î H
D
 

2. Let Pactual be the actually displayed parameter in hierarchy Hactual in MTk, Pactual ÎA
D
 

3. If I ¹ Æ then, 

4.     Find the maximal subset of states E’Í E, "EjÎ E’ | Tj Ç I ¹ Æ 

5. Else  

6.     E’ = the set of states involved in MTk, E’Í E 

7. End if 

8. If P  Pactual then 

9.     Impossible operation, display a warning message. 

10. Else 

11.     For EjÎ E’ 

12.         Let  be the part of MT in the state Ej  

13.         Translate Rollup
 
( ; D ; P) into query Qj 

14.         Global query Q = Q È Qj 

15.         ITM = ITM È (Tk Ç I) 

16.     End for 

17.     New MTK+1 = former MTk updated with the results of query Q, Ik+1 = ITM, Rk+1 =Rk 

18. End if 

End 

Example 7. The decision-maker continues her/his analysis after the execution of 

Drilldown
multi-states

 according to the Breadth-first adaptation method (cf. figure 7). Haven’t found 

a great difference of revenues according to CATEGORY and CITY, the decision-maker wants to 

analyze the revenue at MFGR level of the dimension PART. The only analysis operator involved 

is presented as follows: Rollup
multi-states

 (MTk+1, PART, MFGR). After the execution of this 

analysis operator, the decision-maker obtains a new MT presented in figure 9. She/he concludes 

that the MFGR of PART has not great influence on the revenue realized in a city. 

 

Figure 9. MT2 after the execution of Rollup
multi-states

. 

 
  



Changing  the contend of an analysis axis 

The rotation operator allows decision-makers to (a) replace a currently displayed dimension by a 

new one and (b) switch to a new analysis hierarchy on the same or a new dimension. Its 

algebraic representation is shown in the table 4.  

Let ax
K
Î Ax

K
 | ax

K
= (D , H , P ) be the analysis axis affected by Rotate

multi-states
 in the 

currently displayed multidimensional table MTk. 

 

Table 4. Algebraic multi-states rotate operator 

Rotate
multi-states

 ([I]; MTk, Dold; Dnew; Hnew; [Adaptation]) = MTK+1 ; 

Input  · I Í TTIMES: a set of optional temporal intervals  

· MTk: the multidimensional table currently displayed 

· Dold = D : one of the analysis axes currently displayed to be replaced 

· Dnew Î D: a new analysis axis to replacing Dold 

· Hnew Î  Ù Hnew ≠ H : a hierarchy on the dimension Dnew to be 

displayed in the new MTk+1 

· Adaptation = {BREADTH, DEPTH}: an optional parameter to specify the 

adaptation method. If no method is specified, the analysis operator takes 

breadth-first adaptation method by default. 

Output MTK+1 = (S
K+1

 ; Ax
K+1 

; R
K+1 

; I
k+1

) analysis results MT such as  

· Analysis subject S
K+1

 = S
K
 

· Analysis axes Ax
K+1

, " Î Ax
K+1

| = ( , , ) such as  

o Dimension =  Ú  = Dnew Ú  = Æ, 

o Hierarchy  =  Ú  = Hnew Ú  = Æ, 

o Parameter   =  Ú  =  Ú  = Æ 

· Selection predicates on dimensions and/or fact R
K+1

 = R
K
  

· Validation period I
k+1

 = I Ú I
k+1

 = Ik Ú I
k+1

 = Il* 

* Adjusted temporal interval Il Í I Ù Il  = Tm È …È Tk (1≤m<k<n) 

There may be several cases where the Rotate
multi-states

 can be used: 

· When decision-makers need to change one currently displayed analysis axis, they should 

indicate the dimension to be replaced (Dold), the new dimension to be displayed (Dnew) 

and one valid hierarchy (Hnew) on the new dimension. 

· When decision-makers want to switch to a new hierarchy on the same dimension, they 

should keep the currently displayed dimension (Dnew = Dold) while choosing a valid 

hierarchy (Hnew) different from the current displayed hierarchy H .  



· If decision-makers decide to remove one analysis axis, they may simply assign a NULL 

value to the new dimension (Dnew) as well as the new hierarhcy (Hnew).  

After execution of Rotate
multi-states

 operator, the unaffected analysis axis remains unchanged 

(i.e. = ,  = ,  = ). The replaced dimension and hierarchy may be the 

ones chosen by decision-makers (i.e.  = Dnew,  = Hnew). In this case, the displayed 

parameter is systematically positioned to the maximal granularity level (i.e.  = ). In 

the case where a missing element (dimension and/or hierarchy) is involved, the Rotate
multi-states

 

operator adapts the input variables according to the adaptation method chosen by decision-

makers.  

We propose the following algorithm to take into account the specificities of reduced MDW 

while executing the Rotate
multi-states 

operator.  

 

Algorithm 4: Rotate
multi -states

 ([I]; MTk; Dold; Dnew; Hnew; [Adaptation]) = MTk+1  

Input: Set of temporal intervals I, currently displayed multidimensional table MTk, currently 

displayed dimension Dold, chosen dimension to be displayed Dnew, chosen hierarchy to be 

displayed Hnew, optional adaptation method Adaptation. 

Output: new multidimensional table MTk+1 

Begin 

1. If I ¹ Æ then, 

2.     Find the maximal subset of states E’Í E, "EjÎ E’ | Tj Ç I ¹ Æ  

3. Else  

4.     E’ = the set of states involved in MTk, E’Í E 

5. End if 

6. If Dnew Î MD
E’

 then  

7.     If Adaptation = DEPTH then 

8.         Find the maximal subset of states E’’ Í E’ | Dnew Ï MD
E’’

 

9.         E’ = E’’ 

10.     Else 

11.         Dnew = Æ, Hnew = Æ 

12.     End if 

13. Else 

14.     If Dnew ¹ Æ Ù Hnew Î MH
E’

 

15.         If Adaptation = DEPTH then  

16.             Find the maximal subset of states E’’ Í E’ | Hnew Ï MH
E’’

 

17.             E’ = E’’ 

18.         Else 

19.             Find a hierarchy  Î H  |  Ï MH
E’

 

20.             Hnew =  

21.         End if 

22.     End if 

23. End if 

24. For EjÎ E’ 

25     Let  be the part of MT in the state Ej  



26.     Translate Rotate
 
(  ; Dold; Dnew; Hnew;) into query Qj 

27.     Global query Q = Q È Qj 

28.     ITM = ITM È (Tk Ç I) 

29. End for 

30. New MTK+1 = former MTk updated with the results of query Q, Ik+1 = ITM, Rk+1 =Rk 

End 

Example 8. Based on the former analysis results presented in MT2 (cf. figure 9), the decision-

maker wants to analyze revenue according to YEARMONTH in the hierarchy HDATE of the 

dimension DATE. This analysis is translated to a combination of two analysis operators: 

Drilldown
multi-states

 (Rotate
multi-states

 (MT2, CUSTOMER, DATE, HDATE), DATE, YEARMONTH). 

· A Rotate
multi-states

 should firstly be executed to change the horizontal analysis axis to the 

hierarchy HDATE on the dimension DATE. By definition, the displayed parameter after 

the execution of rotation operator is the extreme parameter. In this case, the parameter at 

the highest granularity level on dimension DATE is displayed, namely ALL_D. 

· In order to reach to the parameter YEARMONTH on the dimension DATE, we apply a 

Drilldown
multi-states

 to the horizontal analysis axis.  

In this analysis, neither of the operators contains missing element. The adaptation part in the 

algorithm 4 (i.e. lines 6-23) and that in the algorithm 2 (i.e. lines 7-25) are not processed during 

the execution. At the end of the analysis, the decision-maker obtains the results in figure 10. 

 

 Figure 10. MT3 obtained after the rotation of analysis axis. 

 

Adding restriction predicates 

During decision-making process, decision-makers may have interests to focus on a subset of 

data. Therefore, we propose the Select
multi-states

 operator which allows removing fact and 

dimension instances that do not satisfy the specified selection criteria. The Select
multi-states

 

operator regroups the Dice and Slice operators proposed in (Agrawal, Gupta, & Sarawagi, 1997). 

Its algebraic representation is shown in the table 5. 

 

Table 5. Algebraic multi-states select operator 

Select
multi-states

 ([I]; MTk, pred; [Adaptation]) = MTK+1 ; 

Input  · I Í TTIMES: a set of optional temporal intervals  

· MTk: the multidimensional table currently displayed 

· pred ≠ Æ: a set of restriction predicates to be applied to non-temporal 



dimension and/or fact * 

· Adaptation = {BREADTH, DEPTH}: an optional parameter to specify the 

adaptation method. If no method is specified, the analysis operator takes 

breadth-first adaptation method by default. 

Output MTK+1 = (S
K+1

 ; Ax
K+1 

; R
K+1 

; I
k+1

) analysis results MT such as  

· Analysis subject S
K+1

 = S
K
 

· Analysis axes Ax
K+1

, " Î Ax
K+1

| = ( , , ) such as  

o Dimension =   

o Hierarchy  =   

o Parameter   =   

· Selection predicates on dimensions and/or fact R
K+1

 = R
K
 Ç pred  

· Validation period I
k+1

 = I Ú I
k+1

 = Ik Ú I
k+1

 = Il** 

* the set of restriction predicates pred cannot include temporal predicates. All temporal 

predicates should be expressed through the temporal intervals I in order to update the validation 

period of MTk+1 (Cf. definition 9). 

**Adjusted temporal interval Il Í I Ù Il  = Tm È …È Tk (1≤m<k<n). 

The Select
multi-states

 operator consists in adding restriction predicates (pred) to restrict both 

dimension and fact instances without changing the structure of MT (i.e. Ax
K+1

 = Ax
K
). After the 

execution of Select
multi-states

 operator, the new MTk+1 updates the restriction predicates (i.e. R
K+1

 = 

R
K
 Ç pred) . Note that a selection predicate denoted predk can be applied to any fact or non-

temporal dimension instances, even if they are not displayed in the currently displayed MTk.  

Like other multi-states analysis operators, the Select
multi-states

 operator cannot avoid involving 

missing dimension and/or missing attribute. If a restriction predicate predk cannot be satisfied 

due to the involved missing element, it will be removed from the set of restriction predicates 

pred. As an extreme example, if none of the restriction predicates can be satisfied, the set of 

restriction predicates in MTk+1 remains unchanged (i.e. pred = Æ ® R
K+1

 = R
K
). 

 

Algorithm 5: Select
multi -states

 ([I]; MTk, pred; [Adaptation]) = MTk+1  

Input: Set of temporal intervals I, currently displayed multidimensional table MTk, chosen 

selection predicates pred, optional adaptation method Adaptation. 

Output: new multidimensional table MTk+1 

Begin 

1. If I ¹ Æ then, 

2.     Find the maximal subset of states E’Í E, "EjÎ E’ | Tj Ç I ¹ Æ 

3. Else  

4.     E’ = the set of states involved in MTk, E’Í E 

5. End if 

6. For predk Î pred 

7.     If predk contains a predication on non-temporal dimension instances 



8.         Let be the involved dimension,  Î D 

9.         Let be the involved parameter,  Î A  

10.         If  Î MD
E’

 then  

11.             If Adaptation = DEPTH then 

12.                 Find the maximal subset of states E’’ Í E’ |  Ï MD
E’’

 

13.                 E’ = E’’ 

14.             Else 

15.                 pred = pred \ predk  

16.                 Display a warning message about the deletion of predk 

17.             End if 

18.         Else 

19.             If Î MA
E’

 then 

20.                 If Adaptation = DEPTH then 

21.                     Find the maximal subset of states E’’ Í E’ | Ï MA
E’’

 

22.                     E’ = E’’ 

23.                 Else 

24.                     pred = pred \ predk  

25.                     display a warning message about the deletion of predk 

26.                 End if 

27.             End if 

28.         End if 

29.     End if 

30 End for 

31. For EjÎ E’ 

32.     Let  be the part of MT in the state Ej  

33.     Translate Select
 
( ; pred) into query Qj 

34.     Global query Q = Q È Qj 

35.     ITM = ITM È (Tk Ç I) 

36 End for 

37 New MTK+1 = former MTk updated with the results of query Q, Ik+1 = ITM, Rk+1 =Rk Ç pred 

End 

Example 9. The formerly obtained MT3 shows the sum of revenue according to MONTH and 

MFGR (cf. figure 10). Now the decision-maker wants to analyze the orders placed by FRENCH 

customers concerning EUROPEEN suppliers, and the sum of orders’ revenue must be over 20 

million. This analysis can be translated into one Select
multi –states

 operator including three 

restriction predicates: Select
multi –states

 (MT3; SUPPLIER.S_REGION = 'EUROPE' Ù 

CUSTOMER.C_NATION = 'FRANCE' Ù SUM(LO_REVENUE) > 2000000000).  

During the execution of the Select
multi –states 

operator, the lines 10 to 28 are skipped since none 

of the restriction predicate includes missing element. After the execution, the decision-maker 

obtain the results shown in figure 11. 

  



Figure 11. MT4 obtained after applying three restriction predicates. 

 

Remark. In the literature, we can find more OLAP operators other than basic ones. They are 

usually used to support more sophisticated analysis operations. Since most of the complex 

analyses can be realized through combinations of commonly-used operators, we do not discuss 

advanced OLAP operators in this paper. 

IMPLEMENTATION` 

Based on the proposed modeling solutions for reduced MDW and analysis operators, we develop 

a multi-states analysis framework using Java JDK 7 and Oracle 11g. We firstly introduce the 

global architecture of the framework. Secondly, we present two modules in the framework, 

namely Data Management and Analysis Engine.  

Architecture of multi-states analysis framework 
The multi-states analysis framework is composed of three modules, namely Data Management, 

Analysis Engine and Interactive Restitution (cf. figure 12). Each part has specific roles and 

interacts with others. 

Figure 12. Main modules of multi-states analysis frameworks 

 
 

The Data Management module accommodates a metamodel and reduced MDWs. The 

metamodel allows managing reduced MDW, new MDW can be defined by instantiating the 

metamodel.  

The Analysis Engine module is designed for R-OLAP environment. It is composed of a set of 

algebraic operators and three parsers :  



· The set of algebraic operators defines elementary operations that decision-makers can 

carry out while analyzing. The definition of algebraic operators is independent of tools 

and implementation languages.  

· The operator parser (a) translates algebraic operators into queries over metadata, (b) 

analyzes metadata queries’ results and generates corresponding SQL queries over 

different states of MDW, (c) receives partial SQL query results and combines them 

together before sending one global result to graphical interface;  

· The metadata query parser (a) receives and executes queries over metadata generated by 

operator parser, (b) returns metadata queries’ results to operator parser; 

· The SQL query parser (a) receives SQL queries generated by operator parser and 

executes them in corresponding MDW and states, (b) returns partial SQL queries’ results 

to operator parser.  

The Interactive Restitution module contains (a) a graphical implementation of analysis 

operators in order to facilitate decision-makers’ tasks and (b) a graphical interface showing 

analysis results. The interface of the prototype (cf. figure13) is divided into two parts:  

· Analysis results are shown on the top of the graphical interface  

· The multi-states operators are implemented with the help of graphical components on 

the bottom of the interface. 

 

Figure 13. Graphical interface of interactive restitution module  

 

This multi-states analysis framework guaranties the transparence of data reduction in MDW. 

Decision-makers carry out analysis via graphical implementation of algebraic operators (arrow 

tagged “1” in figure 12) and then receive a global analysis result (arrow tagged “11” in figure 

12).  

  



Data management 

The Data Management module allows (a) managing MDW composed of one or several states, 

(b) defining new reduced MDW and (c) automating the translation process from algebraic 

operators to SQL queries. Due to the limited space, we present a simplified metamodel which 

contains only essential components concerning multi-states OLAP analysis. Other components 

related to the constraints (cf. section Preliminary Concepts Of Reduced MDW) are not shown 

below. The graphical notation of the conceptual metamodel is based on UML class diagram (cf. 

figure 14). 

 

Figure 14. UML class diagram metamodel of the reduced MDW  

 

As we can see from the figure 14, the metamodel embodies all proposed concepts. To illustrate 

the particularities of reduced MDW and how it can be managed by the metamodel, we 

implement and instantiate the metamodel with the MDW of the case study. To distinguish the 

name of different types of elements, we add a suffix to “nameEle” attributes for each type of 

elements while implementing the specialized classes of the class Meta_Element. For instance, the 

“nameEle” for class Meta_Dimension is denoted as “nameEle_Dim” afterwards, while the 

“nameEle” for class Meta_Fact is denoted as “nameEle_Fact” in the following examples. We 

also add "_Ei" as suffix to the dimensions in the state Ei during implementation. 

Firstly, the concept of state is implemented with the help of association Meta_star, it connects 

a dimension to a fact with a start date (dateStartStar) as well as an end date (dateEndStar). As we 

can see from the figure below, the fact LINEORDER_E1 is connected with four dimensions, 

namely CUSTOMER_E1, SUPPLIER_E1, DATE_E1 and PART_E1. The validation period of 

state E1 is presented by the validation periods of all these Fact- Dimension associations, which is 

from 1997 to 1998 (cf. figure 15).  

 



Figure 15. Content of Meta_star 

 

Secondly, the derivation between states is managed by two recursive association both denoted 

Derive in metamodel. After implementation, the recursive associations are translated to foreign 

keys named NAMEELE_DIM_DERIVED_FROM and NAMEELE_FACT_DERIVED_FROM: 

they allow associating a derivate dimension and fact to a parent dimension and fact respectively. 

For instance, the dimension named CUSTOMER _E1 of state E1 is associated to its parent 

dimension named CUSTOMER of original MDW (cf. figure 16), while the fact of state E1 named 

LINEORDER_E1 is bonded with the parent fact named LINEORDER (cf. figure 17).  

 

Figure 16. Content of Meta_Dimension 

 

 

Figure 17. Content of Meta_FACT 

 

Thirdly, the relationships between levels are managed by association class Meta_Level 

containing two variables: (a) the position Pos shows the granularity level of an attribute in 

comparison to the others; (b) the type of attribute Typa indicates if it belongs to parameter or 

weak attribute in a hierarchy. As we can see from the figure 18 which shows the content of 

association Meta_Level, the attributes on the dimension CUSTOMER_E1 are organized on two 

hierarchies: HCUS_MKT and HCUS_GEO. Each hierarchy organizes the attributes according to 

their granularity level. For example, hierarchy HCUS_GEO starts from attribute CUSTKEY at 

position “1” and ends up with extremity attribute ALL_C at position “5”. By definition, a 

parameter may be associated with one or several descriptive attributes (weak attributes) on the 

same level. That explains why four attributes of different types CUSTKEY (parameter) and 

NAME, PHONE as well as ADDRESS (weak attribute) share the same position in the hierarchy 

HCUS_GEO.  

  



Figure 18. Content of Meta_Level 

 

Analysis Engine 

One of the core modules of our framework is Analysis Engine. In this section we present more 

details about multi-states analysis processing steps.  

To facilitate decision-makers’ tasks, they only interactively selects the MT components. The 

system converts the selection into the corresponding OLAP analysis operator. The execution of 

analysis operator follows its associated algorithm which is implemented according to five steps 

in Analysis Engine (cf. figure 19). More precisely, through a set of temporal intervals chosen by 

decision-makers, the analysis operator firstly determines the states in which the analysis is 

carried out before adjusting input parameters if necessary. Then it splits up into several 

operators , each of them is applied to a single state along with eventually adjusted parameters. 

Next each partial operator is translated and executed independently to get partial results. At last, 

the currently displayed multidimensional table denoted MTk is updated with all partial results 

obtained. Only the global results presented in the new multidimensional table MTk+1 are returned 

to decision-makers. 

 

Figure 19. Analysis processing steps of multi-states analysis operators  

 
  



EXPERIMENTAL ASSESSMENTS 

After implementation, we carry out some experimental assessments through the graphical 

interface of the Interactive Restitution module. The experimental assessments aim at (a) 

illustrating how analysis over reduced data is carried out through multi-states analysis operators 

and (b) comparing the efficiency of analysis in reduced and unreduced MDW. 

Efficacy of multi-states OLAP analysis 

In this section we carry out OLAP analyses over reduced data through the graphical interface of 

the framework.  

Starting from the MT shown in the figure13, a decision-maker is analyzing the sum of 

revenues of all PARTs bought by all CUSTOMERs from 1995 to 1998 (i.e. states E1 and E2 of the 

reduced MDW). Wishing to consult the revenues by MFGR and by CUSTKEY to get more 

detailed information, she/he slides the cursors concerning the horizontal and vertical analysis 

axes to corresponding levels. The framework detects it concerns two multi-states drilldown 

operations: (a) a Drilldown
multi-states

 from ALL_P to MFGR in the hierarchy HPART_BR of the 

dimension PART and (b) another Drilldown
multi-states

 from ALL_C to CUSTKEY in the hierarchy 

HCUS_GEO of the dimension CUSTOMERS. Details about the execution of these two operators 

are as follows: 

Drilldownmulti-states
 on dimension PART . 

As no analysis interval has been specified, the first Drilldown
multi-states

 on dimension PART take 

the same validation period of the MT0 in the figure 13. The involved states in this analysis are E1 

and E2 (cf. lines 2 to 6 in the algorithm 2). Then, by consulting the metamodel, the analysis 

framework finds the specified parameter MFGR is available in both E1 and E2. During this 

processing step, the first query applicable to metamodel has been generated (cf. figure 20).  

 

Figure 20. The first generated query over metadata  

 

After receiving the results of the first query, the multi-states analysis framework transforms 

Drilldown
multi-states

 operator into several operators. Each operator is translated into a query applied 

to one single state. After the execution of the global query (cf. figure 21), the MT0 is updated 

with the obtained results (cf. algorithm lines 26 to 32).  

  



Figure 21. The second generated query over reduced data  

 

Drilldownmulti-states
 on dimension CUSTOMER . 

The second Drilldown
multi-states

 operator is based on the intermediary MT1 obtained after the first 

Drilldown
multi-states

. The execution of this operator is more complex, since a missing attribute 

CUSTKEY is involved.  

To deal with the missing attribute, the analysis framework firstly asks about the adaptation 

method to use (cf. figure 22). Since the decision-maker chooses the breadth-first option, the 

framework searches another parameter at a coarser granularity level in the hierarchy 

HCUS_GEO of dimension CUSTOMER (cf. algorithm 2 lines 12-20). In this case, the nearest 

parameter CITY happens to be the first common parameter in both E1 and E2.  

 

Figure 22. Choice of adaptation method to deal with a missing attribute   

 



Next, the Drilldown
multi-states

 is divided into two Drilldown operators. Each Drilldown operator 

is carried out over one state with the adapted parameter CITY. By using the union of all partial 

queries' results, the multi-states analysis framework updates the currently displayed MT1. Further 

analyses can be carried out based on the newly obtained multidimensional table denoted MT2 (cf. 

figure 23).  

 

Figure 23. Analysis results obtained after two Drilldown
multi-states

 operations  

 

Efficiency of multi-states OLAP analysis  

In order to see how far the gain of execution time may reach within the reduced SSB MDW. we 

record the execution time of two Drilldown
multi-states

 operators in the previous section. In the 

control MDW without reduction (containing over 24 million tuples of synthetic data), the 

execution time reaches up to 6.83 and 4.678, while in the reduced MDW, their execution time is 

0.15 and 0.098 second. The gain of execution time in the reduced MDW is significant: 97.8%.  

In R-OLAP environment, the multi-states OLAP operators are translated into SQL queries 

during execution. To evaluate the efficiency of multi-states OLAP analysis, we can study query 

execution efficiency in reduced and unreduced MDW. In our previous work (Atigui, Ravat, 

Song, Teste, & Zurfluh, 2015; Atigui, Ravat, Song, & Zurfluh, 2014), we have compared some 

key indicators about query execution efficiency by applying different types of queries to 

different types of R-OLAP MDW. Several experimental assessments are carried out in DBMS 

Oracle 11g with the following hardware configuration:  

· OS: Red Hat Enterprise Linux Server release 5.9 (Tikanga)  

· CPU: 2 x Intel(R) Xeon(R) E5410  @ 2.33GHz with 4 cores  

· RAM: 5GB  

· Disk: SAS 10K  



Each time we take the experimental assessments, we execute two types of query in sixteen 

unreduced and reduced MDW. Four implementation strategies are proposed, such as a MDW 

based on one single table, a MDW based on a fact table and different dimension tables, a 

denormalized MDW implementation and a normalized MDW implementation. For each 

implementation, we propose four scales factors by varying the number of tuples within non-

temporal analysis axis. By consequence, the volume of MDW ranges from 0.9 million to 14 

million tuples.  

After the experimental assessments, we conclude that whatever the query's type, the 

implementation strategy and scale factor, queries are always more efficiently calculated within 

reduced MDW. The reduced MDW allows saving, on average, up to 97% of query execution 

time comparing to unreduced MDW (cf. figure 24). This can show OLAP analysis is more 

efficiently processed in reduced MDW at execution level.  

 

Figure 24. Average gain of execution time in reduced MDW. 

 

CONCLUSION 

Our objective is to both increase the efficiency of analysis and facilitate the analysts’ task. To 

this end, we propose a solution for supporting analyses over data that are reduced over time.  

Firstly, we provide a conceptual MDW model keeping only pertinent data over time. In order 

to aggregate and remove useless detailed data, data reduction is applied to the whole MDW 

schema according to decision-makers’ needs. We propose a MDW composed of a set of states. 

Each state consists of a star schema valid for a certain period of time. Secondly, we propose a set 

of multi-states analysis operators compatible with reduced MDW. Without need for precise 

knowledge of different states in reduced MDW, a decision-maker can carry out common analysis 

operations with the proposed operators, such as displaying analysis results, drilling up and down 

in an analysis axis, changing to a new dimension or hierarchy and restricting analysis results by 

adding selection predicates. For each operator, we make an algebraic definition, an execution 

algorithm and an implementation strategy in R-OLAP environment. To the best of our 

knowledge, this is the first discussion about how OLAP analyses can be carried out in a reduced 
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MDW. At last, we develop a multi-states analysis framework. By illustrating how OLAP 

analyses are carried out through a graphical interface, we show the feasibility of proposed 

concepts. We also show that carrying analyses in reduced MDW is highly efficient, which allows 

saving up to 97.8% of execution time. 

In this paper, we put emphasis on how to carry out OLAP analysis in reduced MDW composed 

of several states over time. The future extensions can take different forms. At the modeling level, 

the reduced MDW is currently modeled with star schema, which is sufficient for carrying out 

multi-states OLAP analyses. Therefore, a minor future extension consists in proposing a 

constellation model for reduced MDW. At analysis level, we intend to propose some advanced 

multi-states analysis operators by regrouping several elementary operators. At implementation 

level, in our previous work (Atigui et al., 2014; Ravat, Song, & Teste, 2015; Atigui et al., 2015), 

the reduced MDW have been implemented in R-OLAP environment. Thus, one extension 

consists in evaluating the efficacy and efficiency of data reduction in different environments, 

such as M-OLAP and H-OLAP.  
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