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Abstract

This work presents a method of predicting the calibration accuracy of a 3-DoF, 2-cable, planar

cable-driven parallel robot (CDPR). The calibration is realized with the combination of a laser

displacement sensor and an inclinometer attached to the moving-platform (MP), as well as the

cable encoders. The actual accuracies of the sensors are first experimentally determined for

higher calibration quality. Simulation of the calibration are performed from 6 to 50 measure-

ment poses, with 500 repetitions for each pose number to avoid outliers. The simulation results

show that the error on the CDPR parameters decreases with the number of calibration poses

considered, reaching a plateau of ±9 mm of error after approximately 40 poses. The effect

of each sensor on the calibration accuracy is studied. Calibration experiments are carried out

for a 5.2 m-span CDPR. After verification by an accurate laser tracker, the calibration results

match the previous simulation.
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1 Introduction

Cable-driven parallel robots (CDPRs) are a group of parallel robots that are actuated through

flexible cables instead of rigid links. Compared with serial robots, this particular type of robots

benefits from its high flexibility [17], high payload to weight ratio [29], reconfigurability [28],

and potentially large translational workspace [27]. On most CDPRs, the moving-platform (MP)

is usually connected to several cables, then through pulleys, winches and then linked to the

base structure. There are two configurations according to the number and spatial position of

cables used: suspended and fully-constrained CDPRs [2].

Parallel mechanisms, because of their large numbers of links and passive joints [6], may not

necessarily have a high accuracy. Therefore, kinematic calibration is important for such robot

architectures. Previous works have implemented plenty of robot calibration methods, with non-

linear least square method (NLLS) being the most common one. However few works focused on

the calibration with the combination of several sensors. Besides, few existing studies aimed at

identifying the Cartesian coordinates of the exit points, the initial cable lengths and the moving-

platform poses. For CDPRs with incremental encoders, the initial cable length, therefore the

initial platform pose is unknown, and is typically different each time for applications. Identifying

both the initial cable lengths and the Cartesian coordinates of the cable exit points helps have

a better knowledge of the initial platform pose. Daney et al. [8] used a method based on

interval arithmetics for the kinematic calibration of parallel robots. In [11], a high precision

and robustness iterative calibration method is proposed to significantly improve the end-effector

position errors. Klimchik et al. [20] used a calibration technique to compensate the elastic

deflections of the manipulator components. The method proposed in [15] takes into account of

geometric errors and exploits the least error sensitive regions to perform optimal calibration.

Wu et al. [16] developed an irreducible geometric model to reduce measurement noises during

calibration and proposed an approach to find the optimal robot calibration configurations.

For CDPRs, most of previous works relied on non-linear least square (NLLS) methods for

parameter identification, as it applies conveniently to the minimization of the cable length

residuals. In [3], the NLLS method is used on a 6-cable, 3-degree of freedom (DoF) CDPR,

with a parallelogram, which is able to reach a larger workspace. The application is proven

to be effective by simulations and experiments. The authors also proposed an algorithm to

select optimal measurement poses. The authors of [1] used NLLS method for a CDPR called

TBot and also considered pulley kinematics. They proposed a measurement pose optimization

method, which consists in minimizing the identification matrix condition number. In [4], several

identification methods derived from NLLS are proposed and tested. The other similar approach

is orthogonal distance regression (ODR) [14].

Sensors used for robot calibration can be divided into two categories: exteroceptive and
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proprioceptive, which can be used in combination or not. Proprioceptive motor position sensors

are used in [12] for auto-calibration. Borgstrom et al. [19] used proprioceptive tension sensors

and cable encoders to achieve two novel jitter-based and tension-based self-calibration methods.

Zhang et al. [11] relied exclusively on external sensors to perform their iterative calibration

method. A single theodolite is used in [21] for kinematic calibration of a parallel mechanism.

Martin et al. [13] used laser-based cable length measurement sensor to improve calibration

quality. In [1], an external laser tracker is used to obtain accurate robot poses as the input of

the calibration problem. A efficient calibration method concerning partial pose measurements,

without end-effector orientation is proposed in [23]. Because of the high accuracy of laser

tracker devices, they are also often used to provide ground truths of unidentified parameters.

Little research has been done on the combination of different types of sensors in CDPRs.

Calibration with exteroceptive sensors has drawbacks such as poor measurement accuracies

over volumes, and the difficulty to identify the end-effector pose in certain cases [5]. The use

of sensors embedded on the MP can mitigate those disadvantages. The calibration in this

study integrates a laser displacement sensor, an inclinometer that are installed on the MP, and

the motor encoders. To the best of the authors’ knowledge, all those proprioceptive sensors

have not been used altogether before for CDPR calibration. This work is expected to refine

the sensor selection process for a prescribed CDPR calibration accuracy. Redundant internal

joint encoders are used for the self-calibration of a parallel mechanism [22]. Renaud et al. [5]

proposed to perform the kinematic calibration of a parallel mechanism by observing its legs

with a camera. The method combines the advantages of both exteroceptive and proprioceptive

sensors. Andreff et al. [7] proposed a kinematic calibration method with computer vision for H4

mechanism, a four-chain parallel mechanism that offers three translational and one rotational

DoFs [18]. In ref. [8], Daney et al. used internal sensors to provide the leg length differences

of a parallel mechanism.

This paper presents a method of simulating and predicting the calibration accuracy of CD-

PRs. From the 2-cable, 3-DoF planar CDPR under study, a calibration method is proposed

in this work, which concerns the combination of a laser displacement sensor, an inclinometer

attached to the moving-platform, as well as the motor encoders. The proposed method aims

to identify the Cartesian coordinates of the cable exit points, the initial cable lengths and the

moving-platform poses. The calibration task is formulated as an optimization problem, the cali-

bration method uses an NLLS algorithm to minimize the cable length residuals. The calibration

process is first simulated for acquiring the expected system parameter error ranges, and then

verified by experiments. Other than the specific CDPR under study, this method of simulation

and calibration accuracy prediction model can be used on other CDPR configurations. The

CDPR calibration accuracy is directly affected by the sensor measurement errors and polymer
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cable elongations. During the simulation of the calibration process, the sensor measurement

errors are modelled and compensated, and the effect of each sensor on the calibration quality

is studied. Based on the authors’ previous work [26], this study implements the experimental

validation process, where a laser tracker is used to obtain the system variable ground truths to

eliminate the effects of cable elongations and moving-platform (MP) manufacturing errors. In

addition, the CDPR geometric model considers the pulley geometry, random MP poses and the

floor elevation. Thus, the calibration quality is improved. As a result, the calibrated system

parameter errors fall within the simulated ranges.

The rest of the paper is organized as follows: Section 2 focuses on the CDPR geometric

modelling and on the accuracy tests that contribute to calibration quality. The robot position

control scheme is also mentioned. Section 3 describes the identification methodology of the

current study. The simulation results are discussed in Section. 4. Section 5 presents the

calibration experiment methodology in detail. Then section 6 presents an analysis of the results

in this experiment. Finally, some conclusions are drawn.

2 CDPR modelling and control

The CDPR under study operates on the CRAFT CDPR prototype located in LS2N, Nantes,

France, measuring 3.8 m× 4.3 m× 2.8 m. Figure 1 shows the real 3-DoF moving-platform and

the detailed MP structure. The MP uses a Bosch Rexroth 40×40 strut with a effective length

of 500 mm. It is suspended by the two cables, which are fixed on the MP with angle brackets

and then go through two pulleys in the diagonal direction of the prototype. In such a way, the

planar CDPR workspace is formed. The related cable exit points next to the pulleys are noted

as A1 and A2, respectively. Pins and supports are designed to hold the MP steadily on the

stand. The CDPR base frame F1 and workspace frame F2 are accurately defined with a laser

tracker, with a 5.2 m by 2.8 m workspace frame size. The origin O2 of F2 is the projection

of exit point A1 on π1, the horizontal plane of F1. The x2 axis is horizontal and the z1 axis

is vertical. Finally the two cables are led to the actuated winches fixed on the corresponding

bottom corners in the base frame. The horizontal movement of the winch exit point because of

cable winding is neglected, and the cables are assumed to be massless and straight.

The CDPR schematic is shown in Fig. 2. The MP has one rotational and two translational

DoF in the planar workspace. However it is held by only two cables, which makes the robot

under-constrained. With given cable lengths, the MP still has one degree of freedom to move,

but remains at the pose where its gravitational potential energy is the smallest. For calibration,

the MP is equipped with an inclinometer and a laser displacement sensor connected to the the

MP bar through a revolute joint, as shown in Fig. 2. Thanks to this revolute joint, the
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(a) MP in F1 and F2 (b) Detail of the real MP

Figure 1: CDPR under study equipped with a laser displacement sensor and an inclinometer

Figure 2: CDPR geometry inside F2
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laser sensor always points vertically to the floor, to directly measure the MP height. The

concrete floor reflects enough laser light to perform proper measurements. It is not perfectly

flat, however, so a laser tracker is used to identify its unevenness. Motors control the cable

lengths, and are equipped with encoders that measure their angular positions, and thus the

cable length variations. The total MP mass is 2.5 Kg.

The geometric model of the current CDPR, including detailed pulley modelling is presented

in Sec. 2.1. The detailed random pose generation process is discussed in Sec. 2.2. The

sensor accuracy tests are carried out and the results are summarized in Sec. 2.3. The floor

elevation along the workspace direction is accurately measured with the laser tracker and the

corresponding results are detailed in Sec. 2.4. Finally the position control scheme of the CDPR

is presented in Sec. 2.5.

2.1 Geometric model

Figure 3 shows the ith loop of the current CDPR. The vectors pointing from the workspace

origin O2 to the ith pulley exit point and to the MP center are ai and pj, respectively; with

i = 1, . . . ,m and j = 1, . . . , n. m is the number of cables (2 in our case), and n is the total

number of measurement poses. The vector pointing from P to the ith anchor point is bi.

Therefore, the loop closure equation corresponding to each cable is expressed as:

li = liui =
−−→
AiBi = p + bi − ai (1)

where li is the i-th cable vector and li is the i-th cable length. Then the i-th unit cable vector

is written as:

ui =
li
li

(2)

Detailed pulley modelling is considered in the geometric model, which results in the shift

of cable exit point from Ai to A′i [9, 2], shown in Fig. 4. The frame attached to the pulley

is denoted as Fpu = (Ai,xpu,ypu, zpu). The axis xpu is horizontal and goes through the pulley

center Opi, the axis zpu is vertical and the axis ypu is parallel to the pulley rotating axis. The

vector from the pulley exit point A′i to the cable anchor point Bi is lci. The jth MP rotational

angle compared with the horizontal plane is θj. As a result, the cable length from the cable

exit point Ai to cable anchor point Bi is:

lti = lpi + lci (3)

where lci denotes the cable length from exit point A′i to Bi, lpi is the cable length wrapped on



B. Wang, P. Cardou and S. Caro 7

Figure 3: The ith loop of the CDPR under study

Figure 4: Parameterization of the ith pulley

the pulley sheave, and is calculated as:

lpi = rp

[
π − βi − γi

]
(4)

where rp is the pulley radius, with tan(βi) =

√
mimT

i −r2p
rp

and sin(γi) = aiz−biz
||mi||2 . mi is denoted as

the vector pointing from the pulley center Opi to the anchor point Bi, and is expressed as:

mi = p + bi − ai + rp Rb ixpu (5)

where Rb i is the rotation matrix from the base frame to the pulley frame. Following the ith

loop of the CDPR geometry, the unwind cable length lti can be expressed as:

lci =
√

mimT
i − r2p (6)
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Then through eq. (3), the total length lti can be obtained. The desired motor joint position

is calculated given lti and winch radius rw:

qd =
lt
rw

(7)

2.2 Generation of nominal poses

Because the CDPR is under-actuated, equilibrium pose of its MP depends on both the cable

lengths and gravity [26, 30]. Each such pose corresponds to a minimum in the gravitational

potential energy possible with a certain set of cable lengths.

In order to generate different MP poses, random cable lengths are first generated. According

to the workspace size, the cable lengths vary between 1 m and 5 m. The MP pose is obtained

by CDPR forward kinetostatics. More specifically, the MP yp axis coordinate pjy is minimized

by Matlab fmincon function, while the MP static equilibrium is taken into account as an

optimization constraint. Figure 5 shows the forces acting on the MP. The angle between cable

i and axis xp of the platform frame is noted as ϕi, and the z2 axis coordinate of the corresponding

anchor point is ha. Upon assuming that the MP center of mass is P , the sum of moments at

P should remain zero because of static equilibrium, therefore:

∑
mP = bp T

1 ET τ1

[
cos(ϕ1 − θ)
sin(ϕ1 − θ)

]
+ bp T

2 ET τ2

[
cos(ϕ2 − θ)
sin(ϕ2 − θ)

]
= 0, with E =

[
0 −1

1 0

]
. (8)

with the force static equilibrium:

∑
f = τ1 + τ2 + G = τ1

[
cos(ϕ1 − θ)
sin(ϕ1 − θ)

]
+ τ2

[
cos(ϕ2 − θ)
sin(ϕ2 − θ)

]
+G

[
cos(−θ)
sin(−θ)

]
= 02 (9)

Figure 5: Forces acting on the MP

50 poses were randomly generated and verified to be members of the CDPR workspace.
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Figure 6 illustrates these 50 poses generated, which are used in both simulations and experi-

ments.

Figure 6: Randomly generated calibration poses

2.3 Sensors used and the accuracy tests

Two sensors are used to realise robot calibration: the WitMotion BWT61CL inclinometer and

the SICK DT50-2 laser displacement sensor. The inclinometer measures the rotational angles

along three axes in a Cartesian coordinate system, with a resolution of 0.001◦ and a ±90◦

measurement range. The laser displacement sensor measures the distance to a surface within

the range from 200 mm to 5000 mm with a resolution of 1 mm. The calibration method highly

relies on the sensor measurement quality. Better knowledge on the measurements will certainly

contribute to an improved calibration accuracy. However, the measurement accuracy given

by the sensor datasheet does not necessarily correspond to what can be observed in the lab.

Therefore, in order to characterise our sensors, their measurements are recorded and compared

to the predetermined angles and distances.

2.3.1 WitMotion BWT61CL inclinometer

The inclinometer is tested with a indexing head which is placed on a level surface plate, as

shown in Fig. 7(a). The sensor is secured to a thick aluminum bar and is kept at the same
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position for each of the 10 repetitions at every single spindle angle. The indexing head used

has a 40:1 ratio between the crank and the spindle, so that one turn of the crank results in a

9◦ rotation of the spindle. Before testing, the inclinometer measurement is reset to 0◦. Then

the inclinometer is tilted successively at 0◦, 9◦, 18◦, ... , 81◦ and 90◦ angles. The sensor

measurements are recorded through software provided by WitMotion. The measurement errors

eθ of the inclinometer are computed as:

eθ = θs − θr, (10)

(a) Inclinometer test setup (b) Laser displacement sensor test setup

Figure 7: WitMotion BWT61CL inclinometer and SICK DT50-2 laser displacement sensor
accuracy test setup

where θs is the inclinometer measurement, and θr is the nominal spindle angle set by the

indexing head.

Figure 9(a) shows that the obtained errors eθ absolute values keep increasing and form a

fairly smooth curve. According to the inclinometer measurement principle (Fig. 8), instead

of measuring the tilt angle directly, the inclinometer measures the lateral component of the

gravitational acceleration a, namely,

g sinθ = a (11)

where g and a are the Euclidean norms of g and a, respectively. The total differentiation of

Eq. 11 yields

g cosθdθ = da (12)

therefore,
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Figure 8: Inclinometer working principle

dθ = eθ =
da

g cosθ
=
da

g
secθ (13)

According to Eq. (13), eθ has a relation proportional to secθ. The curve fitting for the

inclinometer measurements is conducted by choosing empirically the constant da
g

. As a result,
da
g

= −0.24 fits eθ the best, especially for the range lower than 60◦. Then in order to obtain

more accurate sensor measurements, only the generated poses with θ values below 60◦ are

chosen for later simulations and experiments. From data fitting, the inclinometer accuracy is

determined to be ±0.1◦ with a 0.05◦ repeatability.

(a) Inclinometer accuracy (b) Laser displacement sensor accuracy

Figure 9: WitMotion BWT61CL inclinometer and SICK DT50-2 laser displacement sensor
accuracy curve fitting
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Figure 10: Laser displacement sensor accuracy test schematic

2.3.2 DT50 laser displacement sensor

To test the laser displacement sensor, a straight line perpendicular to a wall is drawn on the

floor, with distance markers drawn along the line with a tape measure. The laser displacement

sensor is placed horizontally on a fixed aluminium plate at every 500 mm along the line,

repeating the measurement 10 times at each position. The texture and color of the wall allow

the sensor to obtain appropriate measurements. The sensor outputs analog voltage signal from

0-10 V, the voltage being proportional to the measured distance. At each test position, the

measurements ds are recorded and compared with the corresponding distances dr indicated by

the ground marker. In such a way, the laser displacement sensor measurement errors ed are

obtained as

ed = ds − dr. (14)

Figures 7(b) and 10 show the DT50 accuracy test setup photo and schematic, respectively.

In Fig. 9(b), it can be seen that the eθ values are above 0 in most of measurement range,

meaning that the measured distances are larger than the real ones. The curve does not show a

clear trend of the error distribution throughout the sensor range. If we assume the error to be

roughly uniformly distributed, then the average of all the measurement errors, ed,fit = 2.87 mm

can be used over the whole range. If we take the mean ed value at each test position, the

standard deviation of each measurement with respect to ed,fit is 1.83 mm. Upon assuming

that the maximum measurement error is equal to 3 times the standard deviation, a 6 mm error

tolerance value is obtained. According to the maximum differences among the 10 measurements

at each fixed position, the repeatability of the DT50 is determined as 1.5 mm.
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Figure 11: Floor elevation measurement with laser tracker T-probe

2.4 Floor elevation measurements

The floor surface of the CRAFT prototype is neither perfectly flat nor parallel with the x2 axis

of F2. Therefore the DT50 sensor measurements will be affected as they depend on the floor

flatness. In order to improve the DT50 measurement accuracy inside F2, the floor elevation

along the direction of x2 is measured with a laser tracker. The laser tracker is placed next to

the workspace plane and it emits laser to the laser tracker T-probe (Fig. 11), which measures

3D Cartesian coordinates with an accuracy of ±0.1 mm.

The projection of point P on the floor is G0. Starting from G0, a line along the direction of

x2 is drawn on the floor with distance markers every 100 mm. The floor elevation is measured

at each of the distance markers with 5 times of repetition. All measurements present high

repeatability of values within ±0.05 mm. The mean measurement values are calculated for

each measured position and a spline representing the floor elevation is created from those mean

values. The measured and calculated floor elevations are summarized in Fig. 12.

2.5 Robot position control

Figure 13 shows the position control scheme of the CDPR. During the robot movement, a

sampling time of 0.001 s is used. Knowing the predefined MP poses xd, through the CDPR

inverse kinematics, the desired motor joint position qd is calculated. In order to prevent thrusts

of the MP movement between two poses, fifth-order polynomial interpolation is used to obtain

the desired joint velocity q̇d and acceleration q̈d. Im is the motor and gearbox inertia, and Γ is

the output torque.
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Figure 12: Floor elevation along the x2 direction measured with the laser tracker

Figure 13: CDPR position control scheme

3 Calibration methodology

The robot calibration is achieved while recording the signals from all the sensors throughout all

the MP measurement poses. At the initial position, the cable lengths are denoted as li0. When

the MP is moved to all the n different poses within the workspace, the cable length variations

∆lij are recorded by the encoders. Thus, the actual cable lengths lij are calculated by:

lij = ∆lij + li0 (15)

The CDPR system variables are the outputs of the problem, including the Cartesian coor-

dinates of cable exit points aix, aiz, the initial cable lengths li0, the Cartesian coordinates of the

MP center pjx, pjz and the MP rotation angle θj. Among these variables, the laser displacement

sensor measures pjz, and the inclinometer measures θj. All the sensor measurements are the

inputs of the identification problem. The rest of the output variables are considered to be the

unknowns, included in a 3m+ n dimensional vector x:

x = [a1x a1z, a2x a2z, l10 l20, p1x, . . . , pnx] (16)

Non-linear least square method, based on solving non-linear equations to reduce the cable
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length residuals, is commonly used for robot calibration [1, 3, 4]. With NLLS method, in this

work, the identification problem is formulated while integrating the measurements from laser

displacement sensor, inclinometer and motor encoders. Upon comparing the real cable length

lij from Eq.(15) with the estimated cable length lti from Eq.(3), a system of mn equations can

be obtained [10, 2]:

fij(x) = (lpi + lci)
2 − (∆lij + li0)

2 = 0, i = 1, 2 , j = 1, . . . , n (17)

To solve the nonlinear system of equations defined by Eq.(17), the number of inputs must

be larger than or equal to the number of unknowns:

mn+ 2n ≥ 2m+m+ 3n (18)

As the CDPR has m = 2 cables, the least number of measurement poses is n = 6. A

similar simulation process is used in [9, 10]. Arbitrary errors are added on x to simulate the

approximately known system variables. The identification problem is then formulated as the

nonlinear least square problem:

min
x

(
m∑
i=1

n∑
j=1

f 2
ij

)
(19)

The pre-defined real variable values xr are compared with the identified ones x∗, to evaluate

the identification accuracy:

δxk = x∗k − xr,k, k = 1, 2, ..., 3m+ n (20)

where δxk is the difference between the real and identified variable values.

4 Simulation of 3-Dof, 2-cable planar CDPR

4.1 Results of the simulated identification problem

Simulations with 6 to 50 measurement poses are performed. For each pose, the simulation is

repeated 500 times with different sensor measurement errors. Based on the accuracy test results

given in Sec.2, the applied accuracy and repeatability are generated as independent normally

distributed random values, while assuming the sensor accuracy and repeatability ranges to be

three times the standard deviation, and their mean to be zero.

The dispersion or standard deviations of the obtained results δxk is defined as:
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Figure 14: The standard deviation results of 3 examples of the system variables

σ = std(δxk), k = 1, 2, ..., 3m+ n (21)

Figure 14 shows the standard deviation of the x-coordinate of the 2nd cable exit point, the

initial cable length of the 1st cable and the x-coordinate of the 4th MP pose. It is apparent that

the larger the number of poses, the lower the standard deviation σ, the better the calibration

accuracy. It should be noted that σ does not decrease after 50 measurement poses.

Figures 15 to 17 summarize three examples of the identification errors of the system variables

with different numbers of measurement poses used, and standard deviation σ. The results are

(a) 6 poses, σ=19.5 mm (b) 30 poses, σ=5.5 mm (c) 50 poses, σ=4.1 mm

Figure 15: Identification error results in the x-coordinates of the 2nd cable exit point, with
different numbers of measurement poses and σ values
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(a) 6 poses, σ=35.5 mm (b) 30 poses, σ=9.5 mm (c) 50 poses, σ=7.7 mm

Figure 16: Identification error results of the initial length in the 1st cable, with different numbers
of measurement poses and σ values

(a) 6 poses, σ=11.1 mm (b) 30 poses, σ=3.5 mm (c) 50 poses, σ=2.8 mm

Figure 17: Identification error results of the x-coordinates of the 4th MP position vector, with
different numbers of measurement poses and σ values
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plotted as probability density function (PDF). It can be seen that the larger the number of

poses (from 6 to 50), the lower the system variable identification errors. When only six poses are

used, the probability density function plots are relatively flat, the errors are bounded between

-50 and 50 mm. Afterwards, the PDF plots resemble normal distributions, the main part

of the identification errors is distributed in the lower value area. Besides, the σ values keep

decreasing as the number of measurement poses increases, which means that the identification

error dispersion becomes lower and the identification accuracy is higher.

In general, from the identification error results, the variables of MP coordinates have the

lowest errors, with nearly all the values below 10 mm and the minimum σ being 2.8 mm. The

errors in the coordinates of exit point come next, the maximum identification errors slightly

exceeding 15 mm, and the minimum σ value being 4.1 mm. The initial cable lengths have the

largest errors, with the maximum values around 25 mm and minimum σ value being 7.7 mm.

The simulated identification errors of some parameters are shown in Fig. 18.

Figure 18: Simulated identification errors for some parameters

4.2 Simulation of sensor effects on identification errors

The two sensors provide different types of quantities (lengths and angles), which makes the

effect of each sensor on the overall calibration quality difficult to discern. To resolve this

problem, the simulations are carried out where the sensor measurement errors are eliminated

one at a time. If one sensor is eliminated, its measurement error will be set to zero, and the

simulation will be processed by considering the errors in the other sensor only.
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(a) Both sensors, σ=4.1mm (b) SICK sensor, σ=4.1mm (c) Inclinometer, σ=1.6mm

Figure 19: Identification error results in the x-coordinates of the 2nd exit point when 50 poses
are used, comparison of sensor effects

An example of this set of results for the 2nd exit point x-coordinate a2x is shown in Fig. 19.

When the SICK sensor measurement errors are eliminated, the identification errors are much

reduced, the dispersion of the 500 results are significantly reduced, as shown in Fig. 19(c). The

identification errors are much more concentrated around 0 mm, and within ± 6 mm. Fig. 20

shows that the errors for the initial cable lengths are even more affected, with identification

errors inside ± 1 mm range, and the σ values decreased from 7.5 mm to 0.2 mm. It should be

noted that the errors in the x-coordinates of the MP positions are less affected, reduced from

±10 mm to ±5 mm, as seen in Fig. 21.

On the other hand, when the WitMotion inclinometer is not considered, the identification

errors do not change significantly, as shown in Fig. 19(b). It means that the identification

quality of the geometric parameters of the planar CDPR, the initial cable lengths and the

moving-platform poses are not very sensitive to measurement errors in WitMotion inclinometer.

We conclude that one could need a more accurate distance sensor to improve the calibration

accuracy. Conversely, one could probably afford to use a less accurate tilt sensor without

affecting the calibration.

4.3 Overall simulation

The previous sections focused on the effects of the number of poses and the sensors over the

overall identification accuracy. In this section, we replicate in simulation the experiment that

was preformed in the laboratory, for the purpose of validating our calibration model. The sensor

measurement error models are the same as those used in previous simulations and defined in

sections 2.3.1 and 2.3.2. One single calibration using all the 50 measurement poses is performed.

The identification errors δx are calculated, being defined as the differences between the identified

and the true system variables. These system variables are listed in Eq. (16). The MP movement
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(a) Both sensors, σ=7.7mm (b) SICK sensor, σ=7.5mm (c) Inclinometer, σ=0.2mm

Figure 20: Identification error results in the initial cable length of the 1st cable when 50 poses
are used, comparison of sensor effects

(a) Both sensors, σ=2.8mm (b) SICK sensor, σ=2.8mm (c) Inclinometer, σ=1.6mm

Figure 21: Identification error results in the x-coordinates of the 4th MP position vector when
50 poses are used, comparison of sensor effects
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is also simulated, the control scheme code that will be able to move the real robot is used in the

simulation. The overall simulation results showing the probability density of each individual

system variable identification error are summarized in Fig. 22. All identification errors fall

within the range of ±9 mm, which is consistent with the previous detailed simulation. The

results give a standard deviation σ of 3.9 mm, and the 3σ interval value being ±11.6 mm.

Among the identification errors, 89.8% are less than ±5 mm.

Figure 22: Identification errors in all system variables

5 CDPR experiments and methodology

The calibration results may be affected by plenty of uncertainties. Among them, the sensor

measurement errors and the floor altitude are taken into account and examined. Another

uncertainty is the cable elongation during the experiment, which can be hard to predict [24].

Because of the structure of CDPRs, the changes in cable lengths directly affect the MP poses

[25]. In order to eliminate the effect of cable elongation in these experiments, a Leica AT-901

laser tracker system (LTS, seen in Fig. 23(a)) is used to measure the actual MP poses accurately.

The laser tracker can work with either Spherically Mounted RetroReflector (SMRs, shown in

Fig. 23(b)) or T-probe to measure 3D Cartesian coordinates. All the measurements have the

accuracy of at least ±0.1 mm. Apart from point measurements, the Metrolog software allows

line, plane and cylindrical surface measurements, all of which consist of sets of points. The

software is also able to construct a Cartesian coordinate system with the former and express

the subsequent measurements directly in it.

Figure 24 represents the general experimental setup. The MP workspace plane is noted as

π2. The laser tracker is placed on a line passing through the center of the rectangular workspace

and perpendicular to π2. This minimizes the incidence angle of the laser with the workspace
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(a) MP and laser tracker (b) MP equipped with SMRs

Figure 23: MP pose measurement with laser tracker system setup

plane, allowing the SMRs to provide higher measurement accuracy.

Figure 24: Schematic of a MP pose measurement with laser tracker system

The position of the laser tracker next to the robot needs to be calibrated every time before

an experiment session, to ensure the measurement accuracy. The base frame F1 is defined

by the laser tracker, with respect to datum marks arbitrarily fixed on the CRAFT prototype

frame. Six SMR brackets are fixed on the CRAFT frame, their coordinates pr in F1 are

measured. The position of the laser tracker are known at the same time. Every time the

laser tracker is moved again, the vectors pr are measured again. By comparing the old and
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new coordinates pr, the actual laser tracker position is known. Therefore the laser tracker is

able to give measurements in F1 accurately. After calibrating the laser tracker, the rest of the

measurement procedures can be carried out. Section 5.1 introduces the construction of the MP

frame Fp by measuring necessary MP features. Afterwards, section 5.2 details the method to

obtain MP pose measurements through the transformation between Fp and F1.

5.1 Construction of the MP frame Fp
The MP pose measurements are based on the three SMRs attached on the platform, whose

accurate Cartesian coordinates in Fp are needed. The methodology to construct the MP frame

Fp in Metrolog software is introduced in this section. The SMR coordinates can then be

measured directly. Moreover, the Cartesian coordinates of the anchor points B1 and B2 are

also measured.

In order to carry out the measurements, the platform is steadily placed on the stand, and

the measurements are done using the laser tracker T-probe, as shown in Fig. 25(a). First, 10

points on the revolute joint shaft cylinder surface πs are measured, to obtain the parameters

of axis yp. Then, 10 more points on the face of the MP strut that is perpendicular to yp. This

plane is named π′y. πy is obtained by offsetting π′y by 20 mm along the −yp direction, which

represents the vertical symmetry plane of the MP. The plane πy is perpendicular to yp and its

intersection with yp is P , the origin of Fp. 10 more points are measured on the MP top plane

π′z, and the projection of P on π′z is noted as Opz. The vector from P to Opz is the zp axis of

Fp. Then the xp axis can be constructed as the line through P and perpendicular to yp and zp.

This fully defines frame Fp. The coordinates of the three SMRs on the MP, S1, S2 and S3, can

be directly measured.

Figure 26 shows the datums defined to measure the MP anchor points. First, the probe

is placed on Bi to obtain the probe center coordinate Pbi. This represents the center of the

probe, not yet the exact anchor point. Then 10 points are recorded on the flat bracket surface

to obtain plane πbi. Then, the projection of Pbi on πbi is assumed to be the actual anchor point

Bi. With the help of the laser tracker, the anchor points coordinates are measured accurately,

which provides an accurate geometric model of the robot.

5.2 Transformation between Fp and F1

During the measurements, the MP is successively moved to the 50 different poses. For each

pose, all the three SMRs are measured and their coordinates are expressed in F1. The Kabsch

algorithm takes the three SMR coordinates in both Fp and F1 frame to obtain the homogeneous

transformation matrix between the two frames, T1 p. As the frames F1 and F2 are both known,
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(a) MP on stand (b) CAD model of the measured entities

Figure 25: MP geometry entity measurements

Figure 26: MP anchor point measurement

the transformation matrix between them, T2 1 is also known. Therefore, the point coordinates

in Fp can be transferred into F2 by:

p1 h = T1 p pp h (22)

p2 h = T2 1 p1 h (23)

where pp h, p1 h and p2 h are the homogeneous coordinates of P in different frames.

The MP orientations θ in F2 are calculated from the two end points of the straight MP

strut. These points are noted as C1 and C2 with coordinates [−b, 0, 0]T and [b, 0, 0]T in Fp,
respectively. Based on the previous transformation, their coordinates are also expressed in F2.

Let the vector pointing from C1 to C2 be v2 , then the MP rotational angle θ can be simply
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calculated as:

θ = atan2( v2 z2, v
2
x2) (24)

where v2 z2 and v2 x2 are the projection of v2 on axes z2 and x2, respectively. The MP poses are

thus obtained in the form of the MP center P and tilt angle θ.

6 Experimental results and analysis

6.1 Comparison between sensor and laser tracker measurements

Once the laser tracker measurements are obtained, they are compared with those from the

inclinometer and laser displacement sensor. Figures 27 and 28 show the differences on MP

height δpjz and on MP inclination δθj between the measured and desired values, which are

calculated as follows:

δpjz = pzm − pzt, (25)

δθj = θzm − θzt, (26)

where pzm is the sensor measured MP heights, from both the laser tracker and DT50 laser

displacement sensor, and pzt is the desired values generated with the method described in Sec.

2.2. Similarly, θzm and θzt are the measured and desired MP inclination, respectively.

The results reported in Fig. 27 show that both the laser tracker and the DT50 displacement

sensor measure higher values of pz than the nominal ones, with error ranges from 0−35mm. On

the other hand, the measured MP inclination shown in Fig. 28 are quite close to the nominal

values, and are roughly evenly distributed on the positive and negative sides of the origin. The

DT50 and inclinometer measurements are then compared in details with those from the laser

tracker, as it gives very accurate measurements. the differences δp′jz and δθ′j are calculated as:

δp′jz = pDT50 − pLTS (27)

δθ′j = θInc − θLTS (28)

where pDT50 and pLTS are the MP height measurements from the DT50 and the laser tracker,

respectively. The results are summarized in Figs. 29 and 30. For almost all the poses, except

for poses 24 and 31, the DT50 gives errors lower than 6 mm, which is the magnitude of the
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Figure 27: Differences between measured and desired MP height

Figure 28: Differences between measured and desired MP inclination

maximum sensor measurement error. And the errors of the inclinometer are all close to zero.

This means that the two sensors provide reliable measurements throughout the experiments.

Although the DT50 measurements are within the expected measurement error range, the

measured MP heights show relatively larger differences to the theoretical values. The possible

reason for that is the cable elongations during experiments. As the cable winds on the winch,

the winch exit point moves along the rotational axis direction of the winch, the real cable length

therefore changes. And as for the exceptions of poses 24 and 31 on δp′jz values, the positions

of these two poses are high in the workspace (2 m and 1.6 m), because of the suspended

configuration of the CDPR, the cable lengths are short and the cable tensions are relatively

high at these two poses. In this situation, the displacement of the winch exit points, as well as

the cable elongations under high cable tension may combine to affect the real MP poses.
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Figure 29: DT50 MP height measurements compared with laser tracker

Figure 30: Inclinometer MP inclination measurements compared with laser tracker

6.2 Real cable lengths

The real cable lengths are calculated through the inverse kinematics from the MP pose mea-

surements of the laser tracker, and compared with the theoretical cable lengths. The results

are shown in Fig. 31. The errors on real cable lengths δlt do vary among a relatively large

range, from -38 mm to 12 mm. The cable with a shorter real length tends to have a negative

elongation. On the contrary, a longer cable tends to have a positive elongation.

6.3 Calibration results and prediction of calibration accuracy

A calibration process based on NLLS method, using experimental measurements is carried out.

Among all the inputs of the problem, pjz and θj take the measurements from the laser displace-

ment sensors and the inclinometer, respectively. Because of the uncertainties on the actual cable

lengths, the measurements from the laser tracker are used to estimate these quantities, instead

of those from the cable encoders. The system variables are then identified in three separate
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Figure 31: Errors on real cable lengths

calibrations and some examples of the errors obtained on these variables of three repetitions of

the experiment are summarized in Fig. 32. The blue bars in the figures shows the simulations

results from Sec. 4, where the characterized measurement error models of both the laser dis-

placement sensor and the inclinometer are applied. Compared with the simulation results, the

errors on all the system variables fall within the estimated ranges. The experimental results

validate the current model of CDPR calibration therefore validate the method of predicting

the calibration accuracy. From the figure, among all the system variables, the simulation yields

reasonable ranges for the exit point coordinates and for the pose x-coordinates. But for the ini-

tial cable lengths, the identification errors are much less than estimated, the simulation results

seem overly pessimistic.

7 Conclusions and future work

In summary, this paper presents the simulation and experimental validation of the calibration

method of a 3-DoF, 2-cable, planar CDPR. This method of simulation and its underlying

model can be reused by others to predict the calibration accuracy of different CDPRs and

measurement techniques. It is hoped that it can help refine the sensor selection process for

prescribed accuracies of the robot geometry. The calibration method proposed here relies on

the combination of a laser displacement sensor and an inclinometer embedded on the moving-

platform, as well as the motor encoders. Detailed pulley geometric modelling is considered. The

actual accuracies of the sensors are examined beforehand in order to predict the calibration
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Figure 32: Calibrated system variable identification errors

results. The simulations show that with more measurement poses used, the identification

errors of the exit point, pose Cartesian coordinates and the initial cable lengths are reduced,

and are less dispersed. It turns out that the laser displacement sensor has a much larger

influence than the inclinometer on the identification errors. Furthermore, amongst all system

variables, the errors in initial cable lengths are the most sensitive to the laser displacement

sensor measurement errors whereas the errors in the MP position coordinates are the least

sensitive ones. Based on the sensor considered in this work, the system variable errors are all

below ±9 mm, and most are below ±5 mm.

Experiments are carried out following the calibration method proposed. Sensor measure-

ments from laser displacement sensor and inclinometer are recorded for calibration. Because

of the complex cable elongations during experiments, the accurate cable length variations are

obtained with the measurements from a laser tracker system, instead of cable encoders. The

differences between the real and theoretical cable lengths are also calculated. The laser tracker

also provides the ground truth of the actual MP poses to validate the calibrated system variable

values. As a result, all of the calibrated robot system variable errors fall within the simulated

ranges.

The cable elongations have significant effects on the MP poses, and consequently on the

CDPR calibration accuracy as well [31, 32]. In future work, the cable elongations will be

compensated with elastic modelling, creep modelling, and the modelling of the winch cable

exit point movement. In addition to elongations, considering cable mass will all improve the

calibration quality. Future work will also deal with the determination of optimal measurement

poses for CDPR calibration and other calibration methods with different sensor combinations.
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