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ABSTRACT

Cable-Driven Parallel Robots (CDPRs) constitute a class of
robots which displace a load by means of cables. In particu-
lar, the use of cables to guide the end-effector continues to be
a challenging task. Indeed, several Tension Distribution Algo-
rithms (TDAs) have been developed so far to properly steer the
load. Although comparisons between them have been made, no
performance index is established to evaluate numerically such
methods. Therefore, this paper aims at defining a performance
index establishing the sensitivity of a TDA by looking at the max-
imum tension variation that stems from a change in the external
wrench. This would help both comparing and choosing the proper
TDA among the existing ones. The definition of the index pops
out naturally from the linearization of the equations defining the
optimization problems. Commonly used TDAs are compared us-
ing the defined index. In order to show an application of it, a
planar CDPR is considered and its Wrench-Feasible Workspace
(WFW) is characterized by the index defined.

Keywords: Sensitivity, Tension Distribution, Cable-Driven
Robot

NOMENCLATURE

u𝑖 Cable direction vector ∈ R3

𝝉 Tension vector ∈ R𝑚
w𝑒 External wrench ∈ R𝑛
W Wrench matrix ∈ R𝑚×𝑛

𝜓 Objective function
h Equality constraints
g Inequality constraints
𝝁, 𝝀 Lagrangian multipliers
ℒ Lagrangian
𝜎 Sensitivity index
∗Corresponding author: vincenzo.dipaola@edu.unige.it
Documentation for asmeconf.cls: Version 1.34, March 13, 2023.

1. INTRODUCTION

Nowadays, Cable-Driven Parallel Robots (CDPRs) constitute
a widely known class of robots where rigid links are replaced by
flexible cables [1]. This design allows reducing costs and inertia
of the system thus guaranteeing the ability to displace a load
quickly and within a large workspace [2–5]. These peculiarities
make them suitable for many applications ranging from common
pick-and-place [6] to search and rescue in natural disasters [4],
rehabilitation and collaborative purposes [7].

In particular, the load is steered through the use of cables
and winches driven by electric motors; a simplified scheme of
these robots is proposed in Fig.1. The tensions exerted along the
cables must be positive and bounded above to avoid controlling
issues while accomplishing a task. Thus, choosing tension be-
comes a problem of crucial importance for addressing a given
task. Several Tension Distribution Algorithms (TDAs) have been
developed so far to solve mentioned problems [8–13]. Most of
the time, because of different requirements dictated by the task,
the solution to this problem relies on formulating an optimization
problem. It is then clear the relevance of this topic for this class
of robots and therefore why big efforts have been made hitherto
in this direction. The main peculiarities of existing methods were
summarized and compared in [10, 13]. However, none of the
previous works investigated the sensitivity of these approaches
to external disturbances or uncertainties. This question arises
naturally since it is of interest assessing how much changes in the
parameters of an optimization problem affect the optimal solu-
tion [14].

In general, sensitivity analysis was already employed for
CDPRs. The purposes were somehow different w.r.t. what this
paper discusses. Indeed, most of the presented works, regard the
evaluation of kinematic performances [15]. Generally speaking,
the first indices defined were the manipulability index [16] and
the dexterity index [17] well-known in kinematics. Today, many
other works have been done in the kinematic context [5, 18, 19]. In
particular, understanding how much cable errors (or joint position
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FIGURE 1: PLANAR CDPR: GENERIC PLANAR ARCHITECTURE
OF A CDPR WITH A POINT-MASS LOAD.

errors) affect the pose of the end-effector was the key aspect
of mentioned contributions. In fact, the definition of different
indices makes possible the comparison of various architectures
under different perspectives. Thus, these indices help engineers
during the design process of the robots.

Other works focus, for instance, on the effects of the assem-
bly errors and dimensional tolerances on the performance of the
robots [20].

A recent work that aims to evaluate how a tension error in
one cable affects the overall distribution of tensions in the other
cables has been presented in [21]. However, this methodology is
developed regardless of the existing TDAs.

Hence, a preliminary analysis of the TDAs’ sensitivity is
hereby proposed. Indeed, the aim of this work consists in intro-
ducing an index measuring the maximum cable tension variation
within the Wrench Feasible Workspace (WFW) [22] when the
external wrench changes. In other words, this index helps esti-
mate the maximum tension variation due to external disturbances.
Moreover, it enables comparisons between TDAs. Therefore, as
with kinematic indices, this study can guide the choice of the
TDA to be used to fulfil a given task.

This paper is structured as follows. Section 2 recalls the main
equations governing the CDPRs. Section 3 briefly describes the
TDAs used for this work. In Section 4 the methodology used to
define the index is described. Section 5 employs a planar CDPR
to investigate the sensitivity of the TDAs. Finally, the results are
summarized in Section 6.

2. SYSTEM MODELING
Let’s consider CDPRs with𝑚 cables and a load with 𝑛Degree

of Freedom (𝐷𝑜𝐹). Moreover, assume 𝑚 > 𝑛 thus, redundant
CDPRs are considered. Generally, the Degree of Redundancy
(𝐷𝑜𝑅) is defined to quickly characterize these classes of CDPRs
as 𝐷𝑜𝑅 = 𝑚−𝑛 ≥ 1. Thus, 𝐷𝑜𝑅 returns the number of redundant
cables w.r.t. the 𝐷𝑜𝐹.

Now, the equilibrium of the load is given by

W𝝉 + w𝑒 = 0, (1)

where w𝑒 is the external wrench, 𝝉 is the cable tension vector and

W is the wrench matrix1 which is defined as

W =
(︁
u1 . . . u𝑚

)︁
, (2)

here u𝑖 represents the 𝑖𝑡ℎ cable direction unitary vector. Thus, if
𝐷𝑜𝑅 ≥ 1, there exist infinite solutions of Eq.(1) grouped in the
following set

Σ =
{︁
𝝉 | W𝝉 + w𝑒 = 0

}︁
. (3)

However, to maintain the equilibrium of the platform the
cable tension limits have to be taken into account. Hence, the
𝑚-dimensional convex hypercube Π that defines the domain of
the feasible tensions is

Π =
{︁
𝝉 | 0 < 𝝉 ≤ 𝝉 ≤ 𝝉

}︁
, (4)

where 𝝉, 𝝉 ∈ R𝑚,+ are positive tension vectors limits containing
the 𝑖𝑡ℎ lower and upper cable tension limits. Consequently, the
set of feasible solutions Γ satisfying both Eq.(1) and Eq.(4), is

Γ = Σ ∩ Π. (5)

3. TENSION DISTRIBUTION ALGORITHMS
As anticipated, the problem of choosing a set of cable ten-

sions among infinite solutions was extensively studied. Conse-
quently, several TDAs exist, each with its own peculiarities. As
expressed in [23], comparing them is not straightforward as there
are many aspects, regarding the algorithms, to be considered.
Generally, existing approaches are compared based on [23]: real-
time capability, workspace coverage, continuity of the solution,
degree of robustness2 and generality of the approach based on the
achievable 𝐷𝑜𝑅.

However, many other aspects should be considered and this
motivates the necessity to characterise each method succinctly
and effectively. Although not all the features can be compared
at once, some of them can be evaluated by means of an index;
introduced in the following Section 4.

The aim of this section is to recall a few methods that will
be investigated in terms of sensitivity. Among the existing ap-
proaches to compute cable tension solving an optimization prob-
lem, the choice lies in the Linear Programming [8], Quadratic
Programming [11], 4-norm Programming [12] and the Analytic
Centre method [13]. These methods have distinct features in
terms of robustness and continuity of the solutions that make
them interesting to examine.

3.1 Linear Programming (LP)
The Linear Programming method is employed to ensure a

robust solution and because of its computational speed in solving
the tension distribution problem with generic (any 𝐷𝑜𝑅) CDPRs.
In other words, the aim is to find a tension vector inside Γ as far as
possible from the boundary of the hypercube Π. To achieve this,
the objective function is built such that the distance 𝑑 (𝝉) of the

1Only planar CDPRs with point-mass load are considered in this work.
2By definition, a TDA is said to be robust if the provided solution is far from the

boundary of Π.
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FIGURE 2: LEVEL SET: THE CONTOURS SHOW THE LEVEL-SETS INSIDE THE 2D BOX Π (RED LINES). IN PARTICULAR, FIGURE (A) DEPICTS
THE LP METHOD, (B) THE QP METHOD, (C) THE 4-NORM AND (D) THE ANALYTIC CENTRE. OBSERVE THAT THEIR SHAPE INFLUENCES
THE SOLUTION OF THE OPTIMIZATION PROBLEM WHEN INTERSECTED WITH THE AFFINE SPACE EQ. (1).

tension vector 𝝉, from the facets of Π, is maximized. Formally,
the optimization problem reads as

argmax
𝝉 ∈ Π

𝑑 (𝝉),

W𝝉 + w𝑒 = 0 (6)

where the objective function is

𝑑 (𝝉) = min{𝜏 − 𝜏1, 𝜏1 − 𝜏, . . . , 𝜏 − 𝜏𝑚, 𝜏𝑚 − 𝜏}. (7)

This formulation ensures reaching the maximum, among the
existing techniques, robustness of the tension profiles. However,
tension profiles are prone to discontinuities when a small change
in the end-effector position occurs.

3.2 Quadratic Programming (QP)
A widespread approach solving the problem of tension dis-

continuity [8] while allowing reducing the energy consumption
amounts to minimize the 2-norm of the cable tension vector

argmin
𝝉 ∈ Π

| |𝝉 | |22.

W𝝉 + w𝑒 = 0 (8)

Despite the energy consumption is reduced, the system in-
herits low stiffness and therefore, the accuracy of the task can be
affected by vibrations and oscillations of the platform. Moreover,
the robustness of this method is the lowest possible as the solution
always lies on the boundary of Π.

3.3 4-Norm Programming
An optimisation problem that turns out to be a suitable can-

didate for clarifying some of the characteristics of the index that
will be defined in what follows, consists in minimising the 4-norm
instead of the 2-norm (QP). The mathematical formulation takes
the following form

argmin
𝝉 ∈ Π

| |𝝉 | |44,

W𝝉 + w𝑒 = 0 (9)

which is quite similar to the previous one (QP). In other words,
one could generically formulate all the above problems by using
the 𝑝-norm 1 ≤ 𝑝 ≤ ∞. However, for sake of clarity, the methods
were synthetically, although explicitly, reported.

3.4 Analytic Centre Solution
Guaranteeing robust, continuous and differentiable tension

profiles for a system with generic 𝐷𝑜𝑅 is, generally, the purpose
intended to be achieved by the various existing TDAs. However,
they do not succeed in satisfying them all contemporary. This
motivated the introduction of the Analytic Centre. Indeed, it was
introduced as an attempt to take the strengths of the various meth-
ods presented in the literature. Essentially, to achieve mentioned
goal, a new objective function was chosen, it exploits the prop-
erties of logarithms (or barrier functions), as explained in [13].
Formally, the objective function has the form

𝜙(𝝉) =
𝑚∑︂
𝑖=1

− log(𝝉 − 𝜏𝑖) − log(𝜏𝑖 − 𝝉), (10)

which is one particular case of the general one while the problem
can be formulated as

argmin 𝜙(𝝉),
W𝝉 + w𝑒 = 0 (11)

Observe that, apart from ensuring continuity, differentiabil-
ity and robustness of the tension profiles, it eliminates tension
inequalities simplifying the problem formulation and numerical
resolution.

The main differences among the reported methods can be
visualized in Fig. 2 where the level-sets generated by the dif-
ferent objective functions are explicitly depicted. Their shape is
fundamental to understand how the tension solution is selected
when intersected with Eq. (1).
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4. PERFOMANCE INDEX
The introduction of an index measuring the sensitivity of the

solution provided by the TDAs is a necessary condition to make
comparisons among them.

To reach this aim, it becomes of primary importance to es-
timate the variation of the tension vector 𝛿𝝉 w.r.t. a variation
of the external wrench 𝛿w𝑒. Therefore, taking advantage of the
Karush–Kuhn–Tucker (KKT) theorem [25], it becomes possible
to transform a generic optimization problem into a system of
equations of the form

𝑓 (𝝉,W,w𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕ℒ
𝜕𝝉 = 0

h(𝝉) = 0
g(𝝉) ≤ 0,

(12)

where ℎ(𝝉) and 𝑔(𝝉) represent the equality and inequality con-
straints, respectively while ℒ is the Lagrangian function, namely

ℒ = 𝜓(𝝉) + 𝝁𝑇g(𝝉) + 𝝀𝑇h(𝝉), (13)

with 𝜓(𝝉) : R𝑚 → R objective function or cost function to be
minimized (or maximized). It is generally related to the opti-
mization problem considered and can assume different forms,
e.g. expression of 𝜙(𝝉) Eq. (10) used in Eq. (11). Remaining
symbols 𝝁 and 𝝀 are known as the KKT multipliers.

Now, linearizing Eq.(12) gives

𝜕 𝑓

𝜕𝝉
𝛿𝝉 + 𝜕 𝑓

𝜕w𝑒

𝛿w𝑒 = 0. (14)

Rearranging this equation, the link between 𝛿𝝉 and 𝛿w𝑒 is
found, in compact form

𝛿𝝉 = −
(︂ 𝜕 𝑓
𝜕𝝉

)︂† 𝜕 𝑓

𝜕w𝑒

𝛿w𝑒, (15)

then, calling

S =

(︂ 𝜕 𝑓
𝜕𝝉

)︂† 𝜕 𝑓

𝜕w𝑒

(16)

one has

𝛿𝝉 = −S 𝛿w𝑒, (17)

where S is the sensitivity matrix, formally

S =

⎛⎜⎜⎜⎝
𝜕𝜏1
𝜕𝑤𝑒,1

. . .
𝜕𝜏1
𝜕𝑤𝑒,𝑛

...
. . .

...
𝜕𝜏𝑚
𝜕𝑤𝑒,1

. . .
𝜕𝜏𝑚
𝜕𝑤𝑒,𝑛

⎞⎟⎟⎟⎠ 𝑖 = 1, . . . , 𝑚 𝑗 = 1, . . . , 𝑛 (18)

where the indices 𝑖, 𝑗 identify the components of S as well as
those of the vectors 𝝉 and w𝑒.

At this point, all the elements necessary for the definition
of the performance index have been collected. Consequently,
borrowing the idea from [18] and considering 𝛿𝝉 as if it were
the variable of the joint space while 𝛿w𝑒 represents the term
in the Cartesian space, respectively, the sensitivity index can be
introduced as

𝜎 = max
| | 𝛿w𝑒 | |2=1

| |𝛿𝝉 | |∞.
(19)

This, in complete analogy with the kinematic indices [18,
19, 26]. It was proven that optimization problem Eq.(19) can be
directly solved substituting Eq.(17) into Eq.(19) to obtain

𝜎 = max
| | 𝛿w𝑒 | |2=1

| |S 𝛿w𝑒 | |∞ = | |S| |2,∞.
(20)

where the matrix norm at RHS is known as mixed Hölder
norm [27].

Practically, since the columns of the matrix S identify the
variation in the tension of each cable w.r.t. a variation of the
wrench in a specific direction, this index estimates the maximum
(upper bound) tension variation induced by a change in the exter-
nal wrench. This can help quantify how much can be the variation
in the tension along the cables. Observe that measuring cable ten-
sion experimentally is a hard task. Therefore, the possibility to
gain some information (upper bound on 𝛿𝝉) based on knowledge
of some disturbances can be useful when measuring cable tension
with sensors.

Remark 4.1 Taking a point-mass as end-effector only requires
taking into account the resultant force acting on the load. Hence
no dimensional unit issue arises. In case the load is a rigid body,
then two separate indices can be used [26].

Remark 4.2 The linearized Equation (17) pops out to be sim-
ilar to the closed-form solution 𝛿𝝉 = −W† 𝛿w𝑒. However, the
procedure here developed can be considered a generalization of
it in the context of sensitivity. Indeed, taking the derivatives of
Eq.(12) appearing in the definition of matrix S Eq.(16), one can
find the explicit form

S =

⎛⎜⎜⎜⎝
∇2
𝝉𝜓

W
I
−I

⎞⎟⎟⎟⎠
† ⎛⎜⎜⎜⎝

0
I
0
0

⎞⎟⎟⎟⎠ , (21)

where ∇2
𝝉𝜓 is the second-order gradient3 of the objective function

𝜓(𝝉) w.r.t. the tension vector 𝝉 while I identifies the identity
matrix. Hence, from Eq.(21), one can observe that S reduces to
W† when no optimization problem is considered, i.e. when 𝜓(𝝉)
and 𝑔(𝝉) are not considered. Observing this analogy stresses
the familiar relationship between the solution provided by the
closed-form (pseudo-inverse) and the QP approach. Indeed, the
solution with pseudo-inverse leads to minimize the distance from
the origin 𝝉 = 0. The main difference with QP, then is the absence
of tension limits 𝝉, 𝝉.

5. NUMERICAL EXAMPLE
In this section, some simulations are performed to compare

the TDAs recalled in Section 3. First of all, to evaluate the index,

3Observe that computing the derivative of the Lagrangian function w.r.t. 𝝉
resembles in computing the second-order gradient of the objective directly.
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FIGURE 3: CASE STUDY: (A) PLANAR CDPR WITH FOUR CABLES AND A POINT-MASS LOAD WHILE (B) SHOWS THE WFW OF THE CDPR.
OBSERVE THAT THE WFW IS FOUND BY USING THE CAPACITY MARGIN µ [24], THE PURPLE CURVE µ = 0 DELIMITS ITS BOUNDARY.

the workspace of the robot is discretized and only the points inside
the WFW are considered. Subsequently, for every feasible point,
the index is computed. The value assumed by the index 𝜎 is
assigned to the point considered and a map is generated within
the workspace. This process is repeated for each TDA reported
above.

In the following discussion, a planar CDPR with four cables
is considered. The load is a point mass (𝐷𝑜𝑅 = 2) of mass
𝑚 = 1𝑘𝑔. Cable tension limits are set to be 𝝉 = 10𝑁 and
𝝉 = 100𝑁 , respectively. The architecture of the robot and its
WFW are depicted in Figure 3 for sake of clarity. Results of the
simulations and the characterization of the WFW by means of 𝜎
are depicted in Fig. 4.

First, from Fig. 4 one can understand that the AC method
results to be more sensitive than all the other methods. This
means that, around each point of the WFW, the LP, QP and 4-
norm generate a | |𝛿𝝉 | | that is lower than the one of the AC for a
given | |𝛿w𝑒 | |2 = 1.

To fully grasp why this happens, one should focus on both
how the TDAs work and what happens inside the sensitivity ma-
trix, i.e., how the index works. With this in mind, let’s pair the
methods by affinity in order to shed light on the results and dis-
cuss the above-mentioned aspects. Hence, consider the QP and
4-norm together and LP and AC consequently4.

Now, starting from QP and 4-norm and analysing their re-
sults, one sees that some of the cable tensions assume the lowest
values possible. In particular, for this case study, two tensions
𝜏1, 𝜏2 (attached at the bottom of the robot) take the lowest bound
𝝉 as they do not bear any wrench. Therefore, only the remain-
ing components 𝜏3, 𝜏4 variate while the load moves inside the
workspace. However, 𝜏3, 𝜏4 vary as less as possible (because of
how the problem is defined), they just have to maintain the equi-
librium of the load. This explains why the sensitivity 𝜎 assumes
similar values (𝜎 < 0.38) inside the WFW. However, looking at
how QP and 4-norm approaches work, is not enough to under-
stand why maps Figs.4 (b)-(c) are different. Indeed, this is due
to the values assumed by ∇2

𝝉𝜓 inside matrix S. Computing the

4The affinity can be understood by looking at the level-set reported in Figure 2.

second-order gradient for both

∇2
𝝉𝜓𝑄𝑃 = 2I𝑚 ∇2

𝝉𝜓4−𝑛𝑜𝑟𝑚 = 12 diag(𝜏𝑖)2, (22)

shows that ∇2
𝝉𝜓𝑄𝑃 is constant, i.e., it does not depend on the

solution 𝝉 while ∇2
𝝉𝜓4−𝑛𝑜𝑟𝑚 does. As a consequence, the 𝜎-map

is symmetric for the QP and it does not change if, for example,
the external wrench changes.

Analogously, the same reasoning can be done for LP and AC.
However, this time the values of 𝜎 are significantly different: the
sensitivity of AC is far more higher than LP (QP and 4-norm as
well). The reason why lies again in the second-order gradient (or
matrix S). Indeed, in both cases the solution 𝝉 is robust but

∇2
𝝉𝜓𝐿𝑃 = 0 (23)

results to be null while

∇2
𝝉𝜓𝐴𝐶 = diag

(︂ 1
(𝝉 − 𝜏𝑖)2 − 1

(𝜏𝑖 − 𝝉)2

)︂
(24)

depends on 𝝉. Hence, because of the shape of ∇2
𝝉𝜓𝐴𝐶 , its values

take weight inside S generating the highest 𝜎 among LP, QP and
4-norm.

Other useful data can be acquired by computing the (numeri-
cal) gradient of𝜎 namely, ∇𝜎 reported in Fig.5. This information
can be relevant when the task requires precision: no vibration or
oscillation of the platform. In other words, it can be useful when
a small variation of ∇𝜎 is required. Indeed, in practice, ∇𝜎
quantifies the possible tension variation between two points of
the workspace. Not surprisingly, the AC method has smaller
∇𝜎 than the others (smallest and homogeneous arrows inside the
WFW). In fact, the AC homogeneity, in terms of ∇𝜎, is probably
linked to the property of smoothness of the tension profiles. Re-
call that smoothness of tension profiles means that there is a small
variation in the cable tensions from one point of the workspace
to another.

Collecting the information acquired from this case study,
one can conclude 𝜎 allows for estimating an upper bound of 𝛿𝝉,
assessing robustness as well as observing the continuity of the

5 Copyright © 2023 by ASME

user
Rectangle 



0 0.5 1 1.5 2

X [m]
(a)

0 0.5 1 1.5 2

X [m]
(b)

0 0.5 1 1.5 2

X [m]
(c)

2

1.5

1

0.5

0

Y
  
[m

]

2

1.5

1

0.5

0

Y
  
[m

]

2

1.5

1

0.5

0

Y
  
[m

]

0 0.5 1 1.5 2

X [m]
(d)

0

0.5

1

2

σ
 [
N

]

1.5

2

1.5

1

0.5

0

Y
  
[m

]

0

0.5

1

2

σ
 [
N

]

1.5

0

0.5

1

2

σ
 [
N

]

1.5

0

0.5

1

2

σ
 [
N

]

1.5
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solution looking at ∇𝜎. Hence, many of the aspects listed in
Sec.3 can be somehow visualized with this index.

Although the definition of 𝜎 is analogous to the well-
established performance index for kinematics, some information
is lost due to the linearization process. Indeed, with this defi-
nition, for example, it becomes impossible to assess the sensi-
tivity of the single cables since it is absorbed by the use of the
norm | |𝛿𝝉 | |.

6. CONCLUSION
A first performance index estimating the sensitivity of TDAs

was defined in this paper. The results of the simulations and the
maps reported show that the index is able to furnish information
about the variation of tension due to a change in the external
wrench. Moreover, it tells that the homogeneity of the 𝜎-gradient
is linked to the ability of the TDA in providing smooth tension
profiles. Although it seems to be an effective index that can
help in choosing the TDA, some information is lost. Therefore,
it will be necessary to dedicate future efforts to improve or edit
the definition in order to recover information about single cable
sensitivity. Other tests are also necessary to better understand the
peculiarities of this index for instance one should consider the

orientation of the platform and investigate a spatial case as well.
Moreover, experimental tests should be undertaken to validate
the proposed method.
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