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Abstract

This paper studies internal (or intra-)mathematical explanations, namely
those proofs of mathematical theorems that seem to explain the theorem
they prove. In particular, the goal of the paper is to attempt to provide a
rigorous analysis of these explanations. This will be done into two steps.
First, we will show how to move from informal proofs of mathematical
theorems to a formal presentation that involves proof-trees together with
a decomposition of their elements into assumptions, conclusion and rules;
secondly we will show that those mathematical proofs that are regarded as
having an explanatory power all have the same formal presentation: they
display an increase of conceptual complexity from the assumptions to the
conclusion.

1 Introduction

Explanation is one of the cornerstone notions of philosophy and it involves a wide
and rich literature. Among the several types of explanations, the most well-known,
probably because of their centrality in empirical sciences, are causal explanations,
namely explanations that rely on a causal relation between cause and effect. Studies
on causal explanations are a wide area of research and several different models - from
the DN-model to the structural equation framework - have been proposed.

More recently, another type of explanations has been gaining attention: they are
the so-called non-causal explanations, i.e., explanations that do not rely (at least not
entirely) on a causal relation. Several types of non-causal explanations have been
identified and studied; amongst them particular attention has been dedicated to non-
causal explanations related to mathematics, also called “mathematical explanations.”
However, the expression “mathematical explanations” is ambiguous: it could refer
to explanations as they are given in mathematics, but it could also refer to expla-
nations that make use of mathematics. The two meanings lead to a distinction of
two classes. The first class gathers those explanatory practices that take place within
mathematics; the second class involves those explanations of, for example, physical
facts that use mathematics (see Mancosu et al. 2023). The former are called internal or
intra-mathematical explanations, the latter external mathematical explanations. The
main aim of this paper is to investigate mathematical explanations in the first sense,
namely internal mathematical explanations: these are by far the least studied amongst
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mathematical explanations and more generally non-causal explanations; hence they
definitely deserve further attention.

However, the expression “internal mathematical explanation” covers an impressive
range of different phenomena: an internal mathematical explanation could amount to
the recasting an entire area of mathematics as well as to an explanation in a classroom,
it could also be the explanation of the meaning of a symbol as well as an explanation
on how to carry out a certain mathematical construction (e.g. see D’alessandro 2020).
In this paper, we will focus on those internal mathematical explanations that take the
form of proofs of mathematical theorems that not only prove that the theorem is true
but also show why it is true. In other terms, for us internal mathematical explanations
will only amount to explanatory proofs, namely proofs that explain the theorem that
they prove.

Even restricting our attention to explanatory proofs, there are different ways a
mathematical proof might explain: for instance, it might explain by relying on a
diagram, or it might explain by drawing on an analogy. In this paper, continuing a
trend that has so far received not too much of attention,1 we will only concentrate
on those proofs that explain the theorem they prove by revealing the reasons why the
theorem is true. In other words, as scientific explanations are explanations that display
the cause of the phenomenon they want to explain, here we focus on those mathematical
explanations (that have the form of proofs and) that explain the theorem they prove
by revealing its grounds or reasons2.

There exist several different approaches to internal mathematical explanations;
here we quote the best-known. The oldest and probably most famous is the one
proposed by Steiner (1978), according to whom an internal mathematical explanation
is a mathematical proof that uses a characterizing property, where a characterizing
property is a property unique to a given entity or structure within a family or domain
of such entities or structures. More contemporary accounts are the following. Lange
(2017)’s account presents an impressively rich and varied choice of examples, which
leads him to argue that most likely mathematical explanations do not fall under a
general pattern, but that there are interesting classes of explanations. Another wide
discussion has been offered by Pincock (2015a,b), who defends an abstractionist point
of view on explanations. Finally, one of the most recent approaches has been proposed
by Baron et al. (2020), who analyze mathematical explanations by adapting the famous
counterfactual account of causal explanations to the conceptual case.

In this paper we aim at proposing a novel approach to mathematical explanations,
and this approach consists of two steps. The first amounts to the formalization of
mathematical explanations with logical tools coming from proof-theory. In other words,
we will study mathematical explanations by rewriting them with proof-trees3 and by
thus dwelling on their inner structure. Once this step is accomplished, we will move to

1Some exceptions are Betti (2010), Mancosu (1999), Pincock (2015a), Poggiolesi and Genco
(2023).

2In this paper, we use as synonymous the words “ground” and “reason.” However, we do
not take grounding to be a metaphysical relation as it is commonly assumed to be in the
contemporary literature, e.g. see Fine (2012). In this paper we rather think of the notion of
conceptual ground, which has been receiving an increasing attention recently, e.g., Betti (2010),
Poggiolesi and Genco (2023), Smithson (2020).

3In this respect our approach is similar to the one of Wilhelm (2021). However, two
important differences prevent us from a stricter comparison. First, while, as we will show in
the next section, we use the resources of natural deduction calculi, which allow a fine-grained
analysis of the structure of proofs, Willhelm uses the resources of Hilbert systems. Moreover,
he only puts forwards an approach for comparing explanatoriness of different proofs.
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the second one and show that all mathematical explanations re-arranged as proof-trees
are such that their (undischarged) assumptions are conceptually less complex than their
conclusion. In other words, we will take conceptual complexity to be the ingredient
of our approach that provides the directionality or asymmetry which is typical of
explanations, hence also of mathematical explanations. The interest and advantages of
this approach with respect to previous ones will emerge naturally as we present it and
will be anyway discussed in the course of the exposition.

The paper is structured as follows. We will use Section 2 to clarify how to move
from informal mathematical proofs to proof-trees, while in Section 3 we will introduce
the notion of conceptual complexity’s increase in detail. Section 4 will serve to merge
together proof-trees and the increase of conceptual complexity so to obtain our approach.
In Section 5 we will put our model to a test on several cases-study of mathematical
explanatory proof. Section 6 will finally serve to draw some conclusions.

2 From informal mathematical proofs to proof-
trees

Internal mathematical explanations are mathematical proofs that seem to explain the
theorems that they prove. However these proofs are often presented in an informal
way, as is proper for the mathematical practice. One of the main features of our
approach precisely consists in moving the analysis of mathematical explanations on a
more structural level: our first step is thus to translate them into formal proofs. There
exists a wide literature centered on rigor in mathematics that deals with the translation
of informal mathematical proofs to formal ones, where formal proofs are thought of in
terms of decomposition and verification processes.4 Since our purposes are different
from those of this literature, here we will adopt a conception of formal proofs which is
closer to that which can be found in formal deductive systems. More precisely, we will
look at formal proofs as trees in which the assumptions or premises of the mathematical
proof are the leaves of the tree, the conclusion of the mathematical proof is the root
of the tree, and each rule applied in the proof links the nodes corresponding to the
premises of the rule to the node corresponding to the conclusion of the rule. Let us list
some examples of proofs as tree-objects, where the nodes need to be substituted by
sentences that are connected by the corresponding rule, indicated by ri.

Example (i)

•
• r5

• • •
• r4

• r6

• •
• r2

• •
• r1

• r3

• r7

• r8

Example (ii)

4E.g. see Avigad (2006), Hamami (2019).
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• • •
• r4

•
• r5

• r3

•
• r7

•
• r8

•
• r9

• •
• r10

• r6

• r2

•
• r16

• • •
• r14

• r13
•
• r15

• r12

• r11

• r1

In the case where the nodes are substituted by formulas of a formal language and
the ri by appropriate logical rules, this notion of proof coincides with that of derivation
in logic.

¬D

�A B
A ∧B ∧I

(A ∧B) ∨ C
∨I

((A ∧B) ∨ C) ∧ ¬D
∧I

¬¬(((A ∧B) ∨ C) ∧ ¬D)

A→ ¬¬(((A ∧B) ∨ C) ∧ ¬D)
→I

¬¬

In this example we have a tree with two leaves, namely the assumptions B and ¬D;
the root of the tree is the formula A→ ¬¬(((A ∧B) ∨C) ∧ ¬D), and each logical rule
(namely the rules ∧I, ∨I, ¬¬, → I) applied in the proof links the nodes corresponding
to the premises of the rule to the node corresponding to the conclusion of the rule. We
note, since it will be important later, that in this formal proof, by means of the rule
→ I, we have discharged the assumption A which has become the antecedent of the
implication that occurs as the conclusion of the derivation.5

We now turn to the illustration of two examples on how to move from mathematical
explanations as informal proofs to mathematical explanations as proof-trees. To do so
we choose as a case study one coming from Bernard Bolzano, a great if underestimated
philosopher and mathematician, who can be seen as one of the pioneers in the study of
mathematical explanations.6 Amongst the numerous examples that can be found in
his monumental Theory of Science (see Bolzano (2015)), one which is at the same time
simple7 and illustrative for our purposes, concerns a property of quadrangles, and for
this reason we call it the Quadrangle Theorem; it has the following form.

Quadrangle Theorem. The sum of the angles of any quadrangle is equal to 360◦.

Explanatory proof. Consider the quadrangle ABCD. By Theorem (i), which says that
any quadrangle can be divided into two triangles that have a common side, we can
consider ABCD as the sum of the two triangles ABD and BCD.8 But the sum of the

5See for example Troelstra and Schwichtenberg (1996).
6E.g. see Kitcher (1975).
7In this paper we choose case studies which are fairly simple so that the reader can focus

on the model we want to propose, rather than on the case studies themselves. This seems a
common strategy in the literature, e.g., see Baron et al. (2020), Weber and Verhoeven (2002),
Wilhelm (2021). However, we believe that in order to ultimately evaluate the strength and
robustness of any approach, the approach should be tested with more intricate examples, e.g.
see Colyvan et al. (2016). Hence, a major path for future research is to test the approach with
notable more complex examples, such as Desargues’ theorem in projective geometry (see Lange
(2017)) or the proof that there is no general solution in radicals for fifth-degree polynomial
equations (see Pincock (2015b)).

8See Figure 1.
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Figure 1: A quadrangle divided into two triangles

angles of ABD is 180◦, as it is the case for the sum of the angles of the triangle BCD.
Hence the sum of the angles of the quadrangle ABCD is 180◦+180◦, namely 360◦.

According to Bolzano’s analysis, we can argue that this proof displays the reason
why the theorem is true; accordingly, we can draw the conclusion that this is an
explanatory proof. In what follows, we use this proof as an example of how to
formalize mathematical explanations by means of logical tools, in particular by means
of proof-trees.

Generally speaking, a formalization can be developed in more than one way. One
way could be radical: we could introduce a formal language which translates the
sentences used in the informal proof and then use a natural deduction calculus in which
we construct a derivation that reflects the form or the structure of the proof. Although
this radical move could be revealing and interesting, it is not strictly necessary for our
purposes. In particular, we can do without using a formal language; the only important
feature for us is the tree structure that underlies the mathematical explanation, and to
simplify our task, we will focus on it.

However, even restricting attention to the structure of proof-trees leaves open
several possibilities, for it is always possible to formalize an informal proof with several
different proof-trees, depending on the role assigned in the proof-tree to the components
of the informal proof. Our approach relies on choosing a formalization that displays
two features. On the one hand, the formalization needs to involve proof-trees with
undischarged assumptions conveying properties that are linked and determine the
truth of the theorem to prove. Why do we need undischarged assumptions to have
such a specific form? If we think of an explanatory proof in informal terms, the only
elements in it that could play the role of the grounds explaining why the theorem
is true are the premise(s) on which the proof itself relies. In other terms, it seems
quite natural to think that, in informal explanatory proofs, not only does the theorem
follow from some premises, but also, and most importantly, the premises become
the grounds or the reasons why the theorem is true. Now, if this is so, then in our
formalization, undischarged assumptions - that typically correspond to premises of the
proof - need to be such that they preserve this crucial role in a correct way. In other
words, our formalization will involve undischarged assumptions that convey properties
which are linked to those occurring in the theorem to prove: in this way, undischarged
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assumptions, in appropriate proofs, will play the role of the grounds or reasons why
the theorem is true.

The second feature that the chosen formalization needs to display requires some
previous notions to be properly introduced. To do so, we refer to the literature on
scientific explanations, where there seems to be a wide consensus on what the key-
ingredients of an explanation are. Not only, as we would expect, cause and effect are
necessarily part of an explanation, but also, laws or, as they are standardly called,
generalizations need to be part of an explanation for it to count as such. So, for example,
a (scientific) explanation of the fact that there is a fire in the forest is composed by
the very same fact that there is a fire in the forest - the effect - the fact that a
cigarette was lit in the forest - the cause - and the law of combustion which links
the two and corresponds to the generalization. This view is shared by many different
approaches on scientific explanation including the Deductive-Nomological model put
forward by Hempel (1965), the Unionist account proposed Kitcher (1981), and the
Counterfactual account defended by Woodward (2003). The main difference between
these approaches does not concern the importance of laws or generalizations in scientific
explanations but their precise role in the structure of explanations. So, for example, in
the Deductive-Nomological account, as well as in the counterfactual account, both the
cause and the generalization constitute the explanans of the explanation, while the
effect the explanandum.

Mathematical explanations are a special kind of scientific explanation and as such
they arguably share the same key components: ground(s) and conclusion, as analogue of
cause(s) and effect, but also some type of generalizations. Poggiolesi and Genco (2023)
have discussed at length the need for generalizations in mathematical explanations,
noting that generalizations are in a mathematical context different from laws; they
rather amount to theorems or definitions which connect the ground and the conclusion
of the mathematical explanation in question. In the explanatory proof of the Quadrangle
Theorem, for example, the generalization at issue corresponds to Theorem (i), which
states that any quadrangle can be seen as the sum of two triangles. The examples that
we will treat in the next sections involve other generalizations.

What do generalizations have to do with the formalization of mathematical expla-
nations as proof-trees? Our formalization will privilege proof-trees where at least some
generalizations are used as rules. Whilst perhaps rare in studies of explanations,9 the
idea that generalizations can fruitfully play roles analogous to rules is intuitively very
natural. In an informal explanatory proof, certain generalizations are what connect
the ground of the explanation to its conclusion. But if this is so, a formalization that
aims at being faithful to the aspects of the informal proof is a formalization where
generalizations play the role of rules, since rules have the function of justifying the
connection between different elements of a proof. In other words, rules seem to be a
perfect and solid way to reflect at the formal level the role that generalizations play in
explanations.

Moreover, this potential role for generalizations has been put forward in related fields.
There is an active and novel area of proof theory10 whose aim is to correctly transform
theorems and definitions, written as statements, into rules. The idea of incorporating
(some) generalizations as rules in our analysis of mathematical explanations is inspired
by this research stream and relies on these results.

Finally, as we shall see shortly, the idea of capturing generalizations as rules is a

9E.g. see Jansson (2015, 2017a).
10See Ciabattoni et al. (2008), Marin et al. (2022).
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central novel insight of our approach, with a subtle and deep relationship to some other
parts of our model for mathematical explanations that shall be presented below. We
shall return to them in this wider perspective in Section 4.

Taking into account the previous remarks, and given the following abbreviations –
Qu(x) stands for x is a quadrangle, Tr(x) stands for x is a triangle, and s.i.a(x) for
the sum of the angles of x – this is the way we formalize the explanatory proof of the
Quadrangle Theorem via a proof-tree:

(((
(((Qu(ABCD)

Tr(ABD)
q-t

T r(ABD)→ s.i.a(ABD) = 180◦

s.i.a(ABD) = 180◦
MP π

s.i.a(BCD) = 180◦

s.i.a(ABCD) = 180◦ + 180◦
q-t+

Qu(ABCD)→ s.i.a(ABCD) = 180◦ + 180◦
→ I

where π is symmetric to the part of the proof-tree to its left:

((((
((

Qu(ABCD)

Tr(BCD)
q-t

T r(BCD)→ s.i.a(BCD) = 180◦

s.i.a(BCD) = 180◦
MP

Let us now discuss the structure of the proof-tree with respect to the informal proof
presented above. We begin our analysis with the top left inference in the proof-tree.
This inference step is used to derive the fact that ABD is a triangle from the fact that
ABCD is a quadrangle, via the rule that states that any quadrangle can be divided
into two triangles. Then, the conclusion of this inference, which states that ABD is a
triangle, is used along with the implication stating that, if ABD is a triangle, then the
sum of its internal angles is 180◦, in order to conclude that the sum of the internal
angles of ABD is 180◦. In the symmetric part of the proof-tree, the one above the
formula s.i.a.(BCD) = 180◦, we have exactly the same kind of proof-tree, but applied
to the triangle BCD. The proof-tree then proceeds, just as the informal proof does,
by combining the two statements about the sum of the internal angles of ABD and
BCD in order to conclude that the sum of the internal angles of ABCD is 360◦. We
then discharge our assumption by means of the rule that introduces an implication
and we obtain that if ABCD is a quadrangle, then the sum of the angles of ABCD is
180◦ + 180◦.

The formalization of the informal explanatory proof of the Quadrangle Theorem
seems to respect both desiderata: the generalization occurring in the informal proof
occurs in the proof-tree not as a theorem, rather under the form of the two rules q-t
and q-t+. Moreover, the proof-tree has two undischarged assumptions that convey
properties linked to that conveyed by the conclusion of the proof-tree.

Le us now move to another example that yet again comes from Bolzano (2004). In
particular Bolzano used it to talk about the relation between ground and conclusion
and illustrate its importance for mathematics. The example concerns a property of
circles and for this reason we will call it the Circle Theorem.

Circle Theorem. Given two circles A and B, one with center a and radius ab, and
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Figure 2: Equidistant points A,B and C

the other with center b and radius ab, then there always exists a point c where they
intersect such that l(ac) = l(cb) = l(ab).

Explanatory proof. Consider the circle A with center a and radius ab.11 Since by
definition a center is a point, then we have that there exists a point a. For the same
reasoning applied to the circle B, we have that there exists a point b. But given a point
a and a point b, there always exists a point c such that l(ab) = l(bc) = l(ac) (where
l(xy) stands for the length of the segment xy). Hence we have a point c such that
l(ab) = l(bc) = l(ac). Since the distance between c and the centre of the circle A is
the radius of A, and the same holds for B, c is a point where the two circles A and B
intersect.

Bolzano claims that this proof displays the reason why the theorem is true and thus
constitutes an explanation of the theorem itself. We now formalize this proof by paying
particular attention to its undischarged assumption as well as to the generalization.
We will abbreviate as ϕ the formula

Circ(A, a, ab) ∧ Circ(B, b, ab)

while we will use Circ(X,x, xy) to stand for the statement that X is a circle with
center x and radius xy. We also use Point(x) to denote that x is a point. Consider
the following proof-tree:

�ϕ

Circ(B, b, ab)
∧e

Point(b)
c-p π

Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc)

∃c Point(c) ∧ l(ab) = l(ac) = l(bc)
→E

∃c Point(c) ∧ c ∈ A ∧ c ∈ B ∧ l(ab) = l(ac) = l(bc)
c-p+

ϕ→ ∃c Point(c) ∧ c ∈ A ∧ c ∈ B ∧ l(ab) = l(ac) = l(bc)
→ i

11See Figure 2.
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where π is

�ϕ

Circ(A, a, ab)
∧e

Point(a)
c-p

Point(a)→ (Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc))

Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc)
→E

Let us now discuss the structure of the proof-tree with respect to the informal
proof presented above. The informal proof begins by considering the two points a and
b mentioned in the statement of the theorem. In the proof-tree, this corresponds to
the two uppermost inference steps concluding that a is a point and that b is a point,
respectively, from the assumption ϕ. The informal proof proceeds then by employing
the statement that, for any two points a and b, there exists a point c such that the
distance between c and a and the distance between c and b is equal to ab. The proof-tree
formalizes this step of the informal argument by the two consecutive applications of the
rule that eliminates the implication.12 The premise of the uppermost right inference
is indeed the statement Point(a)→ (Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc)).
The informal step arguing that c is the intersection point of the two circles A and
B is formalized in the proof-tree by the inference marked as c-p+ and exploits the
definition of circle as a set of points all equidistant from the centre. Finally, the last
inference in the proof-tree enables us to explicitly integrate in the obtained statement
the assumption ϕ of the theorem.

Now we have a proof-tree that formalizes the informal proof in a way that meets
our desiderata: the undischarged assumption conveys a property which is linked to the
property conveyed by the root of the proof-tree. Moreover, the generalization occurring
in the informal proof, and which amounts to the definition of a circle as the set of all
points in a plane equidistant from another, called center (and where the segment from
the center to any of them is called radius) is used in the proof-tree as a rule.

We conclude this section with two remarks on the links between informal and formal
proofs. The first remark concerns the advantages of dealing with formal proofs rather
than with informal ones, which are worth underlining. The move to formal proofs
allows us to systematize, in a rigorous and clear manner, key elements of the informal
proof: indeed, the conclusion of the informal proof becomes the root of the proof-tree,
whilst the premises of the informal proof become the undischarged assumptions of the
proof-tree. As for the role attributed to generalizations, they become the rules of the
proof-tree. As already stressed, this is a natural role for generalizations in explanations
and it represents a key element of our approach.

Secondly, let us analyze the structure of proof-trees formalizing explanatory mathe-
matical proofs. Poggiolesi (2018, 2020) proposes an account of explanatory (grounding)
proofs in logic, identifying a strict dependency between the main logical connective
of the root of the proof-tree, the structure of the proof-tree, and the explanatory
steps that compose an explanation. We submit that a similar structure applies to the
explanatory proofs of interest here, namely those in mathematics. The clarification
of these dependencies in general requires technical notions that are spelled out in
Poggiolesi (2018, 2020); we refer the reader to those papers for details, though the
examples of the next sections should clarify the relevant points. For now, note that if
we restrict our attention to roots of proof-trees whose main connective is an implication

12For any reference to the logical rules concerning introducing or eliminating logical connec-
tives, see for example Troelstra and Schwichtenberg (1996).
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– this is often the case since many mathematical theorems have the form of implications
– then proof-trees have the following form:

�A,C1, . . . , Cn

...
B

A→ B

where C1, . . . , Cn form a non-empty set of undischarged assumptions. If we look
at the proof-trees formalizing the explanations of the Quadrangle Theorem or the
Circle Theorem, they precisely display this structure, namely a derivation going from
A,C1, .., Cn to A→ B, where the A has been discharged, whilst the C1, ...Cn form a
non-empty set of undischarged assumptions.

Let us stress once more the requirement of having a non-empty set of undischarged
assumptions in a derivation formalizing an explanatory proof. Indeed, in this paper we
target explanatory proofs that provide the grounds or the reasons why the theorem is
true. In informal explanatory proofs, the role of the reasons why the theorem is true
is played by the premises on which proofs rely. But in formal proof-trees, premises
of proofs correspond to undischarged assumptions. Hence, if the set of undischarged
assumptions were empty, namely if all assumptions in a derivation were discharged,
then the derivation would not display the reasons why the theorem is true: it would
correspond to a proof without premises, and therefore grounds. Hence, in our account
the presence of undischarged assumptions is necessary.13 However, it is not sufficient:
not any undischarged assumption can count as providing the reason why the theorem
is true, but only those that can be shown to be conceptually less complex than the
theorem itself. In the next section we will clarify what we mean by the expression
conceptual complexity, whilst in Section 4 we will formulate our account in its final
form.

3 Conceptual complexity

One of the central problems facing accounts of scientific explanation is the problem
of explanatory asymmetries. The inability of several models of scientific explanation,
amongst which is the famous Deductive-Nomological model, to handle the asymmetric
structure of scientific explanations was a major reason for their rejection and the search
for new accounts. As concerns mathematical explanations, the situation seems to be
no different: as explanations, mathematical explanatory proofs have a directionality
or asymmetry and any philosophical model should account for this feature. To see
the challenge, consider the Circle Theorem where a property of the points explains a
property of the circles. It does not take much to reverse the proof in such a way that
from the property of the circles, we can infer a property of the points. Indeed we have:

Point Theorem. Given two points a and b, there always exists a third point c such that
ab = bc= ac.

13There is an extensive logical literature concerning the form of explanatory derivations in
logic and the crucial role of undischarged assumptions in these derivations, see for example
Genco (2021), Poggiolesi (2018, 2020). Note that this literature also deals with truths that
might be quite complicated, for which it is possible to construct derivations that display
immediate and mediate reasons or grounds (on the distinction between immediate and mediate
grounds see again Genco (2021), Poggiolesi (2018, 2020)).
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Proof. Consider the two points a and b and draw two circles A and B having as centre
respectively a and b and both as radius ab. Given two circles of this sort, by the Circle
Theorem, we have that they always intersect in a point c such that l(ca) = l(cb) = l(ab).
Hence, there always exists a point c such that l(ab) = l(bc) = l(ac).

At the first glance the explanatory proof of the Circle Theorem and the proof just
presented of the Point Theorem seem analogous: they both are short and simple, they
both use the definition of circle as a set of points as one main ingredient, and they
both explain a property by means of another property. However, their premises and
conclusions are reversed and because of the asymmetry of explanations, the proofs
cannot both be explanatory. The literature only indicates the proof of the Circle
theorem as having an explanatory power, but the question remains: why this one and
not the other? In other words, why is it the property of the points that explains the
property of the circles and not the contrary? The answer to these questions is far from
trivial: previous accounts of mathematical explanations might ignore the issue of the
directionality of mathematical explanations - as for example the account of Steiner - or
they might struggle to properly treat it.14

In this section, we propose a solution to this problem. It is neither novel nor
original: on the contrary, it comes from a long and illustrious tradition of philosophers
and mathematicians such as Aristotle,15 Proclus,16 Leibniz,17 Bolzano,18 Frege,19 to
name but a few. According to this tradition,20 what determines the directionality
or asymmetry of mathematical explanations amounts to an increase of conceptual
complexity from its grounds to its conclusion; in other words, simpler grounds determine
or explain a more complex conclusion whilst the opposite does not hold. This idea
is natural and compelling; however, it displays two weaknesses. The first is that it
crucially relies on the correct identification of the ground and the conclusion of a
mathematical explanation. As we have already hinted, it is natural to think that in
informal mathematical proofs, the grounds correspond to the premises on which the
proofs rely. However, whilst it is relatively easy to identify the premises, and thus the
grounds, on which proofs rely in simple mathematical proofs, in more complicated proofs
this task turns out to be laborious and intricate. The formalization of mathematical
explanations as proof-trees straightforwardly remedies this first weakness. Indeed,
each element of the informal proof finds a rigorous formal counterpart: the premises,
and hence the grounds of the mathematical explanation, become the undischarged
assumptions, while the conclusion is its root. Moreover, the proof-tree structure itself
provides a solid base to support the link between these elements.

The second weakness of the idea of conceptual complexity, as we inherit it from
the tradition, lies in its generality and vagueness. What does it mean for the grounds
to be simpler than their conclusion? How do we compare these elements? How do we
compare the concepts that occur in them? Is the notion of (conceptual) complexity
absolute or relative? Restricting the attention to the logical structure of formulas, we
already have an answer to these questions via the elegant notions of logical complexity

14See for example Lange (2022) on the counterfactual account.
15E.g. see Harari (2006).
16E.g. see Martijn (2010).
17E.g. see Belaval (1960).
18E.g. see Betti (2010), Sebestik (1992).
19E.g. see Detlefsen (1988).
20An excellent paper introducing in a clear way this tradition and its main ideas is Detlefsen

(1988).
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and related subformula property, which are cornerstones in proof theory.21 It would be
ideal to have the same rigorous notions in the mathematical context. However this is
not possible: in a mathematical context what is at stake does not boil down to the
structure of our sentences, but it mainly consists in the concepts we employ. Therefore,
we will introduce a method to establish whether in a proof-tree there is an increase of
conceptual complexity from its undischarged assumptions to its conclusion; in so doing
we will encompass the notion of subformula and mimic it at the informal level.

Before introducing the method in detail, we first present the general insights that
motivate it. The methods aims at comparing a set of sentences M and a sentence B
occurring as undischarged assumptions and conclusion of a proof-tree, respectively; it
does that by decomposing these sentences into their (basic) elements and drawing links
among these elements. Now, there seems to be three sorts of ways in which elements,
and more specifically concepts, can be related amongst each other. The first amounts to
the situation where no link can be drawn because very simply the conclusion contains
more elements than the undischarged assumptions. This is for example the case in any
logical inferential step where a new logical constant is introduced. In these cases, we
witness an increase in conceptual complexity (which encompasses logical complexity!),
because all other elements being equal, a new concept tout court is introduced.

On the other hand, when relations amongst elements belonging to undischarged
assumptions and conclusion of proof-trees can be drawn, we connect to a long tradition
in philosophy,22 in considering them to be either intensional or extensional. In the
mathematical case under study here, the intensional level taps into the way elements
have been defined and thus considers two (or more) elements as related if there is a
definition that links them. The extensional level, on the contrary, looks at the set
of objects that the elements denote and thus considers two (or more) elements as
related if there is a theorem that establishes a connection between the sets of objects
that these concepts denote. Definitions and theorems are thus crucial to establish
links amongst elements occurring in sentences under scrutiny, at the intensional and
extensional level, respectively. But where do we find definitions and theorems that
establish conceptual links amongst the elements of interest? And how can a concept
be said to be more complex than another, once the connection is established? As for
the first question, here is where generalizations in mathematical explanations become
handy. Generalizations that occur in the proof-trees as rules provide the definitions or
the theorems that connect the elements of the sentences under scrutiny. As for the
second question, at both the intensional and extensional levels, it is the relation of
containment that establishes an increase in conceptual complexity, although it works
differently in each case. Indeed, at the intensional level, when a concept x is defined
in terms of other concepts y1, ..., y1, then the concept x contains the concepts y1, ...yn
as its components and the former is said be more complex than the latter. At the
extensional level, on the other hand, when a concept x denotes a set of objects X
which contains as a subset a set of objects Y that is related to the concept y, then y
will be said to be more complex than x, because it is more specific.

The method that we will present provides indications on how to establish relations
of increase of conceptual complexity amongst sentences occurring in proof-trees via
their elements and in one or several of the ways just mentioned: intensional, extensional,
or by means of the introduction of a novel element. In order to illustrate the method
in the simplest way, we will divide it into steps and clarify each step on the following

21E.g. see Poggiolesi (2012), Troelstra and Schwichtenberg (1996).
22See for instance Margolis and Laurence (2019).
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three examples. Each example is nothing but a proof-theoretic step with undischarged
assumptions and conclusion since, as we have already said, but it is useful to repeat,
our method can only compare sentences that occur in these roles in proof-trees.

Example (I) corresponds to the following proof-tree:

2 is an even number 2 is a prime number

2 is an even and prime number
∧I

In the above proof-tree the undischarged assumptions are the sentences “2 is an even
number” and “2 is a prime number”, and the conclusion is the sentence “2 is an even
and prime number.” The rule that allows the inference is the canonical rule that allows
us to introduce the conjunction in the natural deduction calculus.

The second example, namely example (II), corresponds to the following proof-tree:

ABCD is a quadrangle

ABCD is a polygon
Pol

In the above proof-tree the undischarged assumption is the sentence “ABCD is a
quadrangle,” whilst the conclusion is the sentence “ABCD is a polygon.” The rule that
allows the inference is a rule based on the definition of polygon as the disjunction of
any type of polygon, namely quadrangle, triangle, rectangle and so on.

The third example that we consider, namely example (III), corresponds to the
proof-tree formalizing the explanation of the Quadrangle Theorem, constructed in the
previous section. Its undischarged assumptions correspond to the sentences “if ABD
is a triangle, then the sum of its angles is 180◦” and “if BCD is a triangle, then the
sum of its angles is 180◦”, whilst the conclusion amounts to the sentence “if ABCD is
a quadrangle, then the sum of its angles is 180◦ + 180◦.”

We now have all the elements to introduce our method.

(1m) The first step of our method consists in dividing the sentences we aim at
comparing, namely undischarged assumption(s) and conclusion occurring in a proof-tree,
in their basic elements.

(I) We divide into basic elements the undischarged assumptions and conclusion of
example (I); we thus have:

– 2, even number, 2, prime number,

– 2, even number, and, prime number.

(II) We divide into basic elements the undischarged assumptions and conclusion of
example (II); we thus have:

– ABCD, quadrangle,

– ABCD, polygon.

(III) We divide into basic elements the undischarged assumptions and conclusion of
example (II); we thus have:
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– if-then, ABC, triangle, the sum of its angles, 180◦, if-then, BCD, triangle,
the sum of its angles, 180◦,

– if-then, ABCD, quadrangle, the sum of its angles, 180◦, +, 180◦.

(2m) The second step of our method consists in erasing those elements that are
the same in each of the undischarged assumption(s) and the conclusion.23

(I) We consider the elements enumerated before and we erase those which are the
same; we thus have:

– 2, even number, 2, prime number,

– 2, even number, and, prime number.

(II) We do the same for the second example:

– ABCD, quadrangle,

– ABCD, polygon.

(III) We do the same for the third example:

– if-then, ABC, triangle, the sum of its angles, 180◦, if-then, BCD, triangle,
the sum of its angles, 180◦,

– if-then, ABCD, quadrangle, the sum of its angles, 180◦, +, 180◦.

(3m) The third step of our method consists in examining which of the following
scenarios holds, after the deletion of identical elements.

(3mA)-Intensional level. There exists an element x occurring in the conclusion, and
elements y1, ..., yn occurring in the undischarged assumption(s) such that a definition
occurring (explicitly or implicitly) in the proof-tree links them together; in particular,
the definition establishes that x contains the elements y1, ..., yn as its components. If
this is the case, then we can conclude that x is more complex than each of the y1, ..., yn.

Let us consider example (II), where the concept polygon occurs in the conclusion,
while the concept quadrangle occurs in the (undischarged) assumption. According
to the definition of polygon which is used in the proof-tree (in the form of a rule),
polygon is seen as the disjunction of several geometrical figures amongst which is the
quadrangle. Hence the concept of polygon contains the concept of quadrangle (at least
in the proof-tree where the two concepts occur), and it is therefore more complex.

This is also the case in (III) where the element ABCD occurs in the conclusion,
while the elements ABD and BCD occur in the (undischarged) assumptions. But,
according to the way these figures have been defined, both ABD and BCD are part of
ABCD. Hence the element ABCD contains the elements ABD and BCD and it is
therefore more complex.

(3mB)-Extensional level. There exists an element x occurring in the conclusion and an
element y occurring in the undischarged assumption(s) such that, although there is

23Note that in case of negated sentences the situation is slightly more complicated; see
Poggiolesi (2016).
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no definition occurring in the proof-tree that links them together, there is a theorem
occurring in the proof-tree as a rule that links the set of objects they denote, let us
call them X and Y respectively. In particular, it can be established that Y is a subset
of X ′, where X ′ is a set generated from the elements of X. If this is the case, we claim
that the element y is more complex than the element x because it is more specific as
shown by the objects it denotes.

Let us clarify (3mB) by means of an example (others will follow in the forthcoming
sections). Consider (III) where the conclusion contains the concept of quadrangle, while
the undischarged assumptions contain the concept of triangle. There is no definition
occurring in the proof that relates these two concepts, so it seems that there is no
reason for us to consider the concept of quadrangle as more complex than the concept
of triangle. However, things are different when we evaluate these concepts at the level
of the objects they denote. According to Theorem (i), which occurs in the proof-tree
as a rule, any quadrangle can be considered as the union of two triangles that share a
side. Hence, according to this theorem, the set of all quadrangles is a subset of the set
of all pairs of triangles, namely the subset of pairs of triangles with a common side.
Note that the set of all pairs of triangles is generated by the set of triangles. As a
result, the concept of quadrangle can be seen as more complex than the concept of
triangle because more specific.

Another fruitful way to think of the extensional level is in terms of generality. A
concept x is more general than a concept y when the set of objects Y denoted by the
concept y is a subset of the set of objects X ′, which is generated from X, the set of
objects denoted by x. Complexity and generality have long been seen as strictly related
(see for example Betti 2010). Indeed, according to Kant, complexity and generality
are inversely related (see Ginammi et al. 2020): less general concepts are, in a sense,
more complex. As discussed in detail by Bolzano (see Roski (2017)), this turns out
to not be always true. It is, however, true in those cases covered by (3mB); for those
concepts which are related at the extensional level, there is a natural way of thinking of
them in terms of an increase of complexity, but also in terms of a decrease of generality.
Consider the triangles - quadrangles example again. In this case, we move from the set
of pairs of triangles to the set of pairs of triangles with a common side (i.e. quadrangles):
not only do we read this relation in terms of an increase of complexity, but also it
seems to involve a decrease of generality. Although a detailed discussion lies beyond
the scope of this paper, there are plenty of examples of this sort in the literature on
mathematical explanations, including:24 the concepts of product of imaginary numbers
- product of two integers squares, Euler graph - Euler path, correlated equilibrium -
Nash equilibrium, expressions of the form 105a+ 104(a+ d) + 103(a+ 2d) + 102(a+ 2d),
where a, a+ d, a+ 2d are three integers in arithmetic progression - calculator numbers.
In Section 5.2 dedicated to Pythagoras’ theorem, we will encounter and discuss another
notable example of this relation, namely that between similar triangles and right-angled
triangles divided into two by the height.

(3mC)-Novelty level. The conclusion contains an element which is absent from the
undischarged assumption(s) and cannot be related to any remaining element of the
undischarged assumption either intensionally or extensionally. This is the case in
(I), where the conclusion contains an and which is absent from the undischarged
assumptions. This is also the case in (III), where the conclusion contains a + which is
absent from the undischarged assumptions and cannot be related nor intensionally nor
extensionally to any remaining element of the undischarged assumption.

24E.g., see Avigad (2006), Lange (2017).
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(4m) The fourth and last step of our method consists in establishing that the
conclusion is conceptually more complex than the undischarged assumption(s) if the
third step is successful.

We have finished illustrating the method that indicates how to evaluate, from a
perspective of increase in conceptual complexity, a set of sentences M and a sentence B,
which occur as undischarged assumptions and conclusion, respectively, in a proof-tree.
The method proposes an evaluation that passes through the elements of these sentences.
First of all, the method only focuses on those elements that are worth comparing,
getting rid of the others. Secondly, the method erases those elements that are the same
between M and B: since they are identical, they need not to be taken into account.
Finally, the method establishes links between the remaining elements either at the
intensional or at the extensional level. The method also envisages the possibility of
introducing new elements tout court. Although the dichotomy intensional-extensional
is quite well-known in the philosophical literature, it is often the intensional side
that has attracted philosophers’ attention: starting from Aristotle (1984) - whose
method has often been associated to the tree-like diagrams of Porphyry (2003) - we
can find reflections on intensional relations amongst concepts in Proclus or Kant,25

as discussed in Harari (2006), Martijn (2010), and Ginammi et al. (2020). However,
in mathematics a great number of interesting cases of comparison among concepts
do not seem to run along these lines. On the contrary, interesting mathematical
results often connect concepts that, although unrelated at the intensional level, have an
extensional connection. Moreover, this extensional connection can also be considered
in terms of generality, where generality is a feature often associated with mathematical
explanations, e.g. see Lange (2017). Our method also encompasses this dimension.

Note that the notion of conceptual complexity that we use in our approach is not an
absolute and objective measure (as notable supporters of the notion had imagined it to
be, e.g., see Mancosu 1999), but rather a notion relative to the mathematical theory in
which the proof-tree is developed. Indeed, in order to check whether there is an increase
of conceptual complexity from undischarged assumptions to conclusion, one needs to
use theorems and definitions that occur in the proof-tree as rules. As we have clarified,
it is precisely these theorems and definitions that establish relations of conceptual
complexity between the elements contained in the undischarged assumptions and the
conclusion of a proof-tree. But theorems and definitions presuppose a background
theory they naturally belong to; therefore, the increase of conceptual complexity under
our approach is ultimately relative to a theory in the context of which the mathematical
explanation under consideration is formulated.26

Let us consider once more the example of the Circle Theorem to further clarify
this point. In this example we take the concept of circle to be more complex than the
concept of point. We establish such a relation because of the definition of a circle as a
set of points, which occurs in the mathematical explanation of the Circle Theorem:
under it, the concept of circle contains that of point, while the converse does not hold.
It is of course possible to conceive of an alternative geometric theory containing a
definition which establishes a different link between circles and points. In such a theory
these concepts have different relationships as concerns complexity and the proofs which

25Although neither Proclus nor Kant framed their discussion on concepts in terms of the
distinction between intensional and extensional level, we can nowadays assert that they both
were thinking of concepts in an intensional perspective.

26The idea of considering explanatory relations in the context of a theory is not new, e.g.
see Hempel (1942), Jansson (2017b).
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count as explanatory will also differ. However, this is not problematic for our approach
precisely because it relies on a conception of complexity, and relatedly of mathematical
explanation, which is relative to a mathematical theory. A mathematical explanation
proceeds in a certain direction in virtue of the definitions and the theorems of the
mathematical theory where it is developed and by means of which it is constructed.

Note that the case of the concept of circle and that of point is one of many. If for
example we take the concept of line and the concept of point, we can either define
a line as a set of points, or a point as the intersection of two lines. In the former
case, the concept of line is more complex than that of point, in the latter case the
concept of point is more complex than that of line. Does this mean that the notion
of complexity we use is not asymmetric, i.e., that it is possible for a concept to be
both more and less complex than another? As long as we think of complexity as
relative to a mathematical theory, the answer is no. Indeed, as clarified in de Jongh
and Betti (2010), each mathematical theory embraces and relies on one and only one
order of concepts. Hence, each of the two previous definitions is contained in a different
geometric theory in which it reflects the relation of complexity between the concepts of
point and line. These relations ‘order’ the concepts of point and line differently, but
each is asymmetric. In other words, although the order of concepts and thus complexity
might shift from one theory to the other, there is no ambiguity about these notions
inside a single theory.

Of course one might also be tempted to object that our relation of conceptual
complexity is symmetric inside one and the same theory.27 Consider the example
of the triangle-quadrangle, that we have examined before. We have said that in the
explanatory proof which contains these concepts, the relation of conceptual complexity
between them is regulated by a theorem - that we called Theorem (i) - which states that
any quadrangle can be seen as the sum of two triangles that share a side. In particular,
following the instructions of point (3mb), we can use Theorem (i) to establish the
complexity relation between quadrangles and triangles in the following way. We start
from the concept of triangle (concept x), from which we generate the set of all pairs of
triangles (set X ′). Thanks to Theorem (i), we know that the set of all quadrangles
(set Y ) is a subset of set X ′, namely it is the set of all pairs of triangles that share a
side. This subset relation allows us to conclude that the concept of quadrangle is less
general, and hence more complex, than the concept of triangle, via the objects that
these concepts denote.

But, the objection would go, there is also another theorem (provable in the same
theory!) - let us call it Theorem (ii) - stating that any triangle is the intersection of two
suitably chosen quadrangles. Could Theorem (ii) not be used to establish that triangles
are more complex than quadrangles? To see whether it can, it is enough to check
whether the conditions of point (3mb) apply. We start from the concept of quadrangle
(concept x), from which we generate the set of all pairs of quadrangles (set X ′). Then
we consider the set of all triangles (set Y ). For one to conclude that quadrangles are
less complex than triangles according to (3mb), it needs to be shown that the set Y is
a subset of X ′. However, Theorem (ii) only shows that triangles can be generated from
a subset of X ′ – namely, it can be generated from the subset of all pairs of quadrangles
that intersect in a triangle, by mapping each pair of quadrangles to their intersection.
In other terms, via Theorem (ii), it does not follow that the set Y of triangles is a
subset of X ′: at most it follows that Y is isomorphic to a subset of X ′. That, however,
is not sufficient to show that triangles are more complex than quadrangles; moreover,

27We thank an anonymous referee for raising up this point.
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any other “method” for generating triangles from quadrangles comes up against a
similar obstacle: it does not establish the claimed complexity relation between the
two. Hence, analysis of this kind of case does not falsify the claim that the relation of
conceptual complexity proposed in this paper is asymmetric inside a single theory.

We have started this section citing the problem of how to account for the direc-
tionality of scientific explanations in general, and of mathematical explanations in
particular. As an example, we have used the Circle theorem and its explanatory proof.
This proof relies on a definition of circle as a set of points and uses a property of points
to explain a property of circles; however, we have shown that it is also possible to
construct a proof that still relies on a definition of circle as a set of points, but uses a
property of circles to explain a property of points. Beyond the fact that mathematicians
only recognize the former proof as explanatory, is there anything else that allows us
to make such a distinction? In this section, we have moved the first steps towards a
solution: the increase in conceptual complexity from the undischarged assumptions to
the conclusion of a proof-tree is what distinguishes an explanatory proof from one that
it is not. As we will show in detail in Section 5, this solution fits with our example:
while in the proof of the Circle theorem, we can witness an increase in conceptual
complexity from top to bottom of the proof-tree that formalizes it, this is not so in the
proof-tree that formalizes the Point theorem.

4 Proof-trees with increase of conceptual com-
plexity

In Section 2, we have shown how to formalize mathematical proofs by means of proof-
trees and in Section 3 we have introduced a method that indicates how to establish
an increase in conceptual complexity from undischarged assumptions to conclusions
of proof-trees. Armed with these ingredients, we can now formulate our account for
mathematical explanations: a mathematical proof is explanatory, in the sense that it
provides the reasons why the theorem it is proving is true, if, and only if, there exists a
way to formalize it as a proof-tree with an increase in conceptual complexity from the
(non-empty) undischarged assumptions to the conclusion.

As with every position expressed by an existential statement, this implies an
asymmetry between the task of showing that a proof is explanatory as opposed to that
of showing that it is not. In the former case, it suffices to find one formalization of
the proof satisfying the desired characteristics; in the latter case, one needs to find
arguments suggesting that there is no such formalization. Though the former task
is at times far from trivial, the latter is clearly typically more difficult. This does
not mean that it is impossible, since the informal proof places limits to the possible
formalizations that need to be considered; indeed, in Section 5, we shall discuss an
example that our account correctly identifies as non-explanatory proof. Note that we
do not think of this asymmetry, nor the general difficulty in identifying explanatory or
non-explanatory proofs, as a shortcoming of our approach; a philosophical model for
mathematical explanations does not necessarily aim to distinguish specific mathematical
proofs that explain from those that do not. This is rather a task for mathematicians.
A philosophical model of mathematical explanation rather aims to clarify what makes
certain proofs that mathematicians find explanatory so. With respect to this task, our
model is satisfactory in that it says that a proof is explanatory as long as it can be
formalized as a proof-tree where the undischarged assumption(s) is (are) conceptually
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less complex than the conclusion.
Our model is based on and unites a proof-theoretic approach to mathematical proofs

and the idea of increase in conceptual complexity from top to bottom of proof-trees. It
is important to emphasize that these two ideas go hand in hand. A proof-theoretic
approach without the insight of an increase of conceptual complexity would just display
the structure of mathematical proofs, without identifying where their explanatory power
lies. Likewise the idea of conceptual complexity could not be successfully implemented
without the support of the proof-theoretic machinery. Indeed, the increase of conceptual
complexity only comes through the rules, and it is visible precisely because the relevant
generalizations are present as rules rather than undischarged assumptions. But the focus
on rules is exactly what characterizes the proof-tree structure approach to reasoning.
Hence the symbiosis of rules-generalizations-complexity vindicates the proof-theoretic
framework adopted here.

Finally, note that our model reproduces in the mathematical case some insights of
the literature on scientific explanations. Just as scientific explanations are backed up
by the relation of causation, here we take mathematical explanations to be backed by
a grounding relation; in the same way as scientific explanations rely on laws that link
causes and effect, here we take mathematical explanations to rely on relevant definitions
and theorems that connect grounds and conclusion. In scientific explanations, the
explanans is taken to be composed by the causes plus the law that link them to
the effect, whilst the explanandum by the effect. Similarly here we might assume
the explanans of mathematical explanations to be composed by the grounds plus the
relevant definitions or theorems that link them to its conclusion, whilst the explanandum
by the conclusion. Although grounds and generalizations both constitute the explanans
of the mathematical explanations, thanks to the proof-theoretical framework, they can
be differentiated: in proof-trees grounds have the role of undischarged assumptions,
whilst generalizations the role of rules.

5 Putting our model to the test

We use this section to test our method with proofs of mathematical theorems that
are thought of as explanatory. Firstly we will consider the proof of the Quadrangle
Theorem, as well as the proof of the Circle Theorem, that we have already formalized in
Section 2. In this section we will show that the trees that formally capture these proofs
are indeed such that their undischarged assumptions are conceptually less complex than
their conclusion. We will then move to Pythagoras’ theorem. As it is famously known,
there are several proofs of this theorem, but only the one that exploits the similarity
of triangles is considered explanatory. We will show that we can formalize this proof
by means of a proof-tree where the undischarged assumptions are conceptually less
complex than the conclusion.

5.1 Quadrangle Theorem, Circle Theorem and Point The-
orem

In Section 2 we have introduced the Quadrangle Theorem and the Circle Theorem
together with their respective explanatory proofs. We have illustrated how to formalize
these proofs using proof-trees. Now we have all the means to complete our analysis and
show that in both these proof-trees, the undischarged assumptions are conceptually less
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complex than their respective conclusion. Indeed, if this is the case, then the informal
proofs can be considered as explanatory.

Let us start with the Quadrangle Theorem. Recall that the proof-tree formalizing
its explanatory proof (see Section 2) has the following undischarged assumptions:

(i) if ABD is a triangle, then the sum of its angles is 180◦,

(ii) if BCD is a triangle, then the sum of its angles is 180◦,

as well as the following conclusion

(iii) if ABCD is a quadrangle, the the sum of its angles is 180◦+180◦.

Sentences (i)-(iii) constituted our example (III) in Section 3. In that context, we
have observed that sentences (i) and (ii) either contain the same elements as (iii)
(if-then, the sum of the angles, 180◦), or they contain elements that by definition are
simpler than elements of sentence (iii) (ABC, BCD and ABCD), or they contain
elements that are extensionally less complex than elements of sentence (iii) (triangle,
quadrangle). Hence, sentences (i) and (ii) are conceptually simpler than sentence (iii).
As a conclusion, we have that the proof of the Quadrangle Theorem that Bolzano
considered as explanatory, is actually explanatory according to our account, since there
exists a formalization of this proof as a proof-tree where the undischarged assumptions
are less complex than the conclusion.

Thanks to our analysis, not only can we confirm Bolzano’s insight, but also we
are able to identify, with clarity and rigor, the grounds and the conclusion of this
explanation: they correspond to the undischarged assumptions and conclusion of the
proof-tree, respectively. The fact that the sum of the angles of a triangle is 180◦ is the
reason why the sum of the angles of a quadrangle is 360◦; in other words, a property of
triangles grounds or is the reason why a property of quadrangles holds, via the theorem
stating that any quadrangle can be divided into two triangles.

Let us now move to the explanatory proof of the Circle Theorem. The undischarged
assumption of the proof-tree formalizing this explanation (see Section 2) is the following
sentence:

(i) if a and b are points, then there exists another point c such that l(ab) = l(ac) =
l(bc),

as well as its conclusion, which is the sentence:

(ii) if A is a circle with center a and radius ab, and B is a circle with center b and
radius ab, then there exists an intersection point c such that l(ab) = l(ac) = l(bc).

We need to establish whether the conclusion is more complex than the undischarged
assumption, and for this goal we use our method. Hence, first of all, we divide the two
sentences into their basic elements; we thus have:

(i) if-then, a, if-then, b, point, there exists, c, point, l(ab) = l(ac) = l(bc),
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(ii) if-then, A, and, B, a, b, circle, radius, center, there exists, intersection point, c,
l(ab) = l(ac) = l(bc).

Then we erase those elements which are identical:

(i) if-then, a, if-then, b, point, there exists, c, point, l(ab) = l(ac) = l(bc)

(ii) if-then, A, and, B, a, b, circle, radius, center, there exists, intersection point, c,
l(ab) = l(ac) = l(bc)

Finally we analyze the remaining elements of sentences (i) and (ii), and we find out
that:

(3mA) The concepts of circle, center, radius and intersection point occur in sentence
(ii), which is the root of the proof-tree, and are all related to the concept of point,
that occurs in sentence (i), which is the undischarged leaf of the proof-tree; they
are connected via the definition (used in the proof-tree) of circle as the set of
all points in a plane equidistant from another, called the center and where the
segment from the center to any of them is called the radius. More precisely, each
of the concepts circle, center, radius and intersection point contain that of point
by definition.

(3mC) the conclusion contains the elements and, A, B that are new and not related to
any remaining element of the assumption.

Since sentence (ii), which is the theorem we want to prove, either contains elements
which already occur in sentence (i) (i.e., the undischarged assumption) or contains new
elements or elements that by definition contain others occurring in sentence (i), we can
establish that the conclusion of our proof-tree is conceptually more complex than the
undischarged assumption and hence that the proof of the Circle Theorem is actually
explanatory.

Not only does our approach vindicate and systematize Bolzano’s intuitions, but also
it allows us to dig deeper into them and study in detail the structure of the explanation
that he identified. For example, it allows us to clearly say what the ground of this
explanation is: it amounts to the fact that, given two points, there always exists a
third that forms with them an equilateral triangle. This is the reason why it is the
case that, given two circles such that the line between them is a radius for both, these
circles always intersect in a point that forms with their centers an equilateral triangle.
This analysis confirms Bolzano’s conjecture:

So for example the proof of the first proposition of Euclid’s Elements (on
the possibility of an equilateral triangle), according to the opinion of all
mathematicians is direct. However, does it show the ground of the truth
to be established? Is an equilateral triangle possible only on account of the
intersection of these circles, or is it not, on the contrary, rather that the
circles intersect because there is an equilateral triangle? (Bolzano, 2004,
§13)

We close this section by briefly showing that the steps that have led us to argue for
the explanatory power of the proof of the Circle Theorem, can also be used to argue
that the proof of the Point Theorem is not explanatory.
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We start by formalizing the proof of the Point theorem (see Section 3) with the help
of the proof-tree structure. In particular, we adopt the same formal language employed
for the formalization of the Circle theorem and we denote with ψ the following formula:

∃c Point(c) ∧ c ∈ A ∧ c ∈ B ∧ l(ab) = l(ac) = l(bc).

We thus obtain the following proof-tree:

���
�Point(b)

Circ(B, b, ab)
(c− p)∗

���
�Point(a)

Circ(A, a, ab)
(c− p)∗

Circ(A, a, ab)→ (Circ(B, b, ab)→ ψ)

Circ(B, b, ab)→ ψ
→ E

∃c Point(c) ∧ c ∈ A ∧ c ∈ B ∧ l(ab) = l(ac) = l(bc)
→ E

∃c Point(c) ∧ l(ab) = l(ac) = l(bc)
(c− p+)∗

Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc)
→ I

Point(a)→ (Point(b)→ ∃c Point(c) ∧ l(ab) = l(ac) = l(bc))
→ I

We briefly discuss the structure of the proof-tree, also with respect to the informal
proof that the proof-tree is supposed to formalize. The informal proof begins by
considering the two points a and b mentioned in the statement of the theorem. In
the proof-tree, this corresponds to the two uppermost leaves from which we conclude
that we can construct two circles, one with center in a and radius ab, the other with
center in b and radius ab. From this and the assumption saying that if A is a circle
having center in a and radius ab, and B is a circle having center in b and radius ab,
then these circles always intersect in a point c such that l(ab) = l(bc) = l(ca); by a
double application of the rule that eliminates the implication,28 we obtain that there
exists an intersecting point c such that l(ab) = l(ac) = l(bc). From this, we can infer
that we have a point c such that l(ab) = l(ac) = l(bc). Then, by a double application
of the rule that introduces the implication, we obtain the desired conclusion.

The proof-tree formalizing the proof of the Point Theorem is analogous to the
proof-tree formalizing the proof of Circle Theorem: they both have the same structure,
they both display undischarged assumptions which convey properties linked to those
of the theorems they prove, and they both use the same generalization, namely the
definition of circle as set of points. However, the undischarged assumption and the
conclusion of the proof-tree for the Circle Theorem correspond to the conclusion and
undischarged assumption of the proof-tree for the Point Theorem, respectively. As our
method has shown that in the first case there is an increase of conceptual complexity
from top to bottom of the proof-tree, by an analogous analysis, it is easy to observe a
decrease of conceptual complexity from top to bottom of the proof-tree for the Point
Theorem. It seems reasonable to conclude29 that the proof of the Point Theorem is not
explanatory. Thanks to our method, we can justify our claim: a property of the circles
cannot explain a property of the point because, at least according to the definition
used in the proof, the former are more complex than the latter.

28E.g. see Troelstra and Schwichtenberg (1996).
29Although we have not tested all possible formalizations of the Point theorem, our conclusion

sounds reasonable.
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5.2 Pythagoras’ Theorem

We use this section to treat Pythagoras’ Theorem by means of our method. In the
literature on mathematical explanation, there is a proof that is based on the similarity
of triangles that is often considered as a legitimate explanation of Pythagoras’ Theorem:
this was first noticed by the mathematician Bouligand (1932), and the further discussed
by Steiner (1978) and Mancosu (2001). We will show that there is a way to formalize
this proof by means of a proof-tree where the undischarged assumptions are conceptually
less complex than their conclusion, i.e., we will show that according to our method
this is indeed a proof that can be regarded as an explanation.

Pythagoras’ Theorem. For any right triangle ABC with the right angle on A, the
square BC2 on the hypotenuse BC equals the sum of the squares AB2 and AC2 on
the other sides AB and AC of the triangle.

Explanatory proof. Consider any right triangle ABC with the right angle on A and let
AH be its height with respect to the hypotenuse BC, as shown in Figure 3. First, we
notice that the triangle AHC contained in ABC is similar to ABC itself since they
both have a right angle and they both share the angle on C.30 The similarity between
the triangles ABC and AHC implies the following equality of ratios:

AC

BC
=
CH

AC

which can in its turn be expressed in the following way: AC2 = CH ·BC.
Symmetrically, the triangle ABH contained in ABC is similar to ABC itself since

they both have a right angle and they both share the angle on B. The similarity
between the triangles ABC and ABH implies the equality of ratios

AB

BC
=
BH

AB

which can in its turn be expressed in the following way: AB2 = BH ·BC. Since we
have established that AC2 = CH ·BC and AB2 = BH ·BC, we can put them together
obtaining AC2 +AB2 = CH ·BC +BH ·BC, which is equivalent to AC2 +AB2 =
(CH +BH)(BC). This, in turn, precisely gives us the conclusion AC2 +AB2 = BC2,
since by construction CH +BH = BC.

As we have done before, let us dwell on this proof and let us identifying its main
components. On the one hand, it contains a conclusion - the sentence “if ABC is a
right triangle, then AC2 +AB2 = BC2” - but also some premises, namely the sentences
concerning the fact that if two triangles are similar, then they have a certain equality
of ratios. Finally, the proof appeals to a general property, namely the fact that right
triangles can be seen as composed by two similar triangles.

Let us now move to the formal level. In order to simplify our task, let us use
the following denotation: RTr(x ∼ y//z) stands for x is a right triangle, divided into
triangles y and z by the height, while Sim(x, y) stands for x and y are similar triangles.
We can then formalize the previous proof by the following proof-tree:

30Since by fixing two angles of a triangle, we also fix the third, the equality of the two right
angles of the two triangles and of their angle on C implies that the angle on B of ABC and
the angle on A of AHC are equal, which, by the definition of similarity, implies that the two
triangles are similar.

23



A

BC
H

Figure 3: A right triangle with height AH

π0

AC2 = CH ·BC
π1

AB2 = BH ·BC
AC2 +AB2 = BC2

+i, rewr.

RTr(ABC ∼ AHC//AHB)→ AC2 +AB2 = BC2 → i

where π0 is the proof-tree

((((
((((

(((
RTr(ABC ∼ AHC//AHB)

Sim(ABC,AHC) Sim(ABC,AHC)→ AC2 = CH ·BC

AC2 = CH ·BC
MP

whilst π1 is the proof-tree

(((
((((

((((
RTr(ABC ∼ AHC//AHB)

Sim(ABC,AHB) Sim(ABC,AHB)→ AB2 = BH ·BC

AB2 = BH ·BC
MP

The first step of the informal proof, by which we infer that the triangle ABC is
similar to the triangle AHC, is formally represented by the uppermost inference step
in the proof-tree π0, in which we conclude Sim(ABC,AHC) from the hypothesis that
ABC is a right triangle, divided in the triangles AHC and AHB by the height. In order
to make this inference, we use, as a rule, a general property of right triangles, which
says that any such triangle, seen as divided into two triangles by the height, is similar to
both of them.31 The following inference step in the proof-tree π0 allows us to derive, by
modus ponens, the conclusion AC2 = CH ·BC from the previously obtained conclusion
Sim(ABC,AHC) together with the implication Sim(ABC,AHC)→ AC2 = CH ·BC.
The symmetric argument for the pair of triangles ABC and AHB, which yields the
equality AB2 = BH · BC, is similarly formalized by the proof-tree π1. The formal
proof continues by combining the two obtained equalities AC2 = CH · BC and
AB2 = BH · BC into the equality AC2 + AB2 = CH · BC + BH · BC by the
introduction of the symbol +. Then, we rewrite AC2 +AB2 = (CH +BH)(BC) as
AC2 +AB2 = BC2. The last inference step of the proof corresponds to the discharge
of the assumption by means of the rule that introduces the implication.

31In other words, any triangle whatsoever can be divided into two triangles by the height,
but only right triangles are such that the original one is similar to both.

24



Now we have a proof-tree that formalizes the informal proof and systematizes its key-
elements: the undischarged assumptions amount to the premises of the mathematical
proof, the root to the conclusion, and the general property occurring in the informal
proof as a theorem has been used as a rule in the proof-tree. The proof-tree share the
same structure displayed before, namely:

�A,C1, C2

...
B

A→ B

However, in order to conclude that such proof-tree formalizes an explanatory informal
proof, we have to show that its undischarged assumptions, namely the sentences:

(i) if AHC and ABC are similar triangles, then AC2 = CH ·BC,

(ii) if AHB and ABC are similar triangles, then AB2 = BH ·BC,

are conceptually simpler than its root, namely the sentence:

(iii) if ABC is a right triangle divided by its height into two triangles AHC and
AHB , then AC2 +AB2 = BC2.

In order to accomplish this task, we use our method. So first we divide these
sentences in their basic elements, namely:

(i)-(ii) if-then, AHC, ABC, and, similar triangle, AC2, =, CH · BC, if-then, AHB,
ABC, and, similar triangle, ABC, AB2, =, BH ·BC,

(iii) if-then, ABC, right triangle divided into two triangles by the height, AHC,
AHB, and, AC2, +, AB2, = BC2,

Then we erase identical elements:

(i)-(ii) if-then, AHC, ABC, and, similar triangle, AC2, =, CH · BC, if-then, AHB,
ABC and, similar triangle, , AB2, =, BH ·BC,

(iii) if-then, ABC, right triangle divided into two triangles by the height, AHC,
AHB, AC2, +, AB2, =, BC2,

Finally we analyze the remaining elements of the undischarged assumptions and the
conclusion and we find out that

(3mA) The conclusion, which corresponds to sentence (iii), contains the element BC2,
which is equivalent to BC ·BC. The undischarged assumptions, which correspond
to sentences (i) and (ii), contain the elements CH · BC, and also BH · BC. Since
BC is by definition equivalent to CH plus BH, BC2 can be seen as containing
both CH · BC and also BH · BC.

(3mB) Sentence (iii) contains the concept right-angled triangle divided into two triangles
by the height, while sentences (i) and (ii) contain the concept similar triangles.
There is no explicit definition in the proof-tree that links these two concepts.
Hence there seems to be no reason to think that the former is related to and more
complex than the latter. On the other hand, there is a property of right-angled
triangles, telling us that any such triangle is similar to both triangles obtained
by dividing it by the height, which is involved in the proof and it implies that
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the set of all right-angled triangles divided into two triangles by the height is a
subset of similar triangles. Hence the concept right-angled triangle divided into
two triangles by the height is more complex than the concept similar triangles
because more specific at the extensional level: we pass from similar triangles
to similar triangles such that, united, they form another (right) triangle that is
similar to both.32

(3mC) the conclusion contains the element + which is new and not related to any
remaining element of the assumption.

Since the conclusion of the proof-tree formalizing the proof of Pythagoras’ Theorem
either contains elements which already occur in the undischarged assumptions of the
proof-tree, or a new element, or elements that are more complex that those occurring
in the assumptions either by definition or via the objects they denote, we can establish
that the conclusion is conceptually more complex than the undischarged assumptions
and hence that the proof of Pythagoras’ Theorem is actually explanatory.

Our method confirms what has been previously noted by Steiner (1978) and
Mancosu (2001); moreover it adds new elements to their analysis. It is indeed able to
specify - via the logical formalization of the explanatory proof - the structure of the
explanation, the role that generalizations play in the explanation, and, last but not
least, the grounds and relative conclusion of the explanation, which amount to the
(undischarged) assumptions and the root of the proof-tree, respectively. Our analysis
of Pythagoras’ explanatory proof shows us with rigor how the explanation works: the
fact that in right-angled triangles the square of the hypothenuse is equal to the sum
of the square of each side is grounded by certain ratios amongst similar triangles, via
the fact that any right-angled triangle is similar to both triangles in which it can be
divided by the height.

Our analysis of Pythagoras’ Theorem yields a structure that is similar to that
which emerges for the explanatory proof of the Quadrangle Theorem. In this theorem,
a property of quadrangles is grounded by a property of triangles via a theorem that
connects quadrangles and triangles, namely via the objects that these concepts denote.
Similarly, in Pythagoras’ Theorem, a property of right-angled triangles divided into
two by their height is explained by a property of similar triangles via a theorem that
connects similar triangles with right-angled triangles divided into two by their height
via the objects that these concepts denote.

6 Conclusions

When it comes to scientific explanations, and thus also mathematical explanations, one
can distinguish two different perspectives, namely the ontic or the epistemic perspective.
Whereas for the latter perspective, explanations are mainly activities which generate
understanding, the ontic perspective will look for some systematic pattern of objective
dependence relations which explanations track or can be identified with (e.g. see Kim
(1994), Inglis and Mejia-Ramos (2019)).

In this paper, we have concentrated on the ontic perspective on explanations, by
introducing a novel approach for mathematical explanations that is based on two
ingredients: the move from informal proofs to proof-trees and the increase of conceptual

32In line with we have said above, we can also look at the link between similar triangles-right
angled triangle divided into triangles by the height in terms of generality: the former concept
is indeed more general than the latter.
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complexity from the undischarged assumptions to the conclusion of such proof-trees.
In other words, in this paper we have proposed a novel approach which, although it
stems from mathematical practice, insofar as it is tested with examples of proofs that
mathematicians find explanatory, does not necessarily aim at capturing the way in
which mathematicians make statements about the explanatoriness of proofs. Rather,
the main goal of the approach is to capture what the several different proofs that
mathematicians find explanatory have in common, namely their shared and underlying
features. In this respect, we believe that our approach brings clear advantages: it
identifies the structure of explanatory proofs, it isolates their grounds and conclusion,
and finally it accounts explicitly for their asymmetry. Moreover, it adopts and relies
on a standpoint that brings mathematical explanations closer to scientific explanations.
Because of these many virtues, we think that it might represent the basis for a new
and interesting way of looking at mathematical explanations.
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