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Abstract

We consider the classical field integrable system whose evolution equation is the non-
linear Schrödinger equation with defocusing non-linearities, which is the classical limit
of the quantum Lieb-Liniger model. We propose a simple derivation of the relation be-
tween two sets of conserved quantities: on the one hand the trace of the monodromy ma-
trix, parameterized by the spectral parameter and introduced in the inverse-scattering
framework, and on the other hand the rapidity distribution, a concept imported from
the Lieb-Liniger model. To do so we use the definition of the rapidity distribution as the
asymptotic momentum distribution after a very large expansion. We propose two differ-
ent ways to derive the result, each one using a thought experiment that implements an
expansion.
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1 Introduction

The Lieb-Liniger model, that describes one-dimensional Bosons with contact repulsive inter-
actions [1], plays a key role in quantum many body systems. On the experimental point of
view, it describes remarkably well cold-atoms experiments (see for instance the review [2]),
among them the famous Newton’s Craddle experiment [3]. On the theoretical point of view,
it is a paradigmatic integrable model, that is the non-relativistic limit of all known integrable
quantum field theories [4,5]. The integrability manifests itself by the fact that the eigenstates
take the form of Bethe-Ansatz wave functions. The latter are labeled by numbers, whose unit
is mass×velocity, and whose number is equal to the particles number, called the rapidities or
the Bethe-roots. For a large system, one defines the coarse-grained rapididty distribution Π(p)
as the density of rapidities: Π(p)dp is the number of Bethe-roots in the interval [p, p + dp].
By construction, it is a conserved quantity. Moreover, for a system confined on a length L, its
intensive counterpart ρ(p) = Π(p)/L plays a crucial role in the long time behavior: as long
as mean values of local quantities are concerned, the system shows a relaxation phenomena
and the relaxed system is entirely characterized by ρ(p) [2, 6, 7]. Many results have been
obtained in recent years for relaxed states, expressing mean values of local operators in terms
of ρ(p) [8, 9].1 The fact that relaxed states are entirely parameterized by ρ(p) is also at the
heart of the Generalized Hydrodynamics theory, that assumes local relaxation [2,12,13].

A very famous asymptotic description of the Lieb-Liniger model is the classical field descrip-
tion which ignores quantization of the particles and describes the system as a classical field
ψ(x), whereψ is a complex field and x is the spatial coordinate [2,14–16]. The time evolution
ofψ(x) is given by the nonlinear Shrödinger equation (NLSE), also called the Gross-Pitaevskii
equation. The classical field description has proven to be extremely powerful in describing
many experimental results in the field of cold atoms experiments [15]. It also successfully de-
scribes many other experiments such as propagation of light in a non-linear medium [17]. The
NLSE belongs to the class of classical integrable models which have been the subject of a whole
domain of mathematical physics since the 1960’s. The inverse scattering method enables to
construct an infinite set of independent conserved quantities, parameterized by a spectral pa-
rameter λ, called inverse scattering constants of motion in the rest of this paper and denoted
τλ [18]. Importantly, these constants of motion can be computed at any time, provided that
the field configuration at this particular moment is known.

Making the connection between the classical and the quantum framework is a highly de-
sirable task as it enables to extend recent results obtained for relaxed states of the Lieb-Liniger
model to the classical framework. One needs for this to identify the classical counterpart of
the rapidity distribution and to express it in terms of the inverse scattering constants of mo-
tion. To do so one can use the very powerful Quantum Inverse Scattering Method (QISM), the
link with the Bethe-Ansatz rapidities being done via the Algebraic Bethe-Ansatz method [19].
This task has been done for the sinh-Gordon model in [20] and more recently in [21] for
the Lieb-Liniger model. These results made it possible to generalize calculations of correlation
functions in relaxed states of the quantum model to the classical framework [20, 22], and to
identify the classical counterpart of the Generalized Hydrodynamics theory [21].

The results cited above use very advanced mathematical techniques. In this paper, we
propose on the contrary a very simple way to extend the notion of rapidity distribution to the
classical framework and we propose a simple and elementary derivation of the link between
the rapidity distribution and the inverse scattering constants of motion. For this, we will not
rely on the definition of the rapidity distribution based on the Bethe-Ansatz form of the eigen-
states of the Lieb-Liniger model. Instead, we use the fact that the rapidity distribution is the
asymptotic momentum distribution of the Bosons after their expansion to very large distances,

1Note also related work in another quantum integrable model in [10] and [11].
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a property which provides an alternative definition of the rapidity distribution [2]. This defini-
tion of the rapidity distribution can also apply within the classical field framework: the notion
of expansion is of course meaningful within the classical model, and the momentum distri-
bution of the Bosons is nothing else, in the classical field framework, but the field density in
Fourier space. The fact that, upon expansion on sufficiently large distances, the momentum
distribution reaches a stationary asymptotic function is not a surprise: once diluted enough,
the non-linear terms, which are the classical field counterpart of the interactions in the many-
body quantum model, become negligible and the momentum distribution no longer evolves
in time. What is very special about integrability is that this asymptotic momentum distribu-
tion, which is the rapidity distribution, does not depend on the time at which the expansion is
performed, even though a complex dynamic could occur in the system prior to the expansion.

Using thought experiments that exploit the above definition of the rapidity distribution,
we derive the link between the rapidity distribution and the inverse scattering constants of
motion: more precisely, we express the inverse scattering constants of motion in terms of the
rapidity distribution. For pedagogical purposes, we propose two different derivations in this
paper, both related to different thought experiments and leading to different mathematical
approaches.

2 Main result

We consider the classical field description of 1D Bosons of mass m with contact repulsive
interactions. The system is described by the one-dimensional complex field ψ(x), that fulfills
the Poisson-Bracket relations {ψ(x),ψ∗(x ′)} = iδ(x − x ′)/ħh, {ψ(x),ψ(x ′)} = 0 and whose
Hamiltonian is

H =
ħh2

2m

ˆ L

0
dx

�

�

�

�

∂ψ

∂ x

�

�

�

�

2

+
g
2

ˆ
dx |ψ(x)|4 , (1)

where g, which governs the non-linear term, is the coupling constant. Here we assume periodic
boundary conditions on the box of length L. The equation of motion of ψ is the NLSE

iħh
∂ψ

∂ t
= −
ħh2

2m
∂ 2ψ

∂ x2
+ g|ψ|2ψ . (2)

In the following, to lighten the notations, we use a unit system in which ħh= m= 1. The Fourier
components of ψ are ψk =

´ L
0 dxψ(x)e−ikx/

p
L where k takes the discrete values which are

the multiples of 2π/L and one defines the momentum distribution as the continuous function

n(p) =
L

2π
〈|ψk|2〉c.g. , (3)

where the right-hand-side is computed for k values close to p and c.g. means coarse-graining
on a width in k small compared to the width in p of n(p) but sufficient to wash out fluctuations
ofψk that may occur on a small scale in k space. It is normalized by

´
dp n(p) =

´
dx |ψ(x)|2.

Note that the weights |ψk|2 are not constants of motion since interactions mix different Fourier
components, and the function n(p) evolves in time in general.

The integrability of the NLSE is manifested by the fact that the asymptotic momentum
distribution after a very long expansion, n∞(p), is a conserved distribution, in the sense that
it does not depend on the time at which the expansion is performed. As explained in the
introduction, this conserved distribution is nothing else but the rapidity distribution, Π(p),
namely

Π(p) = n∞(p) . (4)
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This equality provides a definition of the rapidity distribution, which is that used in this paper.
The values Π(p), labeled by the momentum p, define an infinite set of constants of motion.

The inverse scattering method provides an alternative set of constants of motion [19],
denoted τλ, labeled by a real parameter λ called the spectral parameter, whose unit is a mo-
mentum. More precisely, τλ is the trace of the monodromy matrix, itself parametrized by λ,
whose definition is recalled in section 4. The constants τλ can be computed at any time, know-
ing the field configurationψ(x) at this time. In the following, for the calculation of the inverse
scattering constants of motion, we consider a quantization box of length L large enough so
that the momentum distribution of the gas, if it expanded in this box, would have converged
towards its rapidity distribution. The gas being initially confined in a smaller box of size L0,
one extends the initial field configuration to the box of size L by setting ψ(x) = 0 outside the
box of size L0. The goal of this paper is to establish the link between the inverse scattering
constants of motion and the rapidity distribution. Our result is

τλ = 2eπΠ(λ)gm/ħh cos
�

λL
2ħh
+

mg
ħh

 
Π(p)dp
p−λ

�

, (5)

where
ffl

means the Cauchy principal value and we reintroduced ħh and m for more clarity. This
expression is compatible with the results obtained in [21] by taking the semi-classical limit of
formulas derived from the QISM and the Algebraic Bethe-Ansatz, provided that we go to the
thermodynamic limit. As expected, for large λ the famous trace identities are recovered [19].2

A similar expression was derived for the Sh-Gordon model in [20] (see Eq. (421) and (424) of
[20]) using classical limit of Bethe-Ansatz equations. Eq. (5) also coincides with the formula
(76) of [22] at large λ.

Eq. (5) shows that, for a given rapidity distribution Π(p) and a large box length L, the
inverse scattering constants of motion oscillate rapidly with λ. Such oscillations are smeared
out if one considers the coarse-grained quantity 〈τ2

λ
〉c.g., where coarse-graining is done on a

width large compared to 1/L. Eq. (5) then leads to

〈τ2
λ〉c.g. = e2πΠ(λ)gm/ħh ,

a quantity which no longer depends on the size of the quantization box.

3 Sketch of the derivation

As advertised in the introduction, we propose two different methods to derive Eq. (5). They
are based on two different thought experiments, depicted in Fig.1. The first method assumes
relaxation of the system in a large box while in the second method, we consider an expansion
of the system to the far-field regime. In both thought experiments, in its final state, the gas
has expanded sufficiently so that its momentum distribution has converged towards its rapidity
distribution.

The inverse scattering constants of motion τλ are computed from the knowledge of the
field configuration ψ(x), at a given time. Since they are preserved by the dynamics, one can
choose to estimate them after the expansion, which is what we do in this paper. For each
thought experiment, we use a dedicated technique to express the constants of motion τλ in
terms of the momentum distribution of the field. Since the latter is nothing else but the rapidity
distribution, we thus obtain an expression relating the inverse scattering constants of motion
τλ to the rapidity distribution. As it should, the calculations for both thought experiments
lead to the same result, which is the one given in Eq. (5).

2This is shown taking the limit λ→ i∞, using Π(λ)≃ 0 and expanding 1/(λ− p) in power of p/λ to evaluate
the integral in the cosinus.
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Figure 1: Naïve illustration of the thought experiments used in this paper to re-
late the rapidity distribution to the inverse scattering constants of motion τλ, i.e.
to derive Eq. (5). In both thought experiments, the field undergoes an expansion
that we assume large enough so that the momentum distribution of the system af-
ter the expansion has converged towards the rapidity distribution. The red regions
schematically represent |ψ(x)|2 at three different times: just before the expansion,
at the beginning of the expansion and after the expansion. The constants τλ are
computed from the monodromy matrix evaluated for the field after the expansion.
(a): at t = 0, we let the system expand and relax to a very large box of size L. The
key point of the calculation is the use of a Markovian approximation, valid since the
field amplitude is very small (see section 5). (b): at t = 0, we let the system expand
freely. We consider expansions large enough to reach the far field regime in which
not only the momentum distribution has converged towards the rapidity distribution
but the density distribution has become homothetic to the rapidity distribution. We
then compute the inverse scattering constants of motion using a calculation similar
to the one made to derive the Landau-Zener formula (see section 6).

In the following sections, details of the calculation are shown. We first recall how the
inverse scattering constants of motion τλ are constructed. We then present the heart and the
most technical part of our derivations, namely the calculation of τλ for a a system that has
expanded on a sufficiently large zone. The first derivation, based on the thought experiment
shown in Fig. 1(a), uses a Markovian approximation to compute τλ. The second derivation,
based on the thought experiment shown in Fig. 1(b), uses a calculation similar to what is done
to extract the Landau-Zener formula.

4 The inverse scattering constants of motion

We consider a field ψ(x , t) whose time evolution is given by the NLSE Eq. (2) and which
obeys periodic boundary conditions on a box of length L. Within the framework of the inverse
scattering method, it is possible to construct an infinite set of constants of motion labeled by
a spectral parameter λ. At any time t, one can compute these constants of motion knowing
the field configuration at the time t. Thus in the following we consider the one-dimensional
function x →ψ(x , t) and we omit the time variable. We first introduce the 2×2 matrix Tλ(x),
called the propagator, which fulfills Tλ(0) = Id and which obeys the evolution equation

∂x Tλ(x) = Vλ(x)Tλ(x) , (6)

where the matrix Vλ(x) depends on ψ(x) according to

Vλ(x) =

�

−i λ2
p

gψ∗(x)
p

gψ(x) i λ2

�

. (7)
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The propagator computed on the total length of the box, Tλ(L), is called the monodromy
matrix. The monodromy matrix depends on time via the time dependence of ψ(x). However,
for a field ψ that obeys the NLSE (2) with periodic boundary conditions, the monodromy
matrix has the remarkable property that its trace is time-independent, namely

τλ = Tr(Tλ(L)) (8)

is time independent [19]. The quantities τλ thus constitute a set of constants of motion,
labeled by the spectral parameter λ and denoted inverse scattering constants of motion in
this paper. Note that since, upon exchange of rows and columns, Vλ becomes its complex
conjugate, the diagonal entries of Tλ(x) are complex conjugate, the same being true for the
off-diagonal entries.

Eq. (6) recalls the one obeyed by the evolution operator in quantum physics, where x plays
the role of time and iVλ(x), although it is not hermitian, plays the role of the time-dependant
Hamiltonian. Inspired by this similarity, we will use, for the estimation of the monodromy
matrix, techniques similar to those developed in quantum physics.

5 Calculation assuming relaxation in a very large box

In this section we consider the thought experiment depicted in Fig. 1(a), namely we assume
the gas has expanded and relaxed to a very large box of length L, large enough so that the
momentum distribution is equal to the rapidity distribution. To compute the inverse scattering
constants of motion we will calculate the monodromy matrix using the properties of the field
after relaxation in the box of size L.

The relaxed system is time-independent and spatially homogeneous in the following sense:
if f ({ui}, x , t) is an N-points correlation function of the field at positions x , x+u1, . . . , x+uN−1,
the time-averaged quantity 〈 f ({ui}, x , t)〉= lim

τ→∞

´ τ
0 dt ′ f ({ui}, x , t + t ′)/τ, where the asymp-

totic value is reached as soon as τ is much larger than the correlation time of the field, is
independent of x and t. In particular, 〈ψ∗(x + u, t)ψ(x , t)〉 is independent of x and t. More-
over, the time-average of ψ(x , t) vanishes.

The crucial point for the calculation of τλ is that, since it is time independent, it can be
computed via Eq. (8) using the monodromy matrix at any time t. It implies in particular that
τλ = Tr(〈Tλ(L)〉) where averaging of the monodromy matrix is done over time. This is why
in the following we compute the averaged propagator 〈Tλ(x)〉.3

Let us first go to the interaction picture by considering T̃λ = T−1
0,λTλ , where T0,λ = e−iλxσz/2

is the propagator in the case of a vanishing field. Here σz is the Pauli matrix. Then, the
evolution equation (6) becomes ∂x T̃λ(x) = Ṽλ(x)T̃λ(x) with

Ṽλ(x) =

�

0
p

geiλxψ∗(x)
p

ge−iλxψ(x) 0

�

. (9)

Let us consider the modification of the propagator from a position x to a position x + dx .
The evolution equation gives

T̃λ(x+dx) = T̃λ(x)+
ˆ x+dx

x
dx ′Ṽλ(x

′)T̃λ(x)+
ˆ x+dx

x
dx ′Ṽλ(x

′)
ˆ x ′

x
dx ′′Ṽλ(x

′′)T̃λ(x
′′) . (10)

3Note that, since Tλ(x) is a functional of the field {ψ(y)}, and depends on time only via the time-dependence of
{ψ(y)}, the time-averaged propagator 〈Tλ(x)〉 is also equal to the propagator averaged over the field configurations
{ψ(y)}, the weight of a configuration being equal to the proportion of time the system spends in this particular
configuration during its time evolution. Thus, for the following calculations, one is free to think of averaging either
in terms of time-averaging or in terms of averaging over field configurations.
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This equation can be greatly simplified by the averaging procedure and by the following
estimation of length scales. On the one hand, the matrix Ṽλ given in (9) evolves in x with a
typical correlation length lψ, which is the correlation length of ψ and which is of the order
of the inverse of the width of the momentum distribution. On the other hand, the amplitude
of ψ is very small since we consider that the gas has relaxed into a very large box. Thus the
elements of Ṽλ are very small, which means that the matrix T̃λ(x) evolves on a typical length
scale lT which is very large. If the size L of the box in which we have let the gas relax is large
enough, the two lengths will obey the Markovian approximation lT ≫ lψ, which enable to
consider a step dx which fulfills

lψ≪ dx ≪ lT . (11)

The second inequality in the above scale hierarchy permits to replace T̃λ(x ′′) by T̃λ(x) in
Eq.(10). The first inequality, together with the averaging procedure, has several consequences
on Eq. (10). First, one can ignore correlations between T̃λ(x) and the matrices Ṽλ(x ′), Ṽλ(x ′′)
since such correlations impact only a negligible part of the integrals. Second, the effect of the
first integral averages out since 〈Ṽλ(x)〉= 0. Finally, in the double integral, one can extend the
integral over x ′′ from −∞ to x ′ since 〈Ṽλ(t, x ′)Ṽλ(t, x ′′)〉 vanishes for distances much larger
than lψ. All the above observations lead to

〈T̃λ(x + dx)〉=
�

Id +
ˆ x+dx

x
dx ′

ˆ x ′

−∞
dx ′′〈Ṽλ(x ′)Ṽλ(x ′′)〉

�

〈T̃λ(x)〉 . (12)

Using the translation invariance of 〈Ṽλ(x ′)Ṽλ(x ′′)〉 and the fact that we consider an interval
dx ≪ lT , the above equation reduces to ∂ 〈T̃λ〉/∂ x =

´ 0
−∞ dy〈Ṽλ(0)Ṽλ(y)〉〈T̃λ(x)〉. Plugging

Eq. 9 into the integrand, this gives

∂ 〈T̃λ〉
∂ x

=

�

aλ 0
0 a∗

λ

�

〈T̃λ(x)〉 , (13)

where aλ reads, in terms of the Fourier components of the field,

aλ =
g
L

∑

k,k′
〈ψ∗kψk′〉

ˆ 0

−∞
dy e(i(k

′−λ)+ε)y , (14)

where we have introduced a small positive parameter ε, that does not change the result as
long as ε ≪ 1/lψ and that we will let go to zero at the end of the calculation. Invari-
ance under translation of the relaxed system implies that 〈ψkψ

∗
k′〉 = 〈|ψk|2〉δk,k′ . We as-

sume moreover that L, the box size in which the gas has relaxed, is large enough so that
〈|ψk|2〉L/(2π) = n∞(p) = Π(p). Plugging these results into Eq. (14), replacing the discrete
sum by an integral and computing the integral over y , we obtain

aλ =
g
L

ˆ ∞
−∞

dkΠ(k)
1

i(k−λ) + ε
, (15)

which leads to

aλ =
g
L

�

πΠ(λ)− i
 

dk
Π(k)
k−λ

�

. (16)

Since aλ is independent on position, integration of Eq. (13) simply gives

〈T̃λ(L)〉=
�

eLaλ 0
0 eLa∗

λ

�

. (17)

Coming back to the bare representation by multiplying with T0,λ and taking the trace, we
obtain the result given in Eq. (5).
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6 Calculation assuming expansion to the far-field regime

In this section, we derive Eq. 5 using the thought experiment presented in Fig. 1(b): we as-
sume that we let the cloud freely expand during a very long expansion time so that not only the
momentum distribution become equal to the rapidity distribution, but the spatial distribution,
if expressed as a function of x

t where x is the spatial coordinate and t the expansion time,
has become proportional to the rapidity distribution. We will compute the monodromy matrix
using the field after the expansion to extract the inverse scattering constants of motion. We
assume here that the field density profile is initially centered on x = 0 and we use a quantiza-
tion box which spans the interval [−L/2, L/2] where L is large enough so that the density at
the borders of the box is vanishing.

At sufficiently large expansion time, nonlinear effects become negligible since the density
is very low. As a result the Fourier components become time-independent, up to the phase
factor eik2 t/2. Thus the field is well approximated for long expansion times by

ψ(x , t) ≃
t→∞

1
p

L

∑

k

ϕ(k)eikx e−ik2 t/2 , (18)

where ϕ(k) does not depend on time. The momentum distribution for such long times is
L|ϕ(k)|2/(2π) and is nothing else but the rapidity distribution. Note that we neglect here a
phase factor evolving slowly in log(t) due to the nonlinear term [18]. The quantization box
in this section is assumed to be much larger than the size on which the field extends and we
replace in the following the sum by an integral. The argument of the exponential terms in the
integrand is rapidly evolving in k. Making a stationary phase approximation, we obtain, up to
a global phase factor,

ψ(x , t)≃
p

L
p

2πt
ei x2

2t ϕ(x/t) . (19)

In what follows we compute the monodromy matrix using the asymptotic expression of the
field given in the above equation.

In order to emphasize the similarity with known quantum physics, let us change represen-

tation and introduce the propagator T̄λ(x) = AλTλ with Aλ = ei x2
4t σz . The evolution equation

(6) then becomes i∂x T̄λ(x) = iV̄λ(x)T̄λ(x) with

iV̄λ(x) =

�

1
2

�

λ− x
t

�

i
q

g L
2πt ϕ

∗(x/t)

i
q

g L
2πt ϕ(x/t) −1

2

�

λ− x
t

�

�

. (20)

Although iV̄λ is not hermitian, this matrix is similar to the time-dependent Hamiltonian of an
avoided crossing, the time – not to be confused with the expansion time t which appears in
the expression of V̄λ – corresponding to x in the above equation and the crossing occurring for
x = λt. In this analogy, the diagonal elements of the monodromy matrix correspond to the
amplitude associated with diabatic processes. We will indeed use, to compute the diagonal
entries of Tλ(L), calculations similar to those performed to extract the Landau-Zener formula.
More precisely, because of its simplicity, we choose to follow a derivation similar to the one
performed in [23].

For the calculation, let us use the same representation as in the previous section, namely
let us compute T̃λ = T−1

0,λTλ, where T0,λ = e−i xλσz/2, such that T̃λ(x) is stationary in x in
regions where the field is vanishing. Since the quantification box is assumed to be very large
compared to the extension of the field, on can take the limit L→∞ for the calculations. Let
us denote c+ and c− the elements of the first column of the propagator T̃λ(x), whose values at
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x = −∞ are c+(−∞) = 1 and c−(−∞) = 0. They evolve according to
¨

dc+
dx =
q

g L
2πt ei(λx−x2/(2t))ϕ∗(x/t)c− ,

dc−
dx =
q

g L
2πt e−i(λx−x2/(2t))ϕ(x/t)c+ .

(21)

Introducing u= x/t, taking the derivative of the first equation and using the second equation,
we obtain

c̈+ = t
�

i(λ− u) +
1
t
ϕ′∗(u)
ϕ∗(u)

�

ċ+ + t
g L
2π
|ϕ(u)|2c+ , (22)

where we use the dot notation for derivative with respect to u and ϕ′ = dϕ(k)/dk. Dividing
by t(λ− u)c+ and integrating over u we get

ˆ ∞
−∞

c̈+
c+

du
t(λ− u)

= i
ˆ ∞
−∞

du
ċ+
c+
+

g L
2π

ˆ ∞
−∞
|ϕ(u)|2

du
λ− u

+
1
t

ˆ ∞
−∞

ċ+
c+

ϕ′∗(u)
ϕ∗(u)

du
λ− u

. (23)

The last term of the right-hand side is negligible for large enough t since it scales as 1/t. The
first term of the right hand side is computed easily changing the variable x to c+: denoting
by c∞+ the asymptotic value of c+ at very large x and using the fact that c+(−∞) = 1, this
term gives i log(c∞+ ). For the evaluation of the other integrals, let us suppose one approaches
the real axis from below in the complex plane, a choice which will be justified afterwards. As
in [23], we assume that the function c̈+/c+ can be continued analytically in the complex plane
and goes to zero at large distances and has no poles, so that the term on the left-hand side
vanishes. The second term of the right-hand-side is evaluated using the Sokhotski–Plemelj
theorem. Finally, we obtain, using the fact that L|ϕ(k)|2/(2π) = Π(k),

log(c∞+ ) = gπΠ(λ)− i g
 

dq
Π(q)
q−λ

. (24)

Note that if one would had chosen to estimate the integrals by approaching the real axis from
above, then one would have log(c∞+ )< 0 so that |c∞+ |

2 < 1, which is not compatible with the
fact that det(T̃λ) = 1 [18]:4 together with the fact that the second column of T̃λ is obtained by
permuting the entries of the first column and taking their complex conjugates, the condition
det(T̃λ) = 1 leads to |c+(x)|2 = 1+ |c−(x)|2 > 1.

There are other ways to derive Eq. (24). Following the calculations made in [24] and com-
ing back to the bare representation, one could connect the true solution close to the crossing5

at x ≃ λ/t to the asymptotic solutions at large distance. In such an approach, the principal
value integral comes from the effect of the field to second order in ϕ(k) outside the crossing
region. Finally, note that the large time expansion was also studied using advance techniques
of inverse scattering [18,26].

Taking the exponential of Eq.(24), we obtain c∞+ . We come back to the bare representa-
tion by mutliplying with e−iλL/2, thus obtaining the first diagonal element of the monodromy
matrix. Using the fact that the diagonal elements of the monodromy matrix are complex con-
jugate, and using Eq. (8), we recover Eq. (5).

7 Conclusion

The link between the rapidity distribution and the inverse scattering constants of motion,
Eq. (5), offers a way to compute the rapidity distribution for a given field configuration ψ(x):

4Because the columns of T̃λ are the solutions of the same differential linear equation for two orthogonal initial
states, the Wronskian property, together with the fact that Tr(Ṽλ) = 0, imply that det(T̃λ(x)) = det(T̃λ(−∞)) = 1.

5The solution close to the crossing take the from of a parabolic cylindrical function [25].
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indeed the inverse scattering constants of motion can be computed once the field configuration
ψ(x) at a given time is known. The rapidity distribution, once computed, allows us to predict
many interesting features. By definition, it predicts the asymptotic momentum distribution
if an expansion is performed. The rapidity distribution shows also its importance when one
considers local properties of the system after relaxation: the latter are functional of ρ(k). For
instance, one can compute, within the classical field model, local correlation functions after
relaxation, adapting results obtained for the Lieb-Liniger model as done in [22]. One can also
apply the Generalized Hydrodynamics theory that describes long wave-length dynamics to the
classical field model.

Although Eq. (5) has previously been derived using more mathematical approaches, this
paper offers an original derivation which does not require knowledge on quantum inverse
scattering theory. It might be interesting to explore other methods to derive Eq. (5). One pos-
sibility might be to use the fact that the rapidity distribution can be derived from the dynamical
structure factor after relaxation [27].

The protocol of section 3 belongs to the class of protocols dubbed quenches, that are pro-
tocols where the Hamiltonian is modified suddenly. Many studies investigated the rapidity
distribution after a quantum quench in the Lieb-Liniger model [6,28–30], thus characterizing
the system after it has relaxed. The quench considered in section 3 is trivial since the rapidity
distribution Π(p) is preserved by the quench: the rapidity distribution per unit length ρ(p)
after the quench is simply obtained from the initial one by multiplication with L/L0 where L
is the length of the system after the quench and L0 its length before the quench.
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