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I. Calibration of the Interferometer

The phase mask interferometer 1 is a common-path interferometer, different than the conventional
Michelson interferometer, but with analogous physical principles to translate the observable pho-
tovoltage to a displacement value. The laser intensity on the detection plane is determined as

I = I1 + I2 + 2
√

I1I2 cos(∆θ), (1)

with I1 and I2 denoting the intensity of the two interferometric arms, respectively, and ∆θ corre-
sponding to their phase difference. These intensities correspond to the first-order diffraction of
the phase mask, which results in equal intensity I1 = I2, defined as I0 for simplicity, resulting in
intensity expression

I = 2I0 + 2I0 cos(∆θ) = 2I0(1 + cos(∆θ)) = 4I0 cos2(
θ

2
). (2)
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Translating this expression to the photodiode’s laser intensity observable, i.e, photovoltage U
(varying linearly with intensity), Eq. 2 can be expressed as

U = U0 cos2(
θ

2
) =

U0

2
+

U0

2
cos(∆θ). (3)

We define U0 as the photovoltage range, corresponding to the intensity range 4I0. This photovolt-
age range is determined by applying an electro-optics to swiftly modulate the continuous-wave
(CW) probe laser intensity as a sinusoidal function so that the difference between the maximum
and minimum photovoltage (thus U0) can be determined. The modulation frequency must be
higher than the AC-coupled photodetector, which is 50 kHz in our case. If the reader uses another
photodetector, one must modulate the probe laser with a frequency higher than the low-frequency
cut-off of that specific photodetector. Ideally, laser modulations should be done in the actual fre-
quency range of the relevant experiments.

In practice, we manually introduce a phase difference of π/2 between the two arms by moving the
phase mask up or down relative to the laser. In this scenario, Eq. 3 becomes

U =
U0

2
+

U0

2
cos(∆θ −

π

2
) =

U0

2
+

U0

2
sin(∆θ). (4)

Furthermore, in an oscilloscope, we give the signal a voltage offset, so that when ∆θ = 0, U = 0,
allowing Eq. 4 to be expressed as

U =
U0

2
sin(∆θ), (5)

allowing the phase difference between two interferometric arms to be derived from the experimen-
tally measured photovoltage U as

∆θ = sin−1
(
2U
U0

)
. (6)

The phase difference is related to optical path difference γ through ∆θ = 2πγ/λ, where λ is the laser
wavelength. Due to reflection detection, γ is twice the sample-surface displacement u. Therefore,
the final expression to translate photovoltage to displacement is provided as

u =
λ

4π
sin−1

(
2U
U0

)
. (7)

II. LIRAS High-Throughput Characterization

To further describe the LIRAS-measurements time estimates from the main text, and validate the
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method’s categorization as high-throughput, here we present additional details of the LIRAS mea-
surement procedure. As mentioned int he text, the reported time needed to measure one meta-
material sample is typically between 1 to 5 minutes, which is a conservative upper bound for
two reasons: (i) the measurement time is dictated by our choice to collect 104 measurements per
sample, which get averaged into the final signal; and (ii) the averaging rate is determined by our
specific oscilloscope speed, which inevitably averages signals slower than the 1 kHz rate at which
we excite the samples. Thus, LIRAS measurements can indeed be performed in less than 1 minute
if fewer measurements per sample are taken (a minor compromise in signal-to-noise ratio), and a
higher-end oscilloscope is used. To provide a better sense of how time is spent in the time range we
report, we timed ourselves performing experiments and produced Supplementary Fig. 1. In addi-
tion, we present a comparison between taking 1 to 512 repeated measurements on a given sample,
showing that primary information such as the eigenfrequency is still determined with as little as a
single measurement. As shown in Supplementary Fig. 2 below, a large majority of the analysis in
this work could have been done with mere 101 or 102 measurements, but we opted for 104 due to
its benefits in reducing experimental uncertainty.

Supplementary Figure 1
∣∣∣ Time stamp of LIRAS experiments. Measurement-time and idle-time (switch-

ing from a measured sample to the next) are specified, demonstrating the throughput of the LIRAS method.
This measurement is conducted on a pump laser with a 10 Hz repetition rate (instead of 1 kHz as in the main
text) for demonstration purposes, where the read-out speed of a low-cost oscilloscope can keep up with the
repetition rate of the laser.
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Supplementary Figure 2
∣∣∣ Comparison between different amounts of repeated measurements. a, Wave-

forms and b, corresponding acoustic spectra of measurements with 1 (single) to 32 shots. c, Waveforms and
d, corresponding acoustic spectra of measurements with 64 to 512 shots. We employ the term “shots” to
indicate the number of discrete pump laser pulses employed to obtain a given averaged waveform. Above
16 shots, no shifts in the spectral line of the longitudinal mode are detected, although the waveforms and
spectra have improved signal-to-noise ratio with increasing amounts of repeated measurements.

III. Fundamental-Mode Strain and Strain-Rate Analysis and Approximations

To place the dynamic mechanical properties measured by LIRAS in a deformation and rate-of-
deformation regime, we sought to determine the level of strain and strain rate induced by pho-
toacoustic excitation. Measurement of the displacement amplitude at the top of the samples thus
enabled relating the vibrational frequency with a deformation and its rate.

The displacement of any particle in our rod-geometry sample in space and time is given by

u(x, t) = Γ(t)Φ(x), (8)

with Γ(t) denoting the time-varying amplitude and its decay, and Φ(x) corresponding to the spa-
tial variation in displacement corresponding to a resonant mode. For the fundamental longitudi-
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nal mode with the boundary conditions pertinent to LIRAS experiments, i.e., for a cantilevered
bar with the quarter-wavelength eigenmode follows the form Φ(x) = sin

(
π
2

x
H

)
, with H being the

height of a sample. Since the fundamental longitudinal mode is identified to be the primary re-
sponse in the center-pump scheme experiments—where we aim to extract information on strain
and its rate—restricting this analysis to this mode is an appropriate approximation. The tempo-
ral component of u(x, t) is thus the classical solution for a damped harmonic oscillator, namely
Γ(t) = Ae−βt cos (2π f t − δ).

Following this exact solution, the effective strain within a sample is

ε(x, t) = u′ =
du(x, t)

dx
= Γ(t)Φ′(x), (9)

where ( ′ ) denotes a spatial derivative, while the strain rate follows as

ε̇(x, t) =
d
dt

(
du(x, t)

dx

)
= Γ̇(t)Φ′(x), (10)

with (˙) denoting a time derivative.

To simplify our analysis of these experiments, we approximate the displacement within a sample
to linearly vary from its maximum amplitude at the free end to zero at the substrate as shown as
a dotted red line in Supplementary Fig. 3c, enabling computation of strain as ε(t) ≈ u(H,t)

H . Thus,
this approximation enables estimation of an effective strain within the sample that is within the
maximum and minimum bounds of the exact solution, simplifying the analysis by removing the
spatial dependence for a measure of strain. We note that while the exact solution will indeed vary
in space and time, we deem this to be a reasonable approximation for the purposes of placing our
LIRAS experiments in an effective strain rate regime. As discussed in Supplementary Information
Section IV, computation of the time-varying effective strain rate in LIRAS experiments can thus
be approximated as ε̇(t) ≈ d

dt

(
u(H,t)

H

)
.
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Supplementary Figure 3
∣∣∣ Fundamental-mode strain approximation. a, Rod geometry and boundary

conditions. b, COMSOL simulation result of longitudinal mode at 2.82 MHz and cut axis across at which
results are extracted. c, Simulation displacement u(x) versus x-coordinate and its sine wave and linear
(dashed red line) approximations. d, Exact spatial strain ε(x) and time-dependent constant-strain approxi-
mation ε(t) as functions of x-coordinate.

IV. Effective Strain Rate Calculation

Here, we define the effective strain rate as the RMS strain rate obtained from the strain rate-time
plot. The strain rate-time data is obtained by taking a time-derivative of the time-displacement plot
as shown in Extended Data Fig. 3 and dividing it by the height of the structure. The RMS strain
rate between the start of the waveform T0 and the end T∞ is defined as

ε̇RMS =

√
1

T∞ − T0

∫ T∞

T0

ε̇2dt. (11)

To compute the higher and lower limits of the effective strain rate for a given sample, we calculated
the RMS strain rate from the first wavelength of the waveform (high) and the RMS strain rate for
the last wavelength that is above the noise floor (low). The expressions for these high and low
strain rates are

ε̇h,RMS =

√
1

Tλ − T0

∫ Tλ

T0

ε̇2dt, (12)

and

ε̇l,RMS =

√
1

T∞ − T∞−λ

∫ T∞

T∞−λ
ε̇2dt, (13)
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respectively, where Tλ denotes the time at the end of the first cycle and T∞−λ is the time one cycle
away from the end of the waveform. Finally, to obtain the characteristic strain rate for each lattice
structure we average the calculated RMS quantities over the tallest 5 samples, which pertain to the
long-wavelength limit.

It must be noted that the effective strain rate calculated in this section attempts to establish a
approximate correlation between the effective stiffness obtained through LIRAS and that obtained
from conventional contact-based methods. In these contact-based methods, the constant strain
rate can be adjusted by altering the velocity of the indenter tip, allowing for a definition of strain
rate as the indenter-tip velocity (ideally constant) divided by the sample height. However, such
tunability in constant strain rates is not feasible in LIRAS experiments (based on principles of free-
vibration with damping), but rather is determined by the samples’ eigenfrequencies and indirectly
by the pump laser power/vibration amplitude. The shaded range of LIRAS strain rates in Fig. 3b
indicates the frequencies achievable in the samples used in the present study (based on their length
scale and geometric properties). As explained in this section and Extended Data Fig. 7, a given
metamaterial sample experiences a range of strain rates due to the sinusoidal displacement pattern
and the ensuing attenuation. Therefore, the definition of an RMS strain rate is an attempt to place
our LIRAS experiments within a context of classical characterization techniques—while keeping
into consideration that a range of strain rates are actually at play.

As shown in Fig. 3b, we demonstrated that all LIRAS properties fall within less than 10% of
the properties measured via constant-strain-rate contact methods, but we note that the excitation
is markedly different. We have replicated Fig. 3b from the main text as Supplementary Fig. 4
in this section, including a modification that corresponds to 95% confidence intervals for the uni-
axial compression fits across all samples. This figure demonstrates that by considering both the
variance in effective strain rate across a single LIRAS experiment and the statistical significance
of the contact-based fits, there exists a correspondence between all the data gathered from LI-
RAS and the data acquired from high-strain-rate uniaxial compression experiments. While the
octet-metamaterial LIRAS measurements fall within a lower part of the confidence intervals (in
comparison to the monolithic and tetrakaidecahedron metamaterials), these data points are sta-
tistically in agreement with the uniaxial experiments (again, despite the difference in strain rates
between experiments which could lead to slightly different properties). Specifically, the LIRAS
result range for the octet metamaterials is within ∼8% of the uniaxial fit centerline, which is still a
remarkable agreement despite the differences.
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Supplementary Figure 4
∣∣∣ Comparison of LIRAS variable-strain-rate response to uniaxial constant-

strain-rate response. Reproduction of Fig. 3b from the main text with 95% confidence intervals for the
uniaxial compression fit (shaded region), denoting LIRAS experiments overlapping with confidence inter-
vals.

V. Damped Harmonic Oscillator Analysis

Following the classical theory for harmonic motion2, we approximate the samples in this study
to behave as a single-degree-of-freedom damped harmonic oscillator, particularly in the case of
longitudinal fundamental-mode vibration. As a model system, we select the Kelvin-Voigt model,
consisting of a viscous dashpot and an elastic spring connected in parallel. To determine the free-
vibration equation of motion of a point in this system, we represent our samples via the model
depicted in Supplementary Fig. 5.

Supplementary Figure 5
∣∣∣ Single degree-of-freedom damped harmonic oscillator.

Establishing the equilibrium of such a system yields the equation of motion

mẍ = −kx − bẋ, (14)
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Supplementary Figure 6
∣∣∣ Frequency- and time-domain damping analysis.a, FFT of a typical time

trace from a LIRAS experiment with two dominant modes. b, Time trace of a LIRAS experiment with an
exponential fit over the envelope of the decay curve.

which simplifies to
ẍ + ω2

0x + 2βẋ = 0, (15)

where ω0 =
√

k/m denotes the natural frequency of the system and β = b/(2m) is the damping
constant (both with dimensions of inverse time). Taking a solution to Eq. 15 of the form x(t) = ert

and assuming a weakly damped system with β < ω0 (representative of the LIRAS vibration wave-
forms shown in Fig. 1c), yields a solution

x(t) = e−βt
(
C1eiω1t +C2e−iω1t

)
= Ae−βt cos(ω1t − δ),

(16)

where A is the original amplitude of the signal and δ corresponds to a phase shift. As shown
for a representative waveform obtained on an octet [100] 22-unit-cell-tall sample (Supplementary
Fig. 6b), this model agrees with the response of metamaterials to photoacoustic excitation.

To obtain the damping factor, we opted to perform the damping measurements as half of the
full-width at half maximum (FWHM) of the FFT peak corresponding to the longitudinal vibra-
tion mode. Namely, we relate the decay parameter for the FWHM as 2β = FWHM, as shown in
Supplementary Fig. 6a for the octet [100] 22-unit-cell sample. We also tested out the accuracy of
an exponential fit enveloping the time trace to obtain the damping coefficients. To validate both
equivalent approaches, we constructed a generic LIRAS time trace with two peaks whose frequen-
cies, damping coefficients, and the ratio of amplitudes were taken from the LIRAS time trace of
a 5 × 5 × 22 octet [100] lattice. The FFT of this time trace is shown in Supplementary Fig. 6a
where there are two dominant peaks at frequencies of f1 = 1.30 MHz and f2 = 2.98 MHz. The
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values of the damping coefficients at these peaks obtained from the full width at half-maximum
of the peak are β1 = 0.0229 MHz and β2 = 0.0893 MHz respectively. The amplitudes of the two
peaks are in a ratio of 10:1. In Supplementary Fig. 6b we plot the time trace and fit a function of
the form y = Ae−βt to the positive extremities of the waveform. From the fit, we obtain a value of
β = 0.0226 MHz for the effective damping coefficient which is within 1% of β1 indicating that this
method can indeed be used to obtain the damping coefficient of the dominant mode. Conversely,
the fact that the values obtained from fitting the decay function match the values obtained from
FFT validates the accuracy of our analysis. Throughout our analysis, we elected to obtain damping
properties from the frequency domain for two reasons: (i) it enabled focusing on a specific mode
of interest (i.e., longitudinal), which is not guaranteed when doing the time-domain analysis and is
also dependent on the relative dominance of a given mode compared to others, and (ii) it provided
a more systematic route that was less susceptible to variability in fitting.

VI. Elastic Surface Computation

Supplementary Table 1
∣∣∣ LIRAS measurements of dynamic elastic properties of metamaterials in the MHz

regime. TK-tetrakaidecahedron, Mono.-monolithic, Longi-longitudinal, Tor.-torsional, vel.-velocity, stiff.-
stiffness, Dyn.-dynamic, sh.-shear.

Octet Octet Octet TK TK TK Mono.
[100] [110] [111] [100] [110] [111] IP-Dip

Longi. vel.(m/s) 800 ± 12 978 ± 7 979 ± 8 785 ± 19 692 ± 5 679 ± 12 2014 ± 47
Tors. vel.(m/s) 557 ± 50 – – 321 ± 20 – – 1135 ± 26
Dyn. stiff.(MPa) 127 ± 4 190 ± 3 191 ± 3 101 ± 5 78 ± 2 75 ± 3 4743 ± 26
Dyn. sh. stiff.(MPa) 47 ± 2 – – 17 ± 3 – – 1507 ± 70

In the experiments, we determine the effective stiffness of the metamaterials in [100], [110], and
[111] directions and the shear stiffness in [100]. For a cubic crystal, the dynamic compliance tensor
Ŝ has the form

Ŝ =



Ŝ 11 Ŝ 12 Ŝ 12 0 0 0
Ŝ 12 Ŝ 11 Ŝ 12 0 0 0
Ŝ 12 Ŝ 12 Ŝ 11 0 0 0
0 0 0 Ŝ 44 0 0
0 0 0 0 Ŝ 44 0
0 0 0 0 0 Ŝ 44


. (17)

The directional stiffness E∗d of such material along an arbitrary direction d with components (d1, d2, d3)
is related to the dynamic compliance tensor through the following relation:
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E∗d =
1

Ŝ 11

[
d1

4 + d2
4 + d3

4
]
+ 2

(
Ŝ 12 + 2Ŝ 44

) [
(d1d2)2 + (d2d3)2 + (d1d3)2

] . (18)

In Miller index notation, the direction stiffness along the Miller’s directional indices [hkl] is given
by

1
E∗[hkl]

= Ŝ 11 +
(
2Ŝ 12 − 2Ŝ 11 + Ŝ 44

) (
h2k2 + k2l2 + l2h2

)(
h2 + k2 + l2) . (19)

Therefore, the three constants in compliance tensor (Ŝ 11, Ŝ 12 and Ŝ 44) are related to the directional
stiffness and dynamic shear stiffness through

E∗[100] =
1

Ŝ 11

E∗[110] =
2

Ŝ 11+Ŝ 12+2Ŝ 44

E∗[111] =
3

Ŝ 11+2Ŝ 12+Ŝ 44

G∗ = 1
Ŝ 44
,

(20)

where the dynamic shear stiffness G∗ is determined by measuring the torsional wave velocity
cT = 0.92

√
G∗
ρ

. Using the expressions in Eq. 20, we can obtain all the constants in the dynamic

compliance matrix Ŝ. It is interesting to note that Ŝ 12 can be obtained from both E∗[111] and E∗[110],
enabling us to take the average of the two experiments. More accurate values for Ŝ 12 can be ob-
tained by measuring the directional stiffness along other directions. Therefore, we can calculate the
elastic surface, i.e., the stiffness in any direction, for a cubic crystal from the dynamic compliance
tensor through

E∗d =
1

Ŝi jkldid jdkdl
. (21)

VII. Torsional Geometric Factor and Wave Velocity

Following the theory for torsional waves in slender rods3, the torsional wave velocity is given
by

cT =

√
GK
ρIp

(22)

where G is the shear modulus, K is a geometric torsional factor, ρ is the density, and Ip is the polar
area moment of inertia. For a rectangular cross-section (with width, w and height h), the geometric
factor K is given by3

K =
wh3

16

(
16
3
− 3.36

h
w

(
1 −

h4

12w4

))
. (23)
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To verify that this correction factor is valid for a lattice with a relative density ρ, and elasticity
tensor Ĉ, we performed finite element analysis on a rod with dimensions 37.5 µm × 37.5 µm × 150
µm. For a rod with arbitrary cross-section under torsion, the angular displacement, θ and moment,
T are related as

θ =
LT
KG
, (24)

where L is the length of the rod, G is the shear modulus, K is the geometric torsional factor. We
applied a homogenous rotation gradient to the rod where the rotation of each section is given by

θ(x) = θo
x
L
, (25)

where x is the position along the axis of the rod and θo is the rotation at x = L.

Supplementary Figure 7
∣∣∣ FEM validation of torsional factor for octet metamaterials. Simulation of

a square rod with the constituent (anisotropic) elastic properties of an octet lattice (derived through static
homogenization), subjected to uniform angular displacement gradient.

We calculated the reaction moment on the section at x = L and obtained the corresponding geo-
metric factor K. We then verified that the value of K obtained from FEA matched that obtained
from Eq. 23 to within 2%. Since all samples in this study have a square cross-section, the ex-
pression simplifies to K = 0.140833h4. Note that in applying this simplification, we are treating
the octet and tetrakaidecahedron metamaterials as an effective continuum, a valid assumption for
our sample design per the analysis presented in Extended Data Fig. 2. Applying the expression
for the polar area moment of inertia for a square cross-section, Ip = h4/6, thus yields a simplified
expression for the torsional wave velocity

cT =

√
6 ·G · 0.140833h4

ρh4 = 0.919238

√
G
ρ
. (26)

VIII. Inertial Stiffening of Metamaterial Architectures
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To explain this difference in dynamic stiffening, we performed explicit dynamic FEA simulations
on octet and tetrakaidecahedron unit cells with relative densities of ρOc =17% and ρTk =14%,
respectively. We performed uniaxial compression by imposing a strain rate, ε̇zz = 60 s−1 to the ge-
ometry. From Supplementary Fig. 8 we observe the volume-averaged maximum absolute principal
logarithmic strain is comparable for both tetrakaidecahedron and octet morphologies, indicating
that the rate-dependent constituent-material stiffening should be the same for both geometries.
However, we notice the average acceleration of the two geometries is different. Specifically, the
average acceleration of octet is 6.95× 108 mm/s2 while that of the tetrakaidecahedron is 9.16× 108

mm/s2. This indicates that there are higher inertial forces experienced by the tetrakaidecahedron
compared to the octet. To quantitatively relate this to the dynamic stiffening observed in both ge-
ometries, we take a closer look at equilibrium on both unit cells. By ignoring the inherent material
stiffening and assuming the unit cell to have elastic static stiffness k, we obtain

ke f f u = ku + ma, (27)

where ke f f is the effective dynamic stiffness of the geometry, u is the applied displacement, m is
the mass of the geometry, and a is the acceleration within the geometry. Therefore, the stiffening,
ηsti f f of each geometry is given by

ηsti f f =
ke f f − k

k
=

ma
ku
. (28)

The ratio of stiffening between octet and tetrakaidecahedron is thus expressed as

ηsti f f ,Oc

ηsti f f ,Tk
=

mOcaOckTk

mTkaTkkOc
, (29)

with the ratio of masses expressed as mOc/mTk = ρOc/ρTk. Therefore, the ratio of stiffening be-
comes

ηsti f f ,Oc

ηsti f f ,Tk
=

mOc

mTk
·

aOc

aTk
·

kTk

kOc
=

0.17
0.14

·
6.95 × 108

9.16 × 108 ·
50
84
= 0.55, (30)

where the elastic static stiffness was obtained from static simulations on the same geometries.
From LIRAS measurements, we determined the dynamic stiffening to be ∼40% for the octet and
∼96% for the tetrakaidecahedron, yielding a stiffening ratio of 0.4/0.96 = 0.42. While our simple
dynamic simulations do not account for rate-dependent material properties, this remarkable agree-
ment between theoretical equilibrium arguments and experimental values confirms the importance
of architecture-dependent inertial forces.
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Supplementary Figure 8
∣∣∣ Explicit dynamics simulations of both metamaterial architectures. Dis-

placement field at 5% applied engineering strain for octet and tetrakaidecahedron (left). Volume-averaged
maximum absolute principal logarithmic strain rate vs. applied engineering strain for octet and tetrakaidec-
ahedron morphologies (center). Average acceleration as a function of time for octet and tetrakaidecahedron
morphologies (right), indicating higher inertial contributions in the tetrakaidecahedron.

IX. Defective-Sample Spectra

Here, we present the evolution of spectra as the defect density in metamaterial samples increased.
In the case of bulk inclusions in octet metamaterials (Supplementary Fig. 9a), the higher-frequency
peak (corresponding to a longitudinal mode) gradually shifted to higher frequencies prior to a
jump where inclusion-percolation likely occurred. For the missing-beam octahedron metamateri-
als (Supplementary Fig. 9b), the longitudinal-mode peak gradually decreased in frequency. As the
defect density increased, loss of symmetry due to randomly distributed defects gave rise to stronger
flexural modes (lower frequency peaks), despite a center-pump scheme being employed.
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Supplementary Figure 9
∣∣∣ FFT spectra of defect samples. a, FFT spectra of inserted bulk cells into an

octet lattice. b, FFT spectra of missing beams in an octahedron lattice.

To further validate the defect-quantification capabilities of LIRAS, we conducted supplementary
experiments and simulations on a lattice architecture known as the “braced cubic” geometry. This
lattice structure exhibits both stretching- and bending-dominated deformations depending on its
orientation, thereby lacking a single dominant deformation mode. As shown in Supplementary
Fig. 10a, loading along the [100] direction leads to more uniform stress contours that indicate a
stretching-dominated response, while Supplementary Fig. 10b shows significant stress gradients in
the diagonal struts that indicate a bending-dominated response along the [111] direction.
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Supplementary Figure 10
∣∣∣ Mixed stretching and bending deformation in braced cubic morphology.

Stress contours of a braced-cubic unit cell compressed in the a, [100] direction, b, [111] direction.

To demonstrate that LIRAS capabilities are architecture- and deformation-mode-agnostic, we per-
formed experiments on the braced cubic geometry with varying magnitudes of defects, as shown
in Supplementary Fig. 11. These experiments validate the results reported in Fig. 5 for the octahe-
dron geometry, namely, eigenfrequencies decrease with increasing density of missing beams.
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Supplementary Figure 11
∣∣∣ Vibrational defect identification in braced cubic metamaterials. a, SEM

images of braced cubic (BC) metamaterials of 5 × 5 × 10 unit-cell tessellation. The BC lattices from left
to right possess 0, 10, 20, and 30% missing beams. Black scale bar, 50 µm. b, Measured eigenvibration
spectra for all samples. c, Measured shift in longitudinal and flexural eigenfrequencies, denoting a decrease
in frequencies as a function of defect density.

We have also conducted an investigation on defective octet metamaterials, displayed in Fig. 12.
These experiments are consistent with the trend that eigenfrequencies decrease with increasing
density of missing beams.
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Supplementary Figure 12
∣∣∣ Vibrational defect identification in octet metamaterials. a, SEM images

of octet metamaterials of 5 × 5 × 10 unit-cell tessellation. The octet lattices from left to right possess 0,
10, 20, 30, and 40% missing beams. White scale bar, 25 µm. b, Measured eigenvibration spectra for all
samples. c, Measured shift in longitudinal and flexural eigenfrequencies, denoting a decrease in frequencies
as a function of defect density.

X. Comparison of Different Techniques to Measure Mechanical Properties

To elucidate the advantages of our LIRAS technique compared to established micro- and nanome-
chanical characterization techniques, we constructed Supplementary Table 2 below. Here, Non-
contact denotes a technique’s ability to perform measurements without attaining physical contact
with a sample, Non-damaging determines whether permanent damage on the sample occurs upon
measurement, Spatial res. provides an estimate of the minimum measurable sample displacement,
Temporal res. denotes the techniques’ temporal resolution, Attenuation character. indicates a tech-
nique’s ability to provide signal attenuation measurements, and Shear char. indicates the ability to
obtain shear elastic properties.
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Non- Non- Spatial Temporal Attenuation Shear
Techniques contact damaging res. res. character. char. Ref.
Piezo-excitation
with imaging No Yes ∼ 10 nm ∼ 10 ns No No 4

Fluid-mediated
ultrasonics Yes Yes N/A ∼ 1 ns Yes No 5

Unixial compression No No ∼ 1 nm ∼ 1 µs No No 6

Kolsky bar No No ∼ 100 nm ∼ 1 µs No No 7

Resonant ultrasound
spectroscopy Yes Yes ∼ 10 nm ∼ 1 ns No Yes 8

Surface acoustic
spectroscopy Yes Yes ∼ 10 nm ∼ 1 ns No Yes 9

LIRAS Yes Yes ∼ 1 nm ∼ 1 ns Yes Yes

Supplementary Table 2
∣∣∣ Comparison between existing micro- and nanomechanical characterization tech-

niques and our LIRAS framework. Spatial resolution refers to the minimum sample displacement that leads
to measurable results.
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