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A B S T R A C T

In the present paper, we extend the FFT method to deal with the homogenization problem of composite con-
ductors with uniform boundary conditions. The principle of the approach consists of applying a transformation
to build a periodic problem from the solution with uniform boundary conditions. It is shown that the related
periodic problem must be applied to an extended domain obtained by mirror symmetry of the unit cell. The
conductivity equation must then be solved on this extended domain under an applied periodic polarization field
as a loading parameter. Illustrations are provided and the effective conductivity obtained with FFT is compared
to finite element solutions to validate the approach. The proposed method can be applied to microstructure
geometries of all kinds, including cells obtained through imaging devices.
1. Introduction

The determination of the effective properties of composite con-
ductors involves the resolution of the heat equation with specific
conditions at the boundary of the considered unit cell. Three kinds
of boundary conditions are commonly used: periodic boundary con-
ditions, uniform temperature gradient conditions (Dirichlet type), and
uniform flux conditions (Neumann type). Uniform boundary conditions
were introduced in the context of random composites and are due to
the pioneering works by Hill (1952, 1963) and Kröner (1953, 1958).
Alternatively, in the field of asymptotic homogenization methods (see
Auriault and Sanchez-Palencia (1977), Sanchez-Palencia (1980) and
Bensoussan et al. (1978)), the effective properties of the composite are
determined by solving the unit cell problem with periodic boundary
conditions. While these boundary conditions have been introduced
for specific microstructures, the periodic conditions can be applied at
the boundary of a unit cell of a random microstructure and uniform
boundary conditions to periodic composites. This raises fundamental
questions about the comparison between the effective properties com-
puted with these different kinds of boundary conditions. Also, the
definition of the representative volume element over which the bound-
ary conditions are applied has been addressed in many works (Huet,
1990; Hazanov and Huet, 1994; Kanit et al., 2003), but such problems
are not central in the present work.

In this paper, we address the question of solving the unit cell
problem with uniform boundary conditions. This question has been
the subject of many recent studies in the case of composite elasticity.

∗ Corresponding author.

For instance, Gélébart (2020) proposed to consider the problem with
Dirichlet boundary conditions using the FFT method by embedding the
unit cell in a larger domain to apply periodic boundary conditions.
To et al. (2021) addressed the more general problem of Dirichlet and
Neumann boundary conditions. Other approaches consist of applying
a mirror transformation to the original unit cell (Wiegmann, 1999;
Grimm-Strele and Kabel, 2021). Wiegmann (1999) provides a general
method for solving homogeneous cells with arbitrary Dirichlet and Neu-
mann boundary conditions with Fourier series. However, it does not
deal with the problem of composites and the FFT method of Moulinec
and Suquet (1994, 1998). Grimm-Strele and Kabel (2021) extend the
FFT method of Moulinec and Suquet to deal with mixed boundary
conditions in the case of elasticity but fail to deal with the Dirichlet and
Neumann boundary conditions. In the present paper we deal with the
thermal conductivity problem whose equations are close to elasticity
but for which transformations have been identified to deal with uniform
(Dirichlet and Neumann) boundary conditions. In fact, the principle
of the mirrors method is older and can be attributed, for instance, to
Timoshenko and Woinowsky-Krieger (1959) who considered periodic
alternated loadings to solve the problem of rectangular plates. It should
also be noted that in the case of a symmetric microstructure, it can
be shown that solving the periodic boundary conditions can be accom-
plished by applying known (mixed) boundary conditions (Bornert et al.,
2006).

In this paper, we propose to handle the problem with Dirichlet
and Neumann conditions for anisotropic composite conductors. The
E-mail address: vincent.monchiet@univ-eiffel.fr (V. Monchiet).
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Fig. 1. Unit cell of the composite conductor.

ethod is based on the mirror transformation already considered by
iegmann (1999) and Grimm-Strele and Kabel (2021) but introduce

new transformation for the temperature field to derive a periodic prob-
lem on a larger domain. By doing so, it is shown that the classic FFT
method can be applied considering new appropriate loadings fields. The
advantage of our proposed method is that it can easily be implemented
with existing home-made FFT codes without major modifications. More
specifically, we extend the primal approach of Moulinec and Suquet
(1994, 1998), the dual approach (Bhattacharya and Suquet, 2005; Bon-
net, 2007), and the polarization method (Monchiet and Bonnet, 2012)
to deal with the Dirichlet and Neumann problems. Illustrations and
comparisons with FE solutions are provided to validate the approach.

2. Statement of the problem

We consider a unit cell of a composite and we assume that this cell
is parallelepipedic (rectangular for 2D problems) and we denote by
𝐿1, 𝐿2, 𝐿3 its dimensions along each space directions of the cartesian
frame (𝑂, 𝑥1, 𝑥2, 𝑥3). The center of the cartesian frame, denoted ‘‘O’’, is
located at the left bottom corner of the unit cell 𝛺 as shown in Fig. 1.

The homogenized conductivity properties of a composite material
are classically determined by solving the set of partial differential
equations:

div(𝝈) = 0 (1)
𝝈 = 𝑲(𝒙).𝜺 (2)
𝜺 = ∇𝑢 (3)

with appropriate boundary conditions. Three kind of conditions are
conventionally applied to the unit cell:

• Uniform temperature gradient at the boundary (Dirichlet bound-
ary condition):

𝑢 = 𝑬.𝒙, ∀𝒙 ∈ 𝜕𝛺 (4)

• Uniform flux at the boundary (Neumann boundary condition):

𝝈.𝒏 = 𝜮.𝒏, ∀𝒙 ∈ 𝜕𝛺 (5)

• Periodic boundary conditions:

𝑢 − 𝑬.𝒙 periodic, 𝝈.𝒏 antiperiodic (6)

The FFT method is based on Fourier series discretization, the periodic
boundary conditions are then implicitly satisfied by the considered
space of discretization functions. However the method cannot be ap-
plied to the two other kinds of boundary conditions. For instance, with
the Dirichlet condition, the total temperature field can be decomposed
into two parts: (i) a temperature associated with the applied tempera-
ture gradient 𝑬 that is 𝑬.𝒙, (ii) a fluctuation 𝑣 = 𝑢 − 𝑬.𝒙 that is null
at the boundary of the RVE. This field 𝑣 is then periodic and can be
represented along Fourier series. However, the related normal flux 𝝈.𝒏
takes values on the boundary that are obtained from the solution of the
2

Dirichlet problem and have no reason to be antiperiodic for this kind of
Fig. 2. Extended unit cell of the composite conductor.

boundary conditions. Similarly, in the case of the Neumann condition at
the boundary, the value of temperature at the boundary has no reason
to be periodic.

3. Dirichlet problem

3.1. Extension of the domain

We first deal in this section with the conductivity problem related to
Dirichlet boundary condition. As already explained, the difficulty arises
from the fact that the flux is arbitrary on the boundary of the cell while
the FFT method is restricted to problems with the antiperiodicity for the
normal flux. The principle of the approach is to solve a complementary
problem over a larger unit cell obtained with mirror transformation.
Considering the initial unit cell 𝛺 = [0, 𝐿1] × [0, 𝐿2] × [0, 𝐿3], we build a
new cell 𝛺′ by reflexion with respect to the three orthogonal planes
𝑂𝑥1𝑥2, 𝑂𝑥1𝑥3 and 𝑂𝑥2𝑥3 of the cartesian frame (see Fig. 2 for the
representation of the extended cell 𝛺′ in the 2D case).

Let us denote by 𝐼𝛼(𝒙), for 𝛼 = 1, 2 and ∀𝒙 ∈ 𝛺, the characteristic
functions of the phases : 𝛼 = 1 for the matrix and 𝛼 = 2 for the
inclusions. The characteristic function 𝐼𝛼(𝒙) is equal to 1 in the phase
𝛼 and is null outside. The characteristic function over the extended
domain 𝛺′ is given by:

𝐼 ′𝛼(𝒙) = 𝐼𝛼(𝑺.𝒙) (7)

n which 𝐼 ′𝛼(𝒙) is defined over the extended domain 𝛺′ while 𝐼𝛼(𝒙) only
ies in 𝛺. The components of 𝑺 in the cartesian frame are:

=
⎛

⎜

⎜

⎝

𝑠1 0 0
0 𝑠2 0
0 0 𝑠3

⎞

⎟

⎟

⎠

(8)

in which 𝑠𝑖 = sign(𝑥𝑖) for 𝑖 = 1, 2, 3.

3.2. Compatibility equation

Denoting by 𝑣 = 𝑢−𝑬.𝒙 the fluctuation in the Dirichlet problem, we
introduce 𝑣′(𝒙) defined by:

𝑣′(𝒙) = 𝑠1𝑠2𝑠3𝑣(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (9)

Again, 𝑣′(𝒙) is defined over 𝛺′ while 𝑣(𝒙) only lies in 𝛺. With the intro-
duction of 𝑣′, it is shown in the next that it is possible to introduce a flux
hat is 𝛺′-antiperiodic while the flux related to 𝑣 is not 𝛺-antiperiodic.

Because 𝑣 is null at the boundary of 𝛺, 𝑣′ is null at the boundary of
ach individual cells (the original cell 𝛺 and its image by the reflexion).
s a consequence, 𝑣′ is continuous from one individual cell to another.

n addition, the temperature 𝑣′ is 𝛺′-periodic because it is null at the
boundary of 𝛺′ and has a null volume average over 𝛺′ (due to the
coefficient 𝑠1𝑠2𝑠3 behind 𝑣 in Eq. (9) whose value alternates between 1
and −1). Note that on the interface between the individual unit cells,
the continuity of the flux at the interface between individual cells is also
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equivalent to the continuity of the normal gradient because the material
has the same conductivity at both side of the interface. This is due to the
mirror symmetry transformation applied to the original cell. Moreover,
the temperature being continuous at the interface between individual
cells, the tangential components of the gradient of temperature is
also continuous. Finally, the normal and tangential components of the
temperature gradient being continuous, it means that the total gradient
is continuous across the interface. The continuity of the temperature
gradient is then implicitly satisfied if the continuities of the temperature
and normal flux are satisfied.

Let us defined by 𝒒(𝒙) and 𝒒′(𝒙) the gradient of 𝑣(𝒙) and 𝑣′(𝒙)
espectively:

(𝒙) = ∇𝑣(𝒙), ∀𝒙 ∈ 𝛺, 𝒒′(𝒙) = ∇𝑣′(𝒙), ∀𝒙 ∈ 𝛺′ (10)

Applying the classic chain rule, one has ∇[𝑣(𝑺.𝒙)] = 𝑺.∇𝑣(𝑺.𝒙) and then
𝒒(𝒙) and 𝒒′(𝒙) are related by:

𝒒′(𝒙) = 𝑠1𝑠2𝑠3𝑺.𝒒(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (11)

3.3. Flux and thermal equilibrium

Denoting by 𝝈(𝒙) the flux in the initial cell 𝛺, we introduce 𝝈′(𝒙)
uch that:
′(𝒙) = 𝑻 .𝝈(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (12)

where the two order tensor 𝑻 is defined by:

𝑻 = 𝑠1𝑠2𝑠3𝑺 =
⎛

⎜

⎜

⎝

𝑠2𝑠3 0 0
0 𝑠1𝑠3 0
0 0 𝑠1𝑠2

⎞

⎟

⎟

⎠

(13)

This field is divergence free in 𝛺′− where  represents the interfaces
between the individual cells. This distinction is needed because the
components of 𝑺 are constant in each individual cell but are discontinu-
ous at the interfaces between the individual cells (the equilibrium of the
normal flux at the interface between the individual cells is examined
below). The proof for the divergence free condition is easy, indeed,
considering Eq. (12) and applying the chain rule, one has ∀𝒙 ∈ 𝛺′ − :

div(𝑻 .𝝈(𝑺.𝒙)) = 𝑻 ∶ [∇𝝈(𝑺.𝒙).𝑺] (14)

Moreover, 𝑻 .𝑺 = 𝑠1𝑠2𝑠3𝑰 , then ∀𝒙 ∈ 𝛺′ − :

div(𝑻 .𝝈(𝑺.𝒙)) = 𝑠1𝑠2𝑠3𝑰 ∶ [∇𝝈(𝑺.𝒙)] = 𝑠1𝑠2𝑠3 div(𝝈)(𝑺.𝒙) (15)

Then if 𝝈(𝒙) is divergence free, 𝝈′(𝒙) is also divergence free in each
individual cells. The flux 𝝈′(𝒙) is in equilibrium in all the domain
𝛺′ if the normal flux is continuous across the interfaces between the
individual cells. Otherwise, this would imply some line sources at the
junction between individual cells, and would increase the difficulty
when solving the problem with the FFT method.

We consider, for example, the interface corresponding to 𝑥1 = 0.
We aim to verify that 𝜎′1(0, 𝑥2, 𝑥3) admits the same limit at the right
and left on the considered interface. 𝑻 is diagonal, then, accordingly to
Eq. (12), 𝜎′11(0, 𝑥2, 𝑥3) = 𝑇11𝜎11(0, 𝑠2𝑥2, 𝑠3𝑥3). Moreover the component
𝑇11 is independent of 𝑠1 and then 𝜎′11 is then also independent of 𝑠1
that ensures its continuity across the interface 𝑥1 = 0. The proof is the
same for the continuity of components 𝜎′22 and 𝜎′33 across the interfaces
𝑥2 = 0 and 𝑥3 = 0.

For completeness, one has to verify the antiperiodicity conditions.
Consider for examples the opposite edges corresponding to 𝑥1 = ±𝐿1
that can be also written 𝑥1 = 𝑠1𝐿1. The demonstration is very similar,
one has to prove that 𝜎′11 takes the same value on these opposite edges.
One has, accordingly to Eq. (12), 𝜎′1(𝑠1𝐿1, 𝑥2, 𝑥3) = 𝑇11𝜎1(𝐿1, 𝑠2𝑥2, 𝑠3𝑥3)
that is independent of 𝑠1, proving the antiperiodicity for the two
opposite edges 𝑥1 = ±𝐿1. The proof for the other opposite edges is
similar. Finally, it has been shown that 𝝈′ is in equilibrium over 𝛺′

′

3

and is 𝛺 -antiperiodic.
3.4. Thermal relationship

We now establish the relation between the gradient of temperature
𝒒′(𝒙) and the flux 𝝈′(𝒙) in all the domain 𝛺′. In 𝛺 the flux 𝝈 and the
temperature gradient 𝒒(𝒙) are related by the affine relation:

𝝈(𝒙) = 𝑲(𝒙).[𝒒(𝒙) + 𝑬] (16)

It follows that, considering Eq. (12):

𝝈′(𝒙) = 𝑠1𝑠2𝑠3𝑺. [𝑲(𝑺.𝒙).(𝒒(𝑺.𝒙) + 𝑬)] (17)

Moreover, owing to Eq. (11), we deduce that 𝒒(𝑺.𝒙) = 𝑠1𝑠2𝑠3𝑺.𝒒′(𝒙)
and:

𝝈′(𝒙) = 𝑺.𝑲(𝑺.𝒙).𝑺.𝒒′(𝒙) + 𝑠1𝑠2𝑠3𝑺.𝑲(𝑺.𝒙).𝑬 (18)

Finally, because 𝑺.𝑺 = 𝑰 , one can also read:

𝝈′(𝒙) = 𝑲 ′(𝒙).[𝒒′(𝒙) + 𝑬′(𝒙)] (19)

where:

• 𝑲 ′(𝒙) is given by:

𝑲 ′(𝒙) = 𝑺.𝑲(𝑺.𝒙).𝑺 (20)

It must be noticed that 𝑲 ′(𝒙) remains strictly positive definite
by the transformation if 𝑲(𝒙) is also positive definite. Also, if
both constituents are isotropic, 𝑲(𝒙) = 𝑘(𝒙)𝑰 , then 𝑲 ′(𝒙) is
also isotropic and 𝑲 ′(𝒙) = 𝑘(𝑺.𝒙)𝑰 . When the constituents are
anisotropic, the components of 𝑲 ′(𝒙) in the cartesian frame are
𝐾 ′

𝑖𝑗 (𝒙) = 𝑠𝑖𝑠𝑗𝐾𝑖𝑗 (𝑺.𝒙) (here the Einstein convention on repeated
indices must not be applied). It follows that the diagonal compo-
nents of 𝑲 ′(𝒙) remain unchanged by the transformation, 𝐾 ′

𝑖𝑖(𝒙) =
𝐾𝑖𝑖(𝑺.𝒙), while the off-diagonal components must be either pos-
itive or negative depending of the considered individual unit
cell.

• The loading parameter 𝑬′(𝒙) is given by:

𝑬′(𝒙) = 𝑠1𝑠2𝑠3𝑺.𝑬 (21)

This loading parameter is consistent with:

𝑠1𝑠2𝑠3𝑺.𝑲(𝑺.𝒙).𝑬 = 𝑲 ′(𝒙).𝑬′(𝒙) (22)

To conclude, 𝑣′ satisfies the equations related to a conductivity problem
over 𝛺′ with the conductivity tensor 𝑲 ′(𝒙) under the applied periodic
eigenfield 𝑬′(𝒙). The resulting problem which has to be solved is
remarkable by its simplicity, particularly in the isotropic case, since
it only involves the resolution with the applied piecewise constant
loading function 𝑬′(𝒙) instead of the constant loading 𝑬 in the classic
periodic problem. As a consequence, a classic FFT based iterative
schemes can be used to solve that problem with very minor modi-
fication. The values of 𝑬′(𝒙) taken in the period 𝛺′ is illustrated in
Fig. 3 for 2D problems. At the left, we provide the components 𝐸′

1(𝒙)
and, at the right, the component 𝐸′

2(𝒙). The period 𝛺′ is constituted of
four quarters corresponding to the original unit cell 𝛺 and its mirrors
images. The component 𝐸′

1(𝒙) is equal to 𝐸1 for the upper quarters and
equal to −𝐸1 for the lower quarters. The component 𝐸′

2(𝒙) is equal to
𝐸2 for the right quarters and equal to −𝐸2 for the left quarters.

3.5. Effective conductivity

The identification of the macroscopic conductivity must be done
considering the Hill–Mandel Lemma. The macroscopic potential is:

𝑊 = ⟨𝝈′(𝒙).(𝒒′(𝒙) + 𝑬′(𝒙))⟩𝛺′ = ⟨𝑠1𝑠2𝑠3𝑺.𝝈′(𝒙)⟩𝛺′ .𝑬 (23)

In the above equation, the average of the scalar product between 𝝈′(𝒙)
and 𝒒′(𝒙) vanishes since 𝝈′(𝒙).𝒏 is antiperiodic and 𝒒′(𝒙) derivates from
the periodic temperature field 𝑣′(𝒙). Due to the symmetry, one has also:
𝑊 = ⟨𝝈(𝒙).(𝒒(𝒙) + 𝑬)⟩𝛺 = 𝜮.𝑬 (24)
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Fig. 3. Values of components of 𝑬′(𝒙) taken in the unit cell 𝛺′ for the 2𝐷 case.

In virtue of the Hill–Mandell Lemma, we deduce from Eq. (24) together
ith Eq. (23) that the macroscopic flux is given by:

= ⟨𝑠1𝑠2𝑠3𝑺.𝝈′(𝒙)⟩𝛺′ (25)

nce the flux is computed in 𝛺′, the macroscopic flux is derived
rom (25) allowing the computation of the components of the effective

conductivity related to the Dirichlet problem.
The resolution of the Dirichlet problem over the extended domain

𝛺′, can be solved considering classic FFT iterative schemes that are
adapted in order to apply the loading field 𝑬′(𝒙). The details are
provided in Appendix.

4. Neumann problem

4.1. Compatibility

Consider the temperature field 𝑢(𝒙) solution of the Neumann prob-
lem and let us introduce 𝑢′(𝒙) such that:

𝑢′(𝒙) = 𝑢(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (26)

The temperature field 𝑢′(𝒙) is continuous across the interfaces between
individual cells. We denote the temperature gradient in 𝛺 by 𝜺 and the
temperature gradient in 𝛺′ by 𝜺′:

𝜺(𝒙) = ∇𝑢(𝒙), ∀𝒙 ∈ 𝛺, 𝜺′(𝒙) = ∇𝑢′(𝒙), ∀𝒙 ∈ 𝛺′ (27)

By applying the chain rule, one can obtain the following relation
between 𝜺(𝒙) and 𝜺′(𝒙):

𝜺′(𝒙) = 𝑺.𝜺(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (28)

4.2. Equilibrium

The flux related to this problem is divergence-free and satisfies the
Neumann condition 𝝈.𝒏 = 𝜮.𝒏 at the boundary of the unit cell 𝛺. Let
us decompose 𝝈 as follows: 𝝈 = 𝜮 + 𝒑 where 𝒑 is divergence-free and
satisfies to the Neumann condition 𝒑.𝒏 = 0 at the boundary of the unit
cell 𝛺. Let us introduce 𝒑′ the vector field over the extended domain
𝛺′ such that:

𝒑′(𝒙) = 𝑺.𝒑(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ (29)

𝒑′(𝒙) is also divergence-free. Indeed, applying the divergence to 𝒑′(𝒙)
taking into account Eq. (31) yields:

div(𝒑′(𝒙)) = div(𝑺.𝒑(𝑺.𝒙)) = 𝑺 ∶ [∇𝒑(𝑺.𝒙).𝑺] , ∀𝒙 ∈ 𝛺′ (30)

Because 𝑺.𝑺 = 𝑰 , it follows that:

div(𝒑′(𝒙)) = div(𝒑)(𝑺.𝒙), ∀𝒙 ∈ 𝛺′ −  (31)

Then, 𝒑′(𝒙) is divergence-free if 𝒑 is also divergence-free. Again, the
interface between individual cells, , has been excluded because 𝑺 is
not differentiable. However, since 𝒑.𝒏 = 0 at the interfaces , 𝒑′(𝒙).𝒏
is also null, and then the equilibrium is fulfilled at the interfaces  as
well. Moreover, since 𝒑.𝒏 = 0 at the boundary of 𝛺, 𝒑′(𝒙).𝒏 is also null
on the boundary of 𝛺′ and is then anti-periodic.
4

D

Fig. 4. Values of 𝜮′(𝒙) taken in the unit cell 𝛺′.

4.3. Thermal relationships

The conductivity law in 𝛺 is:

𝜺(𝒙) = 𝑯(𝒙).[𝒑(𝒙) +𝜮], ∀𝒙 ∈ 𝛺 (32)

where 𝑯(𝒙) is resistivity tensor, the inverse of the conductivity tensor
𝑲(𝒙). Replacing 𝒙 by 𝑺.𝒙 and owing to Eq. (31) together with Eq. (28),
ne obtains:
′(𝒙) = 𝑺.𝑯(𝑺.𝒙).[𝑺.𝒑′(𝒙) +𝜮], ∀𝒙 ∈ 𝛺′ (33)

ecause 𝑺.𝑺 = 𝑰 , the above relation can be also read:
′(𝒙) = 𝑯 ′(𝒙).[𝒑′(𝒙) +𝜮′(𝒙)], ∀𝒙 ∈ 𝛺′ (34)

ith the following definitions for 𝑯 ′(𝒙) and 𝜮′(𝒙):
′(𝒙) = 𝑺.𝑯(𝑺.𝒙).𝑺, 𝜮′(𝒙) = 𝑺.𝜮 (35)

s a conclusion, 𝒖′(𝒙) is the solution of a conductivity problem over 𝛺′

ith the resistivity tensor 𝑯 ′(𝒙) and the prescribed eigenfield 𝜮′(𝒙).
ote that 𝑯 ′(𝒙) = (𝑲 ′(𝒙))−1 where 𝑲 ′(𝒙) is the conductivity introduced

n the Dirichlet problem (see Eq. (20)). The eigenfield 𝜮′(𝒙) is a piece-
ise constant function. The value taken by 𝜮′(𝒙) in 𝛺′ is illustrated in

he 2D case in Fig. 4.

.4. Homogenized conductivity

In virtue of the Hill–Mandell Lemma, the macroscopic temperature
radient is given by (the proof is very similar to that already given in
ection 3.5):

= ⟨𝑺.𝜺′(𝒙)⟩𝛺′ (36)

he Neumann problem can be solved with the classic FFT iterative
chemes adapted to account for the loading field 𝜮′(𝒙), the details are
rovided in Appendix.

. Applications

As an application purpose, we consider a composite conductor
ade up of circular inclusions. The conductivity of the matrix and

he inclusions are denoted 𝑘1 and 𝑘2 respectively. Three unit cells are
onsidered for the calculations and are illustrated in Fig. 5. The first
ine (cells (a), (b) and (c)) correspond to the original cells on which the
irichlet or Neumann boundary conditions are applied. The second line
orrespond to the extended cells obtain by the reflexion with respect to
he axes 𝑂𝑥1 and 𝑂𝑥2 over which the periodic boundary conditions and
he applied loading field 𝑬′(𝒙) (for the Dirichlet condition) or 𝜮′(𝒙)
for the Neumann condition). Also, for comparison, we also compute
he classic periodic solution under the applied uniform temperature
radient 𝑬 to the cells (a), (b) and (c). Our results are also compared
ith FE solutions to validate the approach considering the periodic,
irichlet and Neumann conditions to the unit cell (a), (b) and (c).
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The unit cell (a) corresponds to a single centered circular inclusion
f radius 𝑅 = 0.45 (the size of the inclusion is 1 along each space
irection). The value 𝑅 = 0.45 of the inclusion radius is chosen to
xhibit better the difference between the different kinds of boundary
onditions. Indeed, with a smaller value of the radius, the effective
onductivities obtained with the three boundary conditions become
uch closer to each other. The unit cell (b) is constituted of four

uarters of a single circular inclusion of radius 𝑅 = 0.45. Note that unit
ells (a) and (b) lead to the same value of the effective conductivity
hen the periodic boundary conditions are considered but are not
quivalent for the Dirichlet and Neumann conditions. The unit cell (c)
ontains a population of 51 inclusions with the same radius 𝑅 = 0.05
the size of the unit cell is still equal to 1).

Note that the exact expressions of Fourier coefficients of the loading
arameter 𝑬′(𝒙) and 𝜮′(𝒙) are considered. For instance, the Fourier
ransform of 𝑬′(𝒙) is:

̂ ′
(𝝃) = 1

|𝛺′
|
∫𝛺′

𝑬′(𝒙) exp(−𝑖𝝃.𝒙)𝑑𝑥1𝑑𝑥2 (37)

he field 𝑬′(𝒙) being a piecewise constant function in 𝛺′, the integra-
ion is trivial and leads to:

̂ ′
(𝝃) =

(

�̂�2(𝝃)𝐸1
�̂�1(𝝃)𝐸2

)

,

𝑠1(𝝃) = −𝑖 sinc(𝐿2𝜉2) sinc
(

𝐿1𝜉1
2

)

sin
(

𝐿1𝜉1
)

, (38)

𝑠2(𝝃) = −𝑖 sinc(𝐿1𝜉1) sinc
(

𝐿2𝜉2
2

)

sin
(

𝐿2𝜉2
)

The Fourier coefficients of the components of 𝜮′(𝒙) are:

�̂�
′
(𝝃) =

(

�̂�1(𝝃)𝛴1
�̂�2(𝝃)𝛴2

)

(39)

The two fields 𝑬′ and 𝜮′ are piecewise constant over a set of rect-
angular domains. The characteristic functions of these domains can
be defined either in real space or in Fourier space, leading to two
different expressions of 𝑬′ and 𝜮′. Obviously, the transition from one
space to the other is easily achieved using the FFT. Both calculations
are rigorously identical when considering an infinite number of wave
vectors. When taking a finite number of wave vectors, this leads to
differences due to the discretization and the truncature approximation.

We first provide the results corresponding to a single centered
inclusion (cells (a) and (d) in Fig. 5). The convergence of the effective
conductivity with the number of wave vectors is presented in Fig. 6.
The effective conductivity is computed with 𝑁 = 32, 64, 128, 256, 512

ave vectors along each space direction considering the primal, dual
nd polarization based iterative schemes for Dirichlet condition (at the
ight), the Neumann condition (at the left), a phase contrast 𝑘2∕𝑘1 of
00 at the top and 0.01 at the bottom.
5

a

In the case of a high contrast, 𝑘2∕𝑘1 = 100, the dual and polarization
terative schemes have a better convergence with the grid refinement
han the primal iterative scheme based on the temperature gradient.
his is observed for both the Dirichlet and Neumann boundary condi-
ions. Conversely, regarding the results in the case of a small contrast,
2∕𝑘1 = 0.01, a better convergence with the grid refinement is observed
ith the primal iterative scheme and the polarization. To conclude the

esults for the single centered inclusion, the polarization method has
better convergence with the grid refinement whatever the value of

ontrast.
Interestingly, we have extrapolated the value of the effective con-

uctivity to estimate its value for any value of the number of wave
ectors 𝑁 taken along each spatial direction, i.e., the resolution of the
mage. Assuming that the dependence of 𝐾ℎ𝑜𝑚 on the resolution 𝑁
ollows the form of a power series:

ℎ𝑜𝑚(𝑁) = 𝑘1
𝐽
∑

𝑗=1

𝐴𝑗

𝑁 𝑗−1
(40)

In order to determine the coefficient 𝐴𝑗 for 𝑗 = 1,… , 𝐽 , it is necessary
to assume that 𝐾ℎ𝑜𝑚(𝑁) is known for a finite number of 𝑁 values,
denoted 𝑁1, 𝑁2,… , 𝑁𝐽 such that 𝑁1 < 𝑁2 < ⋯ < 𝑁𝐽 . The coefficients
𝐴1,… , 𝐴𝐽 can then be identified by solving the following linear system:

𝑘1

⎛
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⎜

⎜
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1 1
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⎟
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(41)

he effective conductivity 𝐾ℎ𝑜𝑚(𝑁𝑗 ) is computed for resolutions 𝑁1, 𝑁2,
, 𝑁𝐽 , where 𝑗 = 1,… , 𝐽 . In the present study, 𝐾ℎ𝑜𝑚 is computed for

ive different resolutions, namely 32, 64, 128, 256, 512. The extrapolated
unction 𝐾ℎ𝑜𝑚(𝑁) is shown in Fig. 6 for the three iterative schemes.
he solid line represents the extrapolated function, while the crosses
orrespond to the discrete values of 𝐾ℎ𝑜𝑚 computed for the different
esolutions. It is worth noting that the extrapolated function provides
n estimate of the conductivity for an infinite resolution (𝑁 = +∞),
hich corresponds to 𝑘1𝐴1. Remarkably, the limits computed by the

hree iterative schemes converge to very close values as the resolution
ends to infinity, allowing for a reliable estimation of the theoretical
alue of 𝐾ℎ𝑜𝑚 for both kinds of boundary conditions.

In Fig. 7, we represent the effective conductivities corresponding to
he Dirichlet and Neumann problem as functions of the phase contrast
2∕𝑘1 for the single centered inclusion at the left (unit cells (a) and (d)),
nd the population of inclusion at the right (unit cells (c) and (f)). As

validation purpose, the results obtained with the FFT are compared
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Fig. 6. Variations of the effective conductivity as a function of the number of wave vectors for one single centered circular inclusion. Figures at the top: problem with Dirichlet
condition (at the right) or Neumann boundary condition (at the left) for 𝑘2∕𝑘1 = 100. Figures at the bottom: the same boundary conditions but for a contrast 𝑘2∕𝑘1 = 0.01.
with those computed with the FEM for which a good accuracy is
observed. As expected, it is noticed that the solution derived with
the periodic boundary and the applied uniform temperature gradi-
ent 𝑬 (classic periodic solution) is bounded by the two other ones
corresponding to Dirichlet and Neumann conditions.

The monotonicity of the estimated effective conductivity is ob-
served only when the FFT method uses the shape function, i.e. the
exact Fourier transform of the characteristic function of the phase.
The method based on the shape function is explained in the work of
Bonnet (2007). The advantage is to describe exactly the microstructure
geometry while in the original method of Moulinec and Suquet (1994,
1998), the unit cell is discretized with pixels that correspond to the
inexactly integrated FFT methods pointed out by Monchiet (2015) and
Vondřejc (2016). However, the use of shape function is only restricted
to some particular geometries for which it is possible to derive the exact
Fourier transform of the characteristic function, the different problems
for which the shape function can be used has been depicted in the
recent work of Nguyen et al. (2021).

We now provide the solution with the unit cells containing four
quarters of circular inclusion (unit cells (b) and (e) in Fig. 8). The
effective conductivity is provided as a function of the phase contrast
varying from 10−3 to 103 for the three kinds of boundary conditions
and considering the FFT and FE methods. It can be observed that the
effective conductivity computed with the Dirichlet boundary conditions
diverges for highly conductive inclusions. Such result has already been
observed by Salmi et al. (2012) for instance. When the conductivity 𝑘2
is very large, we observe that the flux remains finite in the inclusions
6

that do not intersect the edge, so that the temperature gradient is
close to zero. At the limit, for infinitely conductive inclusions, the
temperature gradient in these inclusions therefore tends towards zero.
However, for the inclusions that intersect the edge of the cell, the
temperature gradient cannot be zero as a consequence of the Dirichlet
condition, which imposes 𝑢 = 𝑬.𝒙, on the boundary of the cell.
Consequently, this implies a ‘‘ blow-up’’ of the flux in these inclusions,
as mentioned in the work of Salmi et al. (2012), that leads to the
divergence of the effective conductivity. Dually, i.e. for highly resistive
inclusions and the Neumann condition at the edge, we observe a blow-
up of the temperature gradient in the inclusions that intersect the edge
of the cell. As a consequence, the effective conductivity tends to zero
(divergence of the effective resistivity) in the case of highly resistive
inclusions when the Neumann boundary condition is used.

The distribution of the temperature gradient 𝜀′1 and the flux 𝜎′1
corresponding to the Dirichlet problem (with 𝐸1 = 1 and 𝐸2 = 0) and
the Neumann problem (with 𝛴1 = 1 and 𝛴2 = 0) are provided in Fig. 9.
The phase contrast is 𝑘2∕𝑘1 = 1000. It is observed, for the Dirichlet
problem, that the flux in the inclusions is of the same magnitude as the
contrast: this explains the divergence of the effective conductivity for
highly conductive inclusions.

In Fig. 10 another microstructure is tested to support our conclusion.
At the left, we show a unit cell 𝛺′ obtained by the mirror symmetry
of the original cell 𝛺 corresponding to a population of inclusions for
which some of them cross the boundary. At the right, we provide
the distribution of 𝜀′1 applying the Dirichlet condition with 𝐸1 = 1,
𝐸2 = 0 and we choose the contrast 𝑘2∕𝑘1 = 100. It is observed that the
temperature gradient concentrates in the inclusions that cross the top

and bottom edges of the individual cells and the amplitude is still of the
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Fig. 7. Variations of the effective conductivity as a function of the phase contrast 𝑘2∕𝑘1. Comparisons between the FFT and FEM solutions for the three kinds of boundary
conditions. At the left : one single centered inclusion (unit cell (a) in Fig. 5), at the right : a population of circular inclusions (unit cell (c) in Fig. 5).

Fig. 8. Variations of the effective conductivity as function of the phase contrast 𝑘2∕𝑘1. Comparisons between the FFT and FEM solutions for the three kind of boundary conditions.

Fig. 9. Distribution of 𝜀′1 (at the left) and 𝜎′
1 (at the right) for the Dirichlet problem (at the top) and the Neumann problem (at the bottom). Case of a contrast 𝑘2∕𝑘1 = 100.
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D

Fig. 10. Unit cell with a population of inclusions crossing the boundary (at the left).

istribution of 𝜀′1 (at the right) for the Dirichlet problem (with 𝐸1 = 1 and 𝐸2 = 0) and
the contrast 𝑘2∕𝑘1 = 100.

Table 1
Homogenized conductivities of the anisotropic composite. Comparison of the primal,
dual and polarization based solutions (at 𝑁 = +∞) and the FEM one.

Dirichlet Neumann

𝐾ℎ𝑜𝑚
11 𝐾ℎ𝑜𝑚

12 𝐾ℎ𝑜𝑚
22 𝐾ℎ𝑜𝑚

11 𝐾ℎ𝑜𝑚
12 𝐾ℎ𝑜𝑚

22

FFT primal 4.4974 1.8904 4.0813 4.2808 1.8652 3.8221
(0.080%) (0.026%) (0.010%) (0.096%) (0.016%) (0.034%)

FFT dual 4.4927 1.8893 4.0804 4.2860 1.8653 3.8190
(0.024%) (0.032%) (0.012%) (0.026%) (0.011%) (0.047%)

FFT polarization 4.4932 1.8881 4.0820 4.2820 1.8656 3.8198
(0.013%) (0.095%) (0.027%) (0.068%) (0.005%) (0.026%)

same magnitude as the contrast. Again, in that situation, the solution
diverges for highly conductive inclusions. This problem is inherent
with the use of the Dirichlet condition that is not suited when the unit
cell boundary is crossed by the inclusion. When the Dirichlet condition
is used, the unit cell must be chosen such that the inclusions do not
cross the boundary or must be considered only if the contrast is inferior
to 1. Also, the problem with Neumann condition must be applied to unit
cell for which the inclusion do not cross the boundary or if the contrast
is superior to 1.

Finally, we derive the homogenized conductivity for a composite
with anisotropic phases. The problem under consideration corresponds
to the unit cell (c) in Fig. 5. Random values for the conductivity in the
matrix and the inclusions are used (but ensuring the positiveness of the
conductivity tensor in each phase). The conductivity tensors (expressed
8

in the cartesian frame) in 𝛺1 and 𝛺2 regions are:

𝑲1 =
(

1.9134 1.1270
1.1270 1.6324

)

, 𝑲2 =
(

154.60 127.80
127.80 195.74

)

(42)

The variations of the conductivities 𝐾ℎ𝑜𝑚
11 , 𝐾ℎ𝑜𝑚

12 and 𝐾ℎ𝑜𝑚
22 with the

grid refinement are provided in Figs. 11, 12, 13 for the Dirichlet and
Neumann problems. The conductivities computed with the primal, dual
and polarization based iterative schemes for 𝑁 = 32, 64, 128, 256, 512
and the results are also extrapolated in order to evaluate the limit at
𝑁 → +∞. Again, the interpolation with the different iterative schemes
leads to very close values of the limit.

The results are summarized in Table 1. We provide the limit at
𝑁 = +∞ obtained for the three iterative schemes and for the two
kind of boundary conditions. Also we compare our solutions with FE
ones, the relative error is given under parenthesis in Table 1 FE solu-
tions. The FE solutions are computed considering 123 260 triangular
elements. The proposed FFT methods leads to very accurate values of
the conductivities in the case of an anisotropic material.

6. Conclusion

FFT methods have been generalized to handle the problem of com-
posite conductors with uniform boundary conditions. The resulting
iterative schemes involve only minor modifications and existing codes
are easily adapted to solve these homogenization problems. The compu-
tation is performed on an extended cell obtain by mirror symmetry that
is easily built from the initial image of the microstructure. Moreover,
these unit cells are loaded with a piecewise constant eigenfield for
which simple analytic expressions are derived in the paper. The method
has been illustrated for 2D microstructures with circular inclusions and
the results have been compared with FEM with a good accuracy. The
method could be extended for other problems such as elastic composites
that would constitute future developments.
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Fig. 11. Variations of the homogenized conductivity 𝐾ℎ𝑜𝑚
11 as functions of the grid refinement for the Dirichlet problem (at the left) and the Neumann problem (at the right). Case

of a composite with a population of inclusions and local anisotropic phases.
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Fig. 12. Variations of the homogenized conductivity 𝐾ℎ𝑜𝑚
12 as functions of the grid refinement for the Dirichlet problem (at the left) and the Neumann problem (at the right). Case

of a composite with a population of inclusions and local anisotropic phases.
Fig. 13. Variations of the homogenized conductivity 𝐾ℎ𝑜𝑚
22 as function of the grid refinement for the Dirichlet problem (at the left) and the Neumann problem (at the right). Case

f an composite with a population of inclusions and local anisotropic phases.
ppendix. Resolution with FFT algorithm

.1. Dirichlet problem

Consider the Dirichlet problem that involves the temperature gradi-
nt 𝒒′ (the dependence of the fields with the coordinates 𝒙 is omitted in

this section for the sake of simplicity) whose volume average over the
domain 𝛺′ is null, ⟨𝒒′⟩𝛺′ = 0. The associated flux, 𝝈′ = 𝑲 ′.(𝒒′ + 𝑬′)
is divergence free. Note that 𝑬′ is a piecewise constant field whose
volume average is also null, ⟨𝑬′

⟩𝛺′ = 0. The flux being divergence free,
it implies that it satisfies to:

𝜞 0 ∗ 𝝈′ = 0 (A.1)

where 𝜞 0 is the classic periodic Green tensor for the thermal conduc-
tivity problem (the reader can refer to Eyre and Milton (1999), Milton
(2002) and Monchiet and Bonnet (2013) for the definition of the Green
9

tensor) and ‘‘∗’’ represent the convolution product. An iterative scheme
associated with the Dirichlet problem can then be read:

𝒒′𝑖+1 = 𝒒′𝑖 − 𝜞 0 ∗
[

𝑲 ′.(𝒒′𝑖 + 𝑬′)
]

(A.2)

This iterative scheme is initialized with 𝒒′1 = 0. Note that it is possible
to introduce 𝜺′𝑖 = 𝒒′𝑖 + 𝑬′ and to reformulate the iterative scheme as
follows:

𝜺′𝑖+1 = 𝜺′𝑖 − 𝜞 0 ∗
[

𝑲 ′.𝜺′𝑖
]

(A.3)

In this second form, the iterative process is initialized with 𝜺′1 = 𝑬′. At
convergence of the iterative scheme the macroscopic flux is computed
from Eq. (25).

Many other alternative methods have been provided in the literature
to improve the convergence of the method. For instance, a dual method
based on the flux can be employed to solve the Dirichlet problem. The
temperature gradient 𝒒′ being curl free, it satisfies to:

𝜟0 ∗ 𝒒′ = 0 (A.4)

where 𝜟0 is the dual Green tensor whose expression can be found in the
same aforementioned references. Eq. (A.4) can be also expressed with
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the flux:

𝜟0 ∗ (𝑯 ′.𝝈′ − 𝑬′) = 0 (A.5)

The following iterative process can then be used to solve the Dirichlet
problem:

𝝈′
𝑖+1 = 𝝈′

𝑖 − 𝜟0 ∗
[

𝑯 ′.𝝈′
𝑖 − 𝑬′] (A.6)

This iterative scheme is initialized with 𝝈′
1 = 0. At convergence, the

macroscopic flux is determined with Eq. (25).
A faster method for computing the solution of the problem consists

to consider the polarization method that uses both Green tensors and
the following definition for the polarization tensor:

𝝉 ′ = 𝛿𝑲 ′.𝒒′, 𝛿𝑲 ′ = 𝑲 ′ −𝑲0 (A.7)

The polarization based iterative scheme reads:

𝝉 ′𝑖+1 = 𝝉 ′𝑖 − 𝛼𝑲0.𝜞 0 ∗
{

𝑲 ′.(𝛿𝑲 ′)−1.𝝉 ′𝑖 − 𝑬′} − 𝛽𝜟0 ∗
{

(𝛿𝑲 ′)−1.𝝉 ′
}

(A.8)

The iteration is initialized with 𝝉 ′1 = 0. In this equation 𝛼 and 𝛽 are
two coefficients, their values must be chosen such that 𝛼 ∈ ]0, 2] and
𝛽 ∈ [−2, 0[ to ensure the convergence following Monchiet and Bonnet
(2012, 2013). In our applications, we use 𝛼 = 1 and 𝛽 = −1.

A.2. Neumann problem

By duality, one can easily derive the FFT based iterative scheme for
the Neumann problem. The strain based iterative scheme is:

𝜺′𝑖+1 = 𝜺′𝑖 − 𝜞 0 ∗
[

𝑲 ′.𝜺′𝑖 −𝜮′] (A.9)

The stress based iterative scheme is:

𝝈′
𝑖+1 = 𝝈′

𝑖 − 𝜟0 ∗
[

𝑯 ′.𝝈′
𝑖
]

(A.10)

And the dual version of the polarization based iterative scheme uses
the field:

𝜼′ = 𝛿𝑯 ′(𝒙).𝝈′(𝒙), 𝛿𝑯 ′(𝒙) = 𝑯(𝒙) −𝑯0 (A.11)

and reads;

𝜼′𝑖+1 = 𝜼′𝑖 − 𝛼𝑯0.𝜟0 ∗
{

𝑯 ′.(𝛿𝑯 ′)−1.𝜼′𝑖 −𝜮′}− 𝛽𝜞 0 ∗
{

(𝛿𝑯 ′)−1.𝜼′
}

(A.12)

The strain, stress and polarization based iterative schemes are initial-
ized with 𝜺′1 = 0, 𝝈′

1 = 𝜮′ and 𝝉 ′1 = 0.
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