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Magnetohydrodynamic turbulence is central to laboratory and astrophysical plasmas, and is invoked for
interpreting many observed scalings. Verifying predicted scaling law behavior requires extreme-resolution
direct numerical simulations (DNS), with needed computing resources excluding systematic parameter surveys.
We here present an analytic generator of realistically looking turbulent magnetic fields, that computes three-
dimensional (3D) O(10003) solenoidal vector fields in minutes to hours on desktop computers. Our model is
inspired by recent developments in 3D incompressible fluid turbulence theory, where a Gaussian white noise
vector subjected to a nonlinear transformation results in an intermittent, multifractal random field. Our B × C
model has only few parameters that have clear geometric interpretations. We directly compare a (costly) DNS
with a swiftly B × C-generated realization, in terms of its (1) characteristic sheetlike structures of current density,
(2) volume-filling aspects across current intensity, (3) power-spectral behavior, (4) probability distribution
functions of increments for magnetic field and current density, structure functions, and spectra of exponents,
and (5) partial variance of increments. The model even allows to mimic time-evolving magnetic and current
density distributions and can be used for synthetic observations on 3D turbulent data cubes.

DOI: 10.1103/PhysRevE.106.025307

I. INTRODUCTION

Fluids and magnetic fields are usually turbulent, and re-
searchers often need to model and analyze turbulent data.
Since fully nonlinear, turbulent, analytic solutions to the
Navier-Stokes (hydro) or the magnetohydrodynamic (MHD)
equations are unavailable, the most common tool to con-
struct realistic models is by means of direct numerical
simulations (DNS), which are—unfortunately—extremely ex-
pensive resource-wise [1]. This led to the creation of online
turbulence databases (e.g., [2] for the Johns Hopkins Turbu-
lence Database) where selected snapshots of isotropic hydro
turbulent fields up to 81923 size, or 10243 incompressible
MHD states, are stored for web-based access. To date, DNS
models of increasingly larger size provide the only means to
verify theoretical scaling laws, which for MHD in particular,
are still subject of lively contemporary debate (e.g., see [3]).
MHD turbulence, especially in three-dimensional (3D) in-
compressible settings, is discussed in many modern textbooks
(see, e.g., [4–6]), and these invariably emphasize its scaling
and shape in power spectra, and its typical current-sheet dom-
inated visual appearance.

In the quest for finding “exact” solutions to the incom-
pressible Navier-Stokes equations, [7] suggested an explicit,
concise, and yet efficient, analytical expression for a ran-
dom field which shares many properties of experimental and
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numerical incompressible hydrodynamical turbulence (see
also [8–15]). Intermittency (i.e., non-Gaussianity) in this
model stems from the fact that the random field is constructed
as products, i.e., a nonlinear transformation of Gaussian
white noises. For this reason this approach belongs to the
mathematical field called “Gaussian multiplicative chaos,”
first formalized by [16]. In order to build similarly para-
metric models for astrophysical environments [17], recently
suggested an extension of the aforementioned model to
magnetized fluids, mimicking MHD turbulence. In these con-
structed random fields, their statistics are controlled by a
couple of free, physically motivated, parameters.

The approaches above have a threefold ambition: The ran-
dom fields must (1) resemble real data as much as possible,
(2) be physically motivated, and (3) be as numerically effi-
cient as possible, to be worthwhile compared to DNS. They
are useful in many ways, e.g., to quickly generate synthetic
data (effective, “surrogate,” models), to characterize turbulent
data with few parameters for observers or experimentalists,
and for constructing nontrivial (i.e., with at least self-similar
and small-scale structuring) initial conditions for DNS. In the
currently latest HD [7] or MHD [17] efforts of this kind,
objectives (2) and (3) are satisfyingly fulfilled, as the models
are constructed from the physics of vortex stretching and flux
tube shearing, and numerically they are several hundreds of
times less resource-consuming than DNS. As for objective (1)
to resemble real turbulent data, in the hydrodynamical case
all efforts have focused on the statistics of the fields but not
on the shape of the structures. Hence, while many statistical
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properties of the random incompressible velocity fields are
fairly realistic, their 3D visualizations are far less convincing.

We here present a path to solve this problem, i.e., to build
very efficiently [objective (3)] random fields that visually re-
semble DNS results [objective (1)]. We do this here directly
for the MHD case, where the challenge is to get both cur-
rent and magnetic field vector quantities behave in DNS-like
fashion. We name our model B × C, standing for “magnetic
fields from multiplicative chaos.” Our reasoning is purely
geometric, in the sense that we motivate our parametrized
transformation mostly from getting visual correspondence
with 3D turbulent magnetic vector fields. In practice, these
parameters also relate, in a yet-to-be-quantified fashion, to
the physical processes of vortex stretching and shearing (as
we will “deform” spiral patterns based on gradient fields).
The geometric parameters also are inspired by, and impact
on, the statistical properties of the 3D turbulent states, and we
provide various quantitative comparisons further on, notably
in terms of energy spectra.

Incidently, it is straightforward to also adapt our model
to the two-dimensional (2D) case, by starting with the well-
known 2D Biot-Savart’s law and keeping the eddy modeling
2D as in Sec. II B. The interested reader may have a look at for
example [14] who do work with fractional Gaussian fields (see
definition below) in two dimensions. However, the strength of
our model lies on its 3D nature, since 2D DNS are fairly cheap
to run and B × C is an interesting complimentary tool to DNS
only in the 3D case.

The paper is organized as follows. In the first part of the
paper, we detail the construction of our model. After giving
some background, we construct a formula mimicking an iso-
lated eddy in two dimensions, as a set of constant-curvature
spirals swirling around a single point. Then, in an efficient
single mathematical step, we extend this formula to 3D sheets,
with nonuniform curvature, randomly distributed throughout
space. We also expose how to straightforwardly emulate a
time evolution of our turbulent magnetic field. In the second
part of the paper, we show an example of a 3D vector magnetic
field and its current density built with our model, and compare
them to a modern DNS result. The comparison is performed in
multiple ways, inspecting several visual aspects and by means
of quantitative statistical tools.

II. MAGNETIC FIELD CONSTRUCTION

A. Preliminaries

Biot-Savart’s law expresses a magnetic field �B in terms of
its current density �j as the convolution

�B = NB

∫
R3

�j × �r
r3

dV, (1)

where NB ≡ μ0/4π , with μ0 the vacuum permeability. Inside
all integrals we use the usual short-hand notations �r ≡ �x − �y
and r ≡ |�r|, not to be confused later with the 2D (r, θ ) polar r
coordinate.

The basic structure of the models in [7] and [17] is the
modified version of Biot-Savart’s law

�B = NB

∫
r�L

�c × �r
(r2 + η2)h

dV. (2)

Compared to (1), the integration region is restricted to a ball
of radius L, the kernel’s fixed r−3 power-law behavior is set
to vary freely with a power h, and the kernel’s singularity at
r = 0 is regularized with η, so that parameters L, h, and η,
respectively, serve to control the large-scale cutoff, the slope,
and the small-scale cutoff of the power spectrum of B ≡ | �B|.
The normalizing constant NB will be used to control the total
energy of the field (moving vertically the power spectrum; cf.
Sec. III D). Finally, we write �c instead of �j, because due to the
above modifications, �c in (2) is not exactly the current density
�j anymore. The strategy is to first construct �c, then deduce �B
through (2), and only then deduce �j ≡ �∇ × �B from �B. Most
importantly, the form (2) guarantees �B to be divergence-free,
for any �c (so �∇ · �c = 0 is not required) as long as η is large
enough for the field to be smooth on small scales such that
gradients are well approximated (e.g., [12]). At the same time
we better take η to be small, to have a large inertial range, and
we take as a trade-off between these two constraints η = 3/N
at a resolution N .

The core of this model is to choose a relevant �c. Hereafter
we call s̃ a Gaussian white noise vector, the tilde symbol
reminding its random nature and “s” standing for “seed.” The
three components of s̃ are Gaussian white noises, independent
of one another, zero-averaged, and with unit variance. The
simplest idea takes �c equal to s̃ and (2) reduces to

�R ≡ NR

∫
r�LR

s̃ × �r(
r2 + η2

R

)hR
dV, (3)

a field referred to as a fractional Gaussian field (fGf) [14]. We
renamed it to �R for reasons that will become clear further on
and added subscripts R to the parameters in (3) as they will
have different numerical values than in (2). Now, magnetic
fields in nature are non-Gaussian (intermittent), while �R is
still a Gaussian field because the Biot-Savart operation (3) is
a linear transformation (namely, a convolution) on a Gaussian
field (namely, s̃). To build an intermittent model, we must find
a nonlinear transformation on s̃, which is the purpose of the
two following sections.

B. Designing an isolated eddy

A characteristic feature of fully developed MHD turbu-
lence is the omnipresence of current density sheets swirling
around throughout space. This is—in a sense—the MHD
counterpart of the vortex tubes from hydrodynamics, where
eddies of varying sizes communicate nonlinearly. In the sim-
plest nontrivial model to mimic a swirling current sheet, we
are led to the Archimedean spiral (such spiral shapes may
represent the outcome of some underlying physical process,
such as a Kelvin-Helmholtz roll-up pattern in a shear flow
(e.g., [4]; this Archimedean spiral also returns as the Parker
spiral of interplanetary magnetic field [18] in an important
historical model for solar wind magnetic fields). The latter is
described in the 2D plane by the polar equation

r(θ ) = c0 + d θ, (4)

where r and θ are the usual polar coordinates. The param-
eter c0 moves the center point of the spiral outward from
the origin, while d controls the distance between the spiral
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FIG. 1. From deterministic spirals in two dimensions to random sheets in three dimensions. (Top row) 2D setup: Using the deterministic
rp field in the left panel and the θ field in the middle panel, we construct with (7) the spiral-shaped field S on the right. This S could mimic an
isolated eddy. (Bottom row) 3D setup, generalizing the top row: Using the random R field [norm of (3)] in the left panel and the θ field (8) in
the middle panel, we construct similarly the field S with swirling sheets on the right. This S is used in (2) to mimic a distribution of eddies.

arms. Actually, in the top-left panel of Fig. 1, we rather show
rp ≡ 1 −

√
x2 + y2 instead of r (for pedagogical reasons only,

to focus on a clump rather than a void region), together with
θ ≡ 1

π
atan2(y, x) where the atan2 function generalizes the

relation θ = arctan(y/x) which holds only for x > 0. The 1/π

factor simply keeps the field in the normalized range [−1, 1]
for convenience.

To construct an actual spiral-shaped scalar field in the
plane, we consider λ ≡ rp − c0 − d θ , a local length that
measures how far a given point is from the spiral (4). This
local length is then given as argument to a suitable filter, for
example the smoothed top hat

T (s) ≡ 1

2

(
tanh

s + w/2

�
− tanh

s − w/2

�

)
, (5)

which is a function such that T (s) equals 1 in a region of width
w near the origin s = 0, and equals 0 elsewhere with a smooth
transition from 1 to 0 of thickness controlled by the length �.
The field T (λ) is a field with a spiral shape, because T selects
the regions of space where λ is close to 0, up to a certain width
w. Most importantly, so far rp is a 2D field, but in the next

section we will replace it by a 3D field related to �R from (3),
turning T (λ) into a 3D scalar field with spiral-shaped sheetlike
structures. Anticipating this, we refer to T (λ) as a sheet.

At this point, we obtain further guidance from the current
density field �j as obtained in actual DNS studies, where it
appears relevant to distinguish two types of sheets in the
modeling of turbulent magnetized flows. Indeed, they suggest
clearly a bimodality in (1) intense (i.e., high | �j| regions),
which are thin, and relatively rare sheets (i.e., intermittent)
and (2) more diffuse weaker | �j| regions distributed in thicker,
and more abundant sheets (i.e., more volume-filling), which
surround the intense sheets.

Therefore, we define an intense filter Ti and a diffuse filter
Td , which are identical to T in (5) with differing numerical
values for the parameters (wi, �i) and (wd , �d ) respectively:
wi and �i are smaller than wd and �d , to mimic the fact that
intense sheets are thinner and less blurry than diffuse sheets.
Second, as seen in the top-middle panel of Fig. 1, the atan2
function introduces a discontinuity where θ = ±1. As a sim-
ple work-around to avoid jumps in our magnetic field model,
we impose a spatial dependence to the width wi of intense
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sheets through the prescription (recall that θ ∈ [−1, 1])

wi = wmax
i cos(πθ/2), (6)

where wmax
i is a constant. As a result, wherever θ is discon-

tinuous, intense sheets become infinitely thin, and therefore
vanish. Intense sheets are then also less volume-filling, and
hence more intermittent, as it appears in DNS simulations. It
turns out to be unnecessary to do the same for the width wd

of diffuse sheets, because these sheets have weak amplitudes,
so their discontinuities are smoothed out when taking the
Biot-Savart law (2) in the last step of our construction. Finally,
as illustrated in the top-right panel of Fig. 1, to model the fact
that diffuse sheets are numerous and surround intense sheets,
we generalize our filtering to

S(λ) ≡ Ti(λ) + ε Td [cos(kdλ)]. (7)

The first term corresponds to an intense sheet, and the second
to several diffuse sheets. Indeed, instead of Td (λ) we consider
Td [cos(kdλ)], which gives rise to as many sheets as there
are zeros in cos(kdλ), i.e., kd controls the number of diffuse
sheets. Moreover, in regions where λ ∼ 0 this cosine does
not vanish so that diffuse sheets are absent, which adequately
gives room to the intense sheet Ti(λ) sitting there. Lastly, the
free parameter ε, assumed to be small, makes diffuse sheets
more diffuse than intense sheets by controlling their relative
amplitude.

To sum up, for our 2D field rp and angle θ as in the first two
panels of Fig. 1, S given by (7) is a field of nested, 2D spirals
where the central one is intense, as shown in the top-right
panel of that same figure. This constitutes the basic structure
of an (isolated) eddy in our model. The key point of the next
section is that we will insert in (7) a 3D (random) scalar field
instead, such that S will indeed be a field of 3D sheets with
artificially constructed spiraling behavior. Note that thus far,
our spirals have constant curvature, to be remedied in what
follows as well.

C. Randomly distributing eddies

We now present an efficient way (i.e., a simple single step)
to simultaneously (1) extend from two to three dimensions
the above considerations, (2) introduce nontrivial spatial vari-
ations of the curvature of the sheets, and (3) distribute eddies
in the whole domain, with the properties of the sheets (size
and wiggliness) controlled by a few parameters.

As mentioned in the preliminaries, our fractional Gaussian
field �R given by (3) is a poor stochastic model for a turbulent
magnetic field. In the bottom-left panel of Fig. 1 we show a
2D cut of a realization of its norm, R ≡ | �R|. The 3D scalar
field R consists of an ensemble of nearly spherical clumps of
various sizes, randomly distributed throughout space. The fact
that this field does not resemble actual turbulent structures is
related to the (visual appearance) shortcoming we alluded to
in our introduction of present multiplicative chaos models for
hydro turbulence. The clumpiness of R and the typical size of
its largest clumps are readily controlled by the Hurst param-
eter hR and the cutoff LR in (3), respectively. Having noticed
this, we will now use this clumpy field to build spiral-shaped
structures swirling around intense clumps. Hence, we are not
going to use �R as a magnetic field vector �B model, but as

our foundation to build a current �c, to plug in the formula (2)
for �B.

We now have a natural “radius field” R, but in analogy with
the construction of 2D spirals, it remains to find a relevant
angle θ . This is indeed possible noticing that we may also
write θ = atan2(∂yr, ∂xr)/π , a relation that becomes clearer
after checking that it does reduce to the standard arctan(y/x)
for x > 0. With this viewpoint, it is now natural to define, for
the 3D case,

θR ≡ 1

π
atan2(∂yR, ∂xR). (8)

Finally, we redefine the length λ as

λR ≡ R − c0 − d θR. (9)

Our motivation for these peculiar definitions is purely geo-
metrical, in the sense that we introduce them independently
of the dynamical equations. However, an expression such
as (8) should not be surprising, since dot products between
fields and gradients (and therefore angles) are omnipresent in
(magneto-)fluid dynamics, notably with the advection oper-
ator �v · �∇. Note that, in this 3D case, we could likewise
consider a second angle, inspired from the φ angle of spherical
coordinates, but we deliberately keep our model as elementary
as possible.

All in all, our magnetic field model �B is the modified Biot-
Savart law (2) with the “current” vector field in it taken as

�c ≡ S �R, (10)

i.e., �c starts from the fractional Gaussian field �R given by (3),
scaled by a sheetlike field with a spiral structure S given by
(7), where the top-hat functions Ti and Td are given by (5), the
angle θR by (8) and the length λR by (9). We name our model
B × C, which stands for “magnetic fields from multiplicative
chaos” in reference to notably [11,16,17].

We can motivate our construction as follows. Evidently,
the core of turbulence studies is to understand and be able
to model the intricate interactions between scales in turbulent
fields. A classical paradigm is to consider as total field a split
into a sum of fields of different nature, e.g., constituted as
an ordered (strong background) plus a turbulent field, or an
equilibrium plus a perturbed field. An archetypical example
is the mean-field dynamo theory where the magnetic and
velocity fields are split into large-scale, mean-field parts and
small-scale, fluctuating parts [19]. In this paper, we introduce
another procedure when we use the fGf R field. We effectively
introduce a scale splitting linked to the correlation length scale
of R: inside each “blob” of R (cf. bottom-left panel of Fig. 1) a
spiral-shaped eddy forms, while on larger scales, beyond R’s
correlation length, the eddies decorrelate. Since we expect the
statistics of our field to become Gaussian on large scales (see
also PDFs of increments further shown in Fig. 9 below), it
seems appropriate to use a Gaussian field, such as a fGf.

D. Mimicking a time evolution

A particular feature of the present type of modeling is
that it consists in applying a deterministic transformation
to a given white noise. Being deterministic, once a real-
ization of the white noise is chosen, we can transform the
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magnetic field smoothly by varying continuously the parame-
ters (L, h, η, ε, . . . ). This can be used to emulate a (artificial)
time evolution: to each parameter p we give a simple time
dependence p = p̄ + σp sin(ωpt + φp), i.e., the value of p
oscillates around a mean value p̄, with an amplitude σp, at
a frequency ωp, and a phase shift φp. It is paramount to
choose different phase shifts for the various parameters. The
oscillations will then be out-of-phase, which avoids spurious
periodicities. In other words, we thus move continuously in
a rather chaotic way into the parameter space. An animation
exemplifying this can be found at [20] for a 5123 resolution.

III. COMPARING OUR MODEL TO A DNS

In this section we analyze a realization of a magnetic field
built with our B × C model, as well as its corresponding
current density field, and we compare them to a realization of
a magnetic field and current density generated using a DNS,
to assess the realism of our model.

Note from the outset that we expect our model to be pri-
marily useful (1) to generate extremely high-resolution fields
(including a mock time evolution) that are out of reach of
DNS and (2) to reduce drastically the time needed to cre-
ate nontrivial initial conditions for DNS. We therefore will
assess whether our model can reproduce with much reduced
resources various aspects also present in a given DNS. It is
to this end that we ran a full DNS. The latter will constitute
some reference data, considered as “realistic,” and in this part
of the paper we show by means of a series of side-by-side
comparisons, that our model shares many properties of this
DNS, both qualitatively (notably sheetlike structures with ap-
pealing visual aspects) and quantitatively (notably providing
evidence of intermittency, and the expected shape for power
spectra, namely, a well-defined power-law-behaving inertial
range between clear large- and small-scale cutoffs). Naturally,
since our model is a fast parametric model, future work could
easily extend it with an automated systematic parameter sur-
vey, such as Monte Carlo Markov chain analyses.

This part of the paper is organized as follows. We give
details of how we implemented numerically our DNS and our
model magnetic fields. We carry on by comparing the DNS
and B × C fields in five ways. First we compare the resources
required to generate them, then we inspect their visual aspects
(2D slices as well as 3D appearance, with both scalar and vec-
tor visualizations), after which we provide several quantitative
comparisons using the standard statistical tools of turbulence
studies, namely power spectra, PDFs of increments for B and
j, structure functions and spectra of exponents, supplemented
with a Partial Variance of Increments analysis.

A. Numerical implementation

Throughout the paper, unless otherwise stated, the fields
have a resolution corresponding to N3 = 10243 collocation
points.

The DNS data set considered is a snapshot at the temporal
peak of total dissipation from a pseudospectral simulation of
decaying 3D isotropic MHD turbulence that was performed
with the ALIAKMON code [21]. The nonlinear terms in
the equation were de-aliased using the standard two-thirds

FIG. 2. Resources required to generate a magnetic field realiza-
tion with our B × C code (written in Python). Computing time as a
function of resolution is plotted in blue (left y axis), and the required
RAM memory in red (right y axis), performed with a 40-logical-
cores desktop. Continuous lines are for double precision (float64)
calculations, and dashed lines for single precision (float32). Hence,
10243 data are generated in about 10 to 25 min, depending on the
precision needed.

rule, while advancement in time was performed by a fourth-
order Runge-Kutta method. The product of the maximum
wave number that was represented in the simulation with
the Kolmogorov microscale was at all times kept above 2.
At the temporal peak of total dissipation, the Taylor mi-
croscale Reynolds number is approximately equal to 270,
while the Reynolds number based on the integral length scale
is approximately equal to 2000. The initial condition used is
a superposition of a large-scale Arnol’d-Beltrami-Childress
(ABC) flow at |k| = 2 and a Gaussian random field with an
exponentially decaying energy spectrum.

For B × C, we detail the reasoning that lead us to the
chosen numerical values of the parameters. Note that in our
code the box size is taken equal to unity, so the numerical
values of the lengths below should be read as percentages of
the box size.

First we chose the parameters for the fGf R, because the
fGf directly controls the typical size of the large eddies, as
illustrated by the bottom panels of Fig. 1. In order to obtain
about ten large eddies along each direction of our data cube,
we took LR equal to about a tenth of the box size, specifically
LR = 0.075. Then, for the inertial range to be as large as
possible, we needed to choose ηR as small as possible, but as
previously mentioned, at the same time this parameter should
be large enough for the gradients of this random field to be
well approximated. A usual trade-off in such models (e.g.,
[12,17]) is to take ηR = 3dx, where dx = 1/N is the pixel size
on our grid of size N = 1024. Finally, the Hurst parameter hR

of the fGf controls how smooth R is, and consequently, given
the construction, it controls how wiggly the sheets are (cf.
bottom panels of Fig. 1). Since in our reference DNS data the
sheets are particularly smooth, sometimes even almost flat, we
were led to choose a very small numerical value for this Hurst
parameter, and took hR = 0.05.

For the Biot-Savart law (2) we took L = 0.3 to integrate
on sufficiently large regions for the magnetic field to span on
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FIG. 3. Figures 3–5 are visual comparisons of fields generated with a DNS (left column) to fields generated with our B × C model (right
column). In the present figure, (a) in the top row are slices of B, the norm of the magnetic field, (b) in the middle row are slices of j in
logarithmic scale, the norm of the current density, and (c) in the bottom row are slices of jx , the x component of the current density, which
shows some vector information (orientation of �j). From Figs. 3–5 we conclude that, while B × C fields are generated using several orders of
magnitude fewer resources, they have a similar visual aspect to the DNS.

large scales, as in our DNS. The choice h = 2 was based on
enabling the magnetic field to have enough power at small
scales, since Hurst parameters control the slope of the power
spectrum, and the standard value η = 3/N was chosen as for
ηR above.

For the properties of the sheets, we focused on the pa-
rameters controlling the spiral shapes. Given the properties
of Archimedean spirals, we chose c0 = 0.3 to offset the cen-
terpoint of the spirals from the origin to avoid having sheets
converging artificially at the same points, and d = 0.2 for the
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FIG. 4. Continuation of Fig. 3. Isocontours of j, the norm of the current density, are shown for values of 60% (top row), 30% (middle row),
and 10% (bottom row) of the maximal value. The volume filling and the shape of the structures of the B × C field at different amplitudes of j
matches qualitatively that of the DNS.
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FIG. 5. Continuation of Figs. 3 and 4. (a) In the top row are 3D vector visualizations, and (b) in the bottom row are 2D vector cuts. While
Figs. 3 and 4 show the distribution of the sheets throughout the whole space, here we have zoomed on specific regions to reveal finer details of
some clusters of sheetlike structures.

sheets to be well separated, as in the DNS. Otherwise, in order
to make our intense sheets very thin, as in our reference DNS,
we chose a width several orders of magnitude smaller than the
box size, namely wmax

i = 3 × 10−5 and �i = 5 × 10−3.
We then constructed the diffuse sheets relatively to the

intense ones: In our reference data diffuse sheets appear typ-
ically an order of magnitude wider, hence wd = 0.05, and
being “diffuse” translates into �d = 0.2 to be an order of
magnitude larger than in intense sheets (the filter thus being
far less steep). In addition, from (7) it is clear that kd controls
the number of sheets swirling inside a given eddy, measured
in multiples of 2π . The choice kd = 6π leads to a few dif-
fuse sheets and an appropriate volume-filling aspect. To make
sheets diffuse and hence less intense, it is natural to weigh
their amplitude relative to the intense sheets by a number of
the order of a percent, hence ε = 5 × 10−3.

Finally, in Biot-Savart’s law we smoothed the truncation
of the integration region to a ball of radius L, by multiplying
the kernel by 0.5[1 − tanh (r − L − �c)/�c] with �c = 0.23L.
Second, noticing that in places where | �∇R| ∼ 0, such as in
the origin of the plane in the top row of Fig. 1, many sheets

converge in a relatively artificial manner, we multiplied S by
1 − exp(−| �∇R|2/10), and found that this improved slightly
the results.

B. Comparison 1: Required resources

The important difference between B × C and our DNS run
is the resources used: the reference DNS required about 50
000 core hours (on an HPC system with eight-core Intel E5-
2670 Xeon processors running at 2.60 Ghz) while a magnetic
field with our code is generated in less than half an hour on a
desktop with 40 logical cores, as detailed in Fig. 2. Our model
is very fast because (2) and (3) are nothing but convolution
products, i.e., simple products in Fourier space. In contrast
to the original HD and MHD models of this kind, where
much more intricate nonlinearities were used to mimic turbu-
lence statistics, this aspect makes our geometric, parametrized
construction scalable to extreme resolutions, beyond those
achievable by DNS on modern supercomputers, and only
bound by local memory requirements. Order 5003 realizations
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FIG. 6. Statistical comparison of the DNS and B × C fields. In
the top panel we plot the power spectrum P(k) of the norm of the
magnetic field, from three orthogonal 2D slices passing through the
center of the data cube. Continuous lines correspond to B × C and
dotted lines to the DNS, where in red the data used are from the slice
with fixed x = 512 (the resolution being N = 1024), in green with
fixed y = 512 and in blue with fixed z = 512. Red, green, and blue
curves of a given data set match because the fields are statistically
isotropic. The bottom panel is the same with the current density field.
The important point is that the power spectra of the B × C fields have
the characteristic shape of turbulent fields, with a clear power-law
inertial range delimited by a large-scale cutoff at small k and a small-
scale cutoff at large k.

are feasible on any laptop, while modern desktops can easily
generate far larger fields.

C. Comparison 2: Visual aspects

In Figs. 3–5, the left columns correspond to the DNS and
the right columns to our B × C model. The first row of Fig. 3
shows the magnetic fields, while all the other figures cor-
respond to the current density fields, which B × C aims at
reproducing. We insist that �j here is computed, as it should,
by taking the curl of the magnetic field (2): it does not simply
correspond to �c given by (10), because (2) is a modified Biot-
Savart formula.

In Fig. 3 we start by exhibiting 2D slices of the norms of
�B and �j, in the top and middle rows respectively. It appears
that the B × C fields have a fluid aspect in the sense that

FIG. 7. Same as Fig. 6, but where the spectra have been
compensated.

smooth variations alternate sudden concentrated structures.
The overall size distribution of larger and smaller patches, in
both the magnetic field magnitude variation and in the current
intensity, is fairly similar between DNS and our model. An
advantage of this construction is that the properties of the
sheets are easily controlled by a few parameters: c0 and d in
λ given by (9) control the (deterministic) shape of individual
spirals constituting the sheets, while LR and hR in the fGf
R given by (3) control, respectively, the typical size of the
swirling regions and how wiggly the sheets are. For example,
in the B × C realization shown here, we deliberately chose a
very small numerical value for the Hurst parameter hR. In this
way R is very smooth (cf. bottom-left panel of Fig. 1) so that
the sheets are not very wiggly, as we observed in our reference
DNS data.

Then, in the bottom row of Fig. 3, to provide some vector
information, we show a 2D slice (the same as for the two rows
above) of jx, the x component of �j. In the blue regions jx is
positive, while it is negative in the red regions. Comparing
the DNS and our analytic reproduction (the left and right
columns) we conclude that B × C reproduces, qualitatively
and statistically speaking, the orientation of the sheets. This
is an extremely important finding, since we targeted this 3D
turbulent vector correspondence from the outset, not just a
scalar reproduction.
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FIG. 8. Three illustrations of how the power spectrum of the
norm of a B × C-generated magnetic field changes when varying
some parameters of the model (namely, h, η, and LR from top to
bottom panels), while keeping the other parameters to their reference
values. These examples were made at a resolution N = 512, and, as
in the rest of the paper, the parameter LR is measured in box-size
units and dx = 1/N . The black arrows suggest how tweaking these
parameters may help fitting a given power spectrum.

In Fig. 4 we show isocontours of j at 60%, 30%, and 10%
of its maximal value, in the top, middle, and bottom rows
respectively. These 3D visualizations confirm that the B × C

current density field is indeed composed of 3D sheets with
nontrivial shapes (nonuniform curvature and wiggly edges).
The distribution (i.e., the positions, the orientations and the
volume-filling aspect) of the sheets is rather realistic, in the
sense that intense j regions are not volume-filling, which is
one known facet of MHD intermittency.

In Fig. 5 we show yet more vector information, comple-
menting the bottom panel of Fig. 3. The top row is a zoom into
a 3D vector visualization, while the bottom row is a zoom on
a 2D vector visualization, both displaying regions with many
sheets. We again conclude that the look and feel of B × C
is convincing, and it should be noted that we have not yet
attempted to optimize the free parameters involved in any way.
This can probably be done in follow-up work, but it is to be
stressed that we can easily generate many realisations within
hours on desktop resources, which in principle are equally
likely, just by changing our starting Gaussian noise model.

D. Comparison 3: Power spectra

Finally, in Fig. 6 we computed detailed statistical infor-
mation to be more quantitative. In the DNS and B × C code
simulations, we consider the power spectrum as a tool to
quantify and compare the statistics of the scale dependence
of the fluctuations. The power spectrum (P) is defined as the
change in kinetic energy (E ) as a function of wave number
(k), P(k) = dE/dk. From the isotropic incompressible 3D
data of the field, we generate a one-dimensional (1D) radially
averaged power spectrum [22] from 2D slices along coordi-
nate directions. The 2D field f (x, y) is Fourier transformed,
yielding the 2D power spectrum from the amplitude defined
as P(kx, ky) = | f̃ (kx, ky)|2 where f̃ denotes the Fourier trans-
form of the field. The collapsed 1D radial average of P(kx, ky)

between k and k + dk, where k =
√

k2
x + k2

y , yields the power

spectrum P(k)dk. This is shown in Fig. 6. The fact that the
red, green, and blue curves of a given data set—which differ
in their slice orientation—overlap each other [23], stems from
the statistical isotropy of the fields. This behavior would obvi-
ously change if we were to combine a B × C prescription with
background guide fields, or given spatiotemporally varying,
smooth background magnetic field models. This figure shows
that the B × C fields, in particular the magnitudes B and j,
have similar power spectra than that of the DNS. Indeed,
they provide a clear proof of concept, and produce fields with
power spectra that have the characteristic shape of turbulent
fields, namely a large-scale cutoff at small k corresponding to
the injection scale, a power-law inertial range at intermediate
k which, physically speaking would correspond to the energy
cascade, and a clear small-scale cutoff at large k which mimics
the effects of dissipation.

Note that we can always scale the magnetic field strength
in the B × C to match the DNS power spectrum at a specific
length scale, notably with NB. The comparison between power
spectra in Fig. 6 is repeated in compensated form in Fig. 7,
showing a very acceptable level of agreement, given that no
parameter optimization has been performed. The numerical
values of the powers in k for the compensations were chosen
such that the regression lines of the inertial ranges fit become
horizontal.
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FIG. 9. (a) Top row: PDFs of increments of the norm of the magnetic field generated with our DNS (left column) and that generated with
our B × C model (right column), at lags � = 4, 7, 10, 13, 17, 22, 30. The dotted black curves correspond to unit-variance Gaussian PDFs.
As the lag decreases, the curves deviate from Gaussianity, which is characteristic of intermittency. (b) Bottom row: Same plots using the norm
of the current density field instead of B. The fact that the plots on the left and right columns look like each other indicates that B × C generated
fields have rather realistic statistical properties.

In Fig. 8 we provide three examples of how the power
spectra vary when varying the values of the parameters of
our model, and how sensitive they are to such variations.
Specifically, in the top, middle, and bottom panels we vary,
respectively, h, η, and LR while keeping all the other parame-
ters to their values of the reference run. We indicate with black
arrows how varying these parameters may help tweak a given
power spectrum: The Hurst parameter h is a convenient degree
of freedom to modify the slope of the spectrum, while η and
LR enable refining the cutoffs at the small and large scales,
respectively. Figure 8 simply illustrates there are enough

degrees of freedom in our model to fit DNS data rather pre-
cisely, but this possible optimization is out of the scope of this
paper.

E. Comparison 4: PDFs of increments, structure functions,
and spectrum of exponents

As turbulent fields are in general not Gaussian fields, power
spectra cannot fully characterize a turbulent state. Hence, we
now supplement our analysis with the most common tools of
diagnosis in turbulence studies which reveal the existence of
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FIG. 10. (a) Top row: The first seven structure functions Sn(�) of the norm of the magnetic field generated with our DNS (left column) and
that generated with our B × C model (right column), obtained using the PDFs from Fig. 9. (b) Bottom row: Spectra of exponents resulting
from fitting the power-law behaviors of the structure functions shown in the top row. The dashed blue lines correspond to the spectrum of
exponents of a nonintermittent field (Kolmogorov scaling), while the dashed black curves correspond to the DNS and B × C data in the left
and right panels, respectively. The pronounced departures of the black curves from the linear laws manifest intermittency, and the similarity
between the plots of both columns highlights B × C’s ability to mimic DNS data.

intermittent corrections to the scaling of the increments of the
fields and their moments (structure functions and spectrum
of exponents) with respect to length scale. Specifically, let us
define the increment over a lag �� of the norm B of the magnetic
field as the quantity

δ��B(�x) ≡ B(�x + ��) − B(�x). (11)

In the following we will also consider the norm j of the cur-
rent density field, and consider the same expression, replacing
B by j.

A first traditional way to reveal intermittency is to compare
the probability density functions (PDFs) of the increments of

the considered field to those of a Gaussian field. Indeed, the
PDFs of increments in intermittent fields undergo a contin-
uous deformation as the norm � of the lag is decreased, the
PDF having an almost Gaussian shape at large lags but large
tails at small lags. This behavior is a typical signature of in-
termittency, and the large tails are often called “non-Gaussian
wings.” Now, as we saw in the previous section, our fields
(both DNS and B × C data) are statistically isotropic since
the power spectra of the three slices (cuts along x, y, and z
directions) are very close to one another. Therefore only the
norm � of the lags matters, and here we compute the PDFs of
the increments for � = 4, 7, 10, 13, 17, 22, 30. For larger �s
the PDFs are near Gaussians. In addition, we use this isotropy
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to improve our statistics as follows. In practice we compute
the PDFs for each direction considering the x, y, and z slices as
independent realizations of a single process, and we show in
Fig. 9 the median PDF at each lag, with the gray areas indicat-
ing the standard deviation from this median. In this figure, the
top row corresponds to PDFs (normalized to unit variance) of
B and the bottom row to PDFs of j, the left and right columns
corresponding to the DNS and B × C data, respectively. In all
those plots the departure from Gaussianity is evident, with the
aforementioned characteristic continuous deformation when
varying the lag. Comparing the two columns, it is manifest
that the B × C data do reproduce well the statistics of the
reference DNS.

A second usual way to identify intermittency in isotropic
turbulence studies is to analyze the so-called structure func-
tions, and reveal their power-law behavior with respect to
scale. Let us define the nth order structure function as the nth
moment of the absolute value of magnetic field increments,
namely,

Sn(�) ≡ 〈|δ�B|n〉, (12)

where brackets 〈·〉 denote the expectation value [24]. A similar
expression stands when using the current density j instead
of B. In practice we compute the structure functions using
the above PDFs of magnetic field increments, and we show
them in the top row of Fig. 10. In this figure it appears that
in the range of lags considered here the seven first structure
functions do behave as power laws. We find that we do not
need to invoke extended self-similarity, which consists in
considering structure functions as functions of the third order
structure function S3, rather than of the lag in order to widen
the power-law-behaving range. Hence, we have Sn ∝ �ζn ,
where ζn is called the spectrum of exponents (in the following
we will normalize it with the third exponent, i.e., we will
consider ζn/ζ3). The dependence on n of ζn quantifies the
intermittency, as the field is intermittent if and only if ζn

depends nonlinearly on n. The spectra of exponents deduced
from our DNS and B × C magnetic fields are shown in the
bottom row of Fig. 10. As they should, they strongly deviate
from Kolmogorov’s linear scaling. From these plots it appears
once more that both magnetic fields are non-Gaussian and that
they have similar statistical properties.

F. Comparison 5: Partial Variance of Increments: Correlating
intermittent current sheets with discontinuities

in magnetic fields

Figure 9 quantified increments in norms of magnetic field
and current density, further used in Fig. 10 for structure func-
tion analysis. Now we will use similar incremental magnetic
field changes along a parametrised path (using path parame-
ter s) written as �B(s,�s) = B(s + �s) − B(s) and current
density �j(s,�s) = j(s + �s) − j(s) to produce a statisti-
cal analysis to identify intermittent turbulent structures (i.e.,
current sheets) by analyzing the discontinuities present in
magnetic fields. This time, we measure the normalized partial
variance of increments (PVI)

Is,�s = |�B(s,�s)|2√〈|�B|〉 , (13)

FIG. 11. (a) An example of our 1D data path in a X -Y cut used
in a PVI quantification, and (b) the locally sampled data series below
as function of path parameter s.

where 〈·〉 = (1/l )
∫

l ·ds denotes a spatial average over the
entire length l of the path considered (concatenated paths
across the domain), and �s is the spatial lag. The square of the
above quantity Is,�s is referred to as PVI as given in [25,26].
We follow the idea presented in [27] to detect discontinuities
along a tangential 1D path traced within 2D simulation cuts
along the X , Y , and Z directions of the 3D simulation data.
As shown in the top of Fig. 11, we sample the simulation
along this 1D path, which is 14◦ with respect to X , Y , and Z
directions for Z , X , and Y cuts, respectively. The periodicity
of the data enables us to consider the entire 1D path along the
domain, where the path reenters the opposite periodic side.
We have adopted this 14◦ angle such that the offset distance
between the path reentry is greater than the integral scale of
the data. Along this 1D path, we measure the PVI. This shows
the correlation between current structures formed due to the
turbulence and intermittent PVI events along each cut for the
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FIG. 12. PVIs computed for �s = 1, 10, 50 (top, middle, bottom). The dashed horizontal lines indicated for each cut (marked in the same
color) represent the threshold of PVI θ = 3σ , calculated separately for each PVI series.

data sets. The PVI events for each separate tangential path on
the sampled DNS data set are shown in the bottom of Fig. 11.

For lags �s = 1, 10, 50, the PVI series calculated for the
DNS and B × C are plotted for X , Y , and Z cuts in Fig. 12.
The PVI series can easily measure the presence of intermittent
events relating to current sheets or magnetic reconnection. In
a turbulent flow, the non-Gaussian events fill up the space in
addition to these very rare intermittent events, whose values
lie above the standard deviation of the sample. By apply-
ing a threshold method to the PVI analysis of numerical

simulations [27,28], found a direct correlation between PVI
events satisfying the threshold parameters to the non-Gaussian
and intermittent events of a flow. In our analysis, the threshold
parameter θ is set to 3σ , where σ is the standard deviation cal-
culated across the PVI series. The increment of the threshold
parameter leads to separating even higher intermittent events
from the sample. We find the distinct regions of intermittent
(rarely occurring) and non-Gaussian events (frequently occur-
ring) in the turbulent flow above and below this threshold,
respectively. In Fig. 12 the PVI signal for DNS (B × C) data
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FIG. 13. PVI2 and the square of the J normalized to its mean value is plotted as a spatial signal with lag �s = 1 for the Z cut in (a) the
DNS data and (b) the B × C data.

is plotted on the left (right) column for values of different
lag, �s = 1, 10, 50. Considering a threshold of PVI > θ , the
smallest lag of �s = 1 captures the highest intermittent events
compared to higher lags for each cuts of the two cases. PVI >

θ captures both intermittent and non-Gaussian events as we
increase the lag and as such the information gets saturated
with lower intermittent events which we see in all the plots.
As shown in Fig. 12, we clearly expect the B × C to provide
similar information about the discontinuities present in the
magnetic field compared to the DNS data.

As a follow-up study, we present our analysis to correlate
the intermittent events found by analyzing the increments of
the magnetic field to the presence of magnetic reconnection or
current sheet events. According to [26], the more prominent
peaks of current density correspond statistically to more sig-
nificant peaks of PVI. It is because of this that the PVI method

can describe and identify the strong magnetic gradients. We
compare the spatial signals of PVI2 (in red) to J2/ < J2 >

(in dashed green) for Z cut in Fig. 13. We analyze both the
signals for a lag of �s = 1. The reference DNS data show
distinct statistical peaks to be in phase of the PVI signal and
the current density. As so, the data demonstrate that the two
quantities have a positive cross-correlation. The same can be
interpreted for the B × C data, which presents similar statis-
tical results in Fig. 13, demonstrating that the PVI method in
this case is capable of successfully relating the magnetic field
discontinuities to estimate the intermittency in current density
for the B × C. A further statistical study to show the relation
of PVI and current is shown by the joint PDF in Fig. 14.
We plot the kernel density estimate of the joint PDF for PVI
value compared to the J/Jrms at the smallest spatial separation
of �s = 1 for the Z cut of DNS [Fig. 14(a)] and B × C

FIG. 14. Kernel density estimate of the joint PDF of the magnitude of the current J/Jrms and the PVI values for the detected PVI events.
The PVI signal has been computed on a spatial separation �s = 1 and the Pearson correlation coefficient is 0.62 for DNS (a) and 0.71 for
B × C (b).
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[Fig. 14(b)]. For both cases, a positive correlation is seen with
the extreme values of PVI corresponding to the extreme values
of current density and the bulk of the PVI population at lower
PVI values corresponds to the lower current density values.
The Pearson correlation coefficient between the variables is
0.62 for the DNS data and 0.71 for the B × C data. Thus,
it shows how PVI helps in identifying these extreme events
from magnetic discontinuities and in doing so relates them to
the sharp gradients in current density effectively for B × C as
it should be for the DNS data.

IV. OUTLOOK

We introduced a geometrically controlled, parametrized
way to generate mock turbulent MHD fields, emphasizing
the magnetic field and current density variations in 3D space
as typically encountered in high-resolution DNS data. Our
B × C model was shown to correspond visually, as well as
statistically, with typical isotropic turbulent magnetic fields.
In contrast to DNS models, our tool is not computationally
intensive, and has direct parametric control on the spectral
properties embedded in these turbulent fields. By general-
izing this proof-of-concept to cases with also background
organized fields, our model may become a direct tool for
testing rivaling MHD (anisotropic) turbulence theories, and
for inspecting their visual appearance. Potential applications
of this tool are numerous [29], with the distinct advantage

that laptop resources suffice. This can then quickly generate
turbulent magnetic data cubes, to study, e.g., polarized light
propagation through astrophysical turbulent media (Faraday
effect); or for fitting our geometric parameters to match ac-
tual 3D DNS fields, that can then be artificially “upscaled”
to ever larger sizes N3. Note that we can likewise generate
pure hydro fields, where vorticity-velocity vectors behave like
our current-magnetic vector fields, and hence produce data
cubes for both incompressible flow and magnetic field vectors,
for input to full MHD simulations with particular turbulent
properties. Future work can try to generate a suitable gener-
alization of this model for isotropic MHD turbulent fields, to
those encountered in situations with a clear organized guide
field, where differences in behavior parallel versus perpendic-
ular to the guide field can be explored.
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