SUPPLEMENTARY MATERIAL

Aryldiazonium reduction mechanism deciphered by scanning electrochemical microscopy through an EC' process.

Nikolaos Kostopoulos,^a Viacheslav Shkirskiy,^a Catherine Combellas,^a Frédéric Kanoufi,^a Tony Breton,^b Jean-Marc Noël^a*

^a Université Paris Cité, ITODYS, CNRS, F-75013, Paris, France

^b Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.

Corresponding author: Noël, Jean-Marc (jean-marc.noel@cnrs.fr)

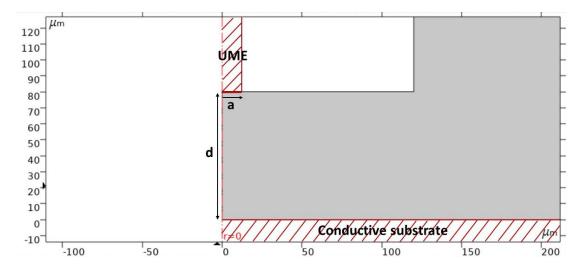


Figure S1: Geometry of the SECM configuration used in the Comsol model. The radius of the conductive substrate considered herein is 1000 μ m, to ensure a planar diffusion process.

Table S1: Parameters used in the simulation model

Parameter	Value	Note
symbol		
a _{UME}	12 μm	UME radius
d	0.1-80 μm	UME-substrate distance
t	100 s	time of the experiment
C _{0,Ch}	2 mM	Initial concentration of-chloranil
C _{0,Diazo}	2 mM	Initial concentration of 4-NBD
k _{sc, GC}	3x10 ⁻² cm.s ⁻¹	Heterogeneous electron transfer rate for the redox mediator
k _{sd Au}	3x10 ⁻² cm.s ⁻¹	Heterogeneous electron transfer rate for the 4-NBD
		electroreduction
k _f	varying M ⁻¹ .s ⁻¹	rate constant associated to the reaction between the reduced
		form of chloranil and 4-NBD
k _d	varying s ⁻¹	First order dissociation rate constant of the diazenyl
k _f ′	varying M ⁻¹ .s ⁻¹	reaction rate constant associated to the reaction between the
		aryl radical and 4-NBD
k _f "	varying M ⁻¹ .s ⁻¹	reaction rate constant associated to the reaction between the
		aryl radical and the and chloranil
D _{ch}	7x10 ⁻⁶ cm ² .s ⁻¹	Diffusion constant of chloranil and its reduced counterpart
D _{diazo}	1x10 ⁻⁵ cm ² .s ⁻¹	Diffusion constant of 4-NBD and its reduced counterpart

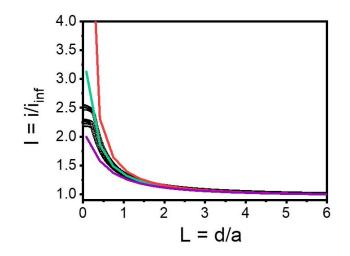


Figure S2: Experimental vs simulated approach curves with 2 mM of chloranil at a conducting GC substrate in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 μ m diameter gold UME at 1 μ m.s⁻¹. The experimental approach curves (\Box) were recorded at random positions of the substrate. The different simulated curves correspond to a k_{sc} = 0.3 cm s⁻¹ (-), 0.03 cm s⁻¹(-) and 0.015 cm s⁻¹(-).

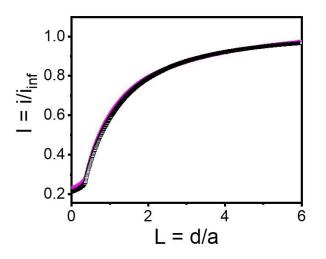


Figure S3: Approach curves recorded with 2 mM of chloranil at a glass substrate without (\Box) and with (\Box) addition of 2 mM of 4-nitrobenzenediazonium. The experiments were performed in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 µm diameter gold UME at 1 µm.s⁻¹.

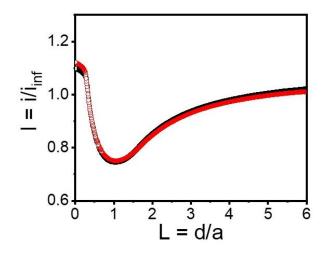


Figure S4: Successive approach curves (first, \Box , and second, \Box) recorded at a GC substrate with 2 mM of chloranil and 2 mM of 4-nitrobenzenediazonium. The experiments were performed in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 µm diameter gold UME at 1 µm.s⁻¹.

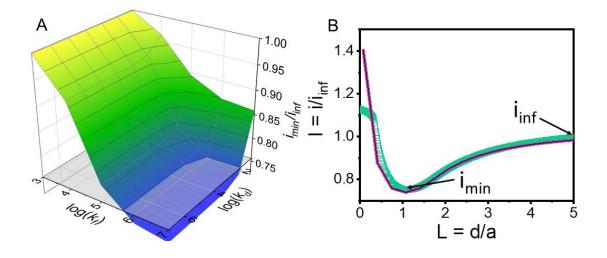


Figure S5: (left) 3D diagram showing the variation of the simulated depletion current over the simulated infinite current as a function of log of the homogeneous electron transfer rate constant (k_f) and the dissociation rate constant of the diazenyl (k_d). The values examined were 10³, 10⁴, 10⁵, 10⁶, 10⁷ M⁻¹.s⁻¹ and 10, 10², 10⁴, 10⁵, 10⁶, 10⁷ s⁻¹ for k_f and k_d respectively. (right) Experimental approach curves recorded with 2 mM of chloranil at a 3 mm diameter glassy carbon substrate with 2 mM of 4nitrobenzenediazonium(\Box) in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 µm diameter gold UME at 1 µm.s⁻¹. Lines correspond to the simulated curves for $k_f = 10^6 \text{ M}^{-1}.\text{s}^{-1}$ and $k_d = 0$ (—) and for k_f $=10^6 \text{ M}^{-1}.\text{s}^{-1}$ and $k_d = 10^4 \text{ s}^{-1}$ (—); other parameters from Table S1.

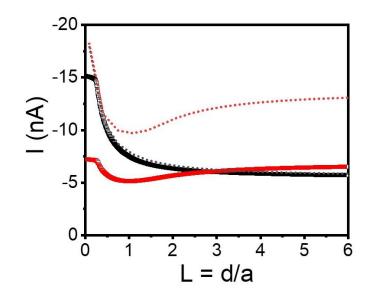


Figure S6: Experimental approach curves recorded with 2 mM of chloranil at a 3mm diameter glassy carbon substrate with 2mM of 4-NBD (\Box) or 0 mM (\Box) in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 µm diameter gold UME at 1 µm.s⁻¹. Red and black dotted lines correspond to the simulated curves with 2 mM (red) or 0 mM (black) of diazonium, for kf =10⁶ M⁻¹.s⁻¹ and kd =10⁴ s⁻¹; other parameters from Table S1.

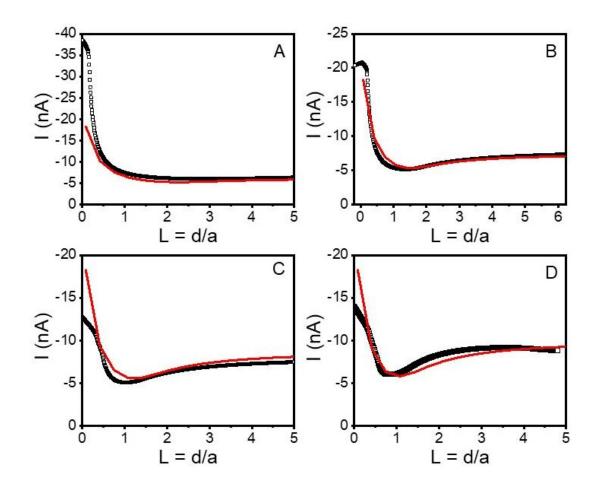


Figure S7: Experimental(\Box) vs simulated (-) approach curves with 2 mM of chloranil at a 3mm diameter glassy carbon substrate with A) 0.5, B) 1, C) 3 and D) 4 mM of 4-nitrobenzenediazonium in DMF solutions in the presence of 0.1 M TBAPF₆, applying -0.3 V vs Ag pseudo reference at a 25 µm diameter gold UME at 1 µm.s⁻¹. For the simulations the following parameters were used $k_f = 6.6 \times 10^4$ M⁻¹ s⁻¹; other parameters from Table S1.