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A Lower Bound and a Near-Optimal Algorithm

for Bilevel Empirical Risk Minimization

Mathieu Dagréou∗†, Thomas Moreau†, Samuel Vaiter‡, Pierre Ablin§

April 19, 2023

Abstract

Bilevel optimization problems, which are problems where two optimization problems are nested,
have more and more applications in machine learning. In many practical cases, the upper and
the lower objectives correspond to empirical risk minimization problems and therefore have a sum
structure. In this context, we propose a bilevel extension of the celebrated SARAH algorithm.

We demonstrate that the algorithm requires O((n+m)
1
2 ε−1) gradient computations to achieve

ε-stationarity with n+m the total number of samples, which improves over all previous bilevel
algorithms. Moreover, we provide a lower bound on the number of oracle calls required to get an
approximate stationary point of the objective function of the bilevel problem. This lower bound is
attained by our algorithm, which is therefore optimal in terms of sample complexity.

1 Introduction

In the last few years, bilevel optimization has become an essential tool for the machine learning commu-
nity thanks to its numerous applications. Among them, we can cite hyperparameter selection [Bengio,
2000, Pedregosa, 2016, Franceschi et al., 2017, Lorraine et al., 2020], implicit deep learning [Bai et al.,
2019], neural architecture search [Liu et al., 2019, Zhang et al., 2021], data augmentation [Li et al.,
2020, Rommel et al., 2022] and meta-learning [Franceschi et al., 2018, Rajeswaran et al., 2019] to name
a few. In bilevel optimization, we are interested in minimizing a function under the constraint that one
variable minimizes another function. This can be formalized as follows

min
x∈Rd

h(x) = F (z∗(x), x), subject to z∗(x) ∈ arg min
z∈Rp

G(z, x) . (1)

The function F is called the outer function and the function G is the inner function. Likewise, we refer
to z as the inner variable and x as the outer variable. A strategy to solve bilevel problems consists in
using implicit differentiation that provides the following expression for the gradient of h

∇h(x) = ∇2F (z∗(x), x) +∇2
21G(z∗(x), x)v∗(x) (2)

where v∗(x) is the solution of a linear system

v∗(x) = −
[
∇2

11G(z∗(x), x)
]−1∇1F (z∗(x), x) . (3)

When we have exact access to z∗(x), solving (1) boils down to a smooth nonconvex optimization problem
which can be solved using solvers for single-level problems. However, computing exactly z∗(x) and
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v∗(x) is often too costly, and implicit differentiation based algorithms rely on approximations of z∗(x)
and v∗(x) rather than their exact value. Depending on the precision of the different approximations,
we are not ensured that the approximate gradient used is a descent direction. Results by Pedregosa
[2016] characterized the approximation quality for z∗(x) and v∗(x) required to ensure convergence,
opening the door to various algorithms to solve bilevel optimization problems [Lorraine et al., 2020,
Ramzi et al., 2022].

In many applications of interest, the functions F and G correspond to Empirical Risk Minimization
(ERM), and as a consequence have a finite sum structure

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

For instance, in hyperparameter selection, F is the validation loss which is an average on the validation
set and G is the training loss which is an average on the training set. In single-level optimization, the
finite sum structure has been widely leveraged to produce fast first-order algorithms that provably
converge faster than gradient descent. These methods are the cornerstone of many successful machine
learning applications. Among these algorithms, we can cite stochastic methods such as stochastic
gradient descent [Robbins and Monro, 1951, Bottou, 2010] and its variance-reduced variants such as
SAGA [Defazio et al., 2014], STORM [Cutkosky and Orabona, 2019] or SPIDER/SARAH [Fang et al.,
2018, Nguyen et al., 2017] that use only a handful of samples at a time to make progress. In order to
get faster methods than full-batch approaches, it is natural to extend these methods to the bi-level
setting. The main obstacle comes from the difficulty of obtaining stochastic approximations of ∇h(x)
because of its structure (2). In the literature, several strategies have been proposed to overcome this
obstacle, and some works demonstrate that stochastic implicit differentiation based algorithms for
solving (1) have the same complexity as single-level analogous algorithms. For instance, ALSET from
[Chen et al., 2021] and SOBA from Dagréou et al. [2022] have the same convergence rate as stochastic
gradient descent for smooth nonconvex single-level problems Ghadimi and Lan [2013], Bottou et al.
[2018]. Furthermore, Dagréou et al. [2022] show that SABA, an adaptation of SAGA algorithm [Defazio

et al., 2014], has a sample complexity in O((n+m)
2
3 ε−1) which is analogous to the sample complexity

of SAGA for nonconvex single-level problems [Reddi et al., 2016].
However, in classical single-level optimization, it is known that neither of these algorithms is optimal:

the SARAH algorithm [Nguyen et al., 2017] achieves a better sample complexity of O(m
1
2 ε−1) with

m the number of samples. Furthermore, this algorithm is near-optimal (i.e. optimal up to constant

factors), because the lower bound for single-level non-convex optimization is also O(m
1
2 ε−1) as proved

by Zhou and Gu [2019]. It is natural to ask if we can extend these results to bilevel optimization:

Are the optimal complexity bounds for solving bilevel optimization the same as in single-level
optimization?

Contributions In Section 2, we introduce SRBA, an adaptation of the SARAH algorithm to the
bilevel setting. We then demonstrate in Section 3 that, similarly to the single-level setting, it requires

O
(

(n+m)
1
2 ε−1 ∨ (n+m)

)
calls to oracles to reach an ε-stationary point. This is therefore an upper

bound on the complexity of solving bilevel empirical risk minimization (ERM) problems. As shown
in Table 1, it achieves the best-known complexity in the regime n + m . O(ε−2). In Section 4, we
analyze the lower bounds for such problems. We demonstrate that the number of iterations required to
reach an ε-stationary point (see Definition 3.1) is at least Ω(m

1
2 ε−1), hereby matching the previous

upper-bound in the case where n � m and ε ≤ m− 1
2 . SRBA is therefore near-optimal in that regime.

Even though our main contribution is theoretical, we illustrate the numerical performances of the
algorithm in Section 5.

Related work There are several strategies to solve (1) in a stochastic fashion. They can be separated
into two groups: iterative differentiation algorithms (ITD) and approximate implicit differentiation
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Sample complexity Stochastic setting F G

StocBiO Ji et al. [2021] Õ(ε−2) General expectation C1,1
L SC and C2,2

L

AmIGO Arbel and Mairal [2022] O(ε−2) General expectation C1,1
L SC and C2,2

L

MRBO Yang et al. [2021] Õ(ε−
3
2 ) General expectation C1,1

L SC and C2,2
L

VRBO Yang et al. [2021] Õ(ε−
3
2 ) General expectation C1,1

L SC and C2,2
L

SABA [Dagréou et al., 2022] O((n+m)
2
3 ε−1) Finite sum C2,2

L SC and C3,3
L

SRBA O((n+m)
1
2 ε−1) Finite sum C2,2

L SC and C3,3
L

Table 1: Comparison between the sample complexities and the Assumptions of some stochastic
algorithms for bilevel optimization. It corresponds to the number of calls to gradient, Hessian-vector
products and Jacobian-vector product sufficient to get an ε-stationary point. The tilde on the Õ hide a
factor log(ε−1). ”SC” means ”strongly-convex”. Cp,pL means p-times differentiable with Lipschitz kth
order derivatives for k ≤ p.

algorithms (AID). On the one hand, in ITD algorithms, the Jacobian of z∗ is estimated by differentiating
the different steps used to compute an approximation of z∗. On the other hand, AID algorithms
leverage the implicit gradient given by (2) replacing z∗ and v∗ by some approximations z and v. In the
class of ITD algorithms, Maclaurin et al. [2015] propose to approximate the Jacobian of the solution of
the inner problem by differentiating through the iterations of SGD with momentum. The complexity of
the hypergradient computation in ITD solvers is studied in Franceschi et al. [2017], Grazzi et al. [2020],
Ablin et al. [2020]. For AID algorithms, Ghadimi and Wang [2018], Chen et al. [2021], Ji et al. [2021]
propose to perform several SGD steps in the inner problem and then use Neumann approximations
to approximate v∗(x) defined in (3). A method consisting of alternating steps in the inner and outer
variables was proposed in Hong et al. [2021]. These methods can be improved by using a warm start
strategy for the inner problem Ji et al. [2021], Chen et al. [2021] and for the linear system Arbel
and Mairal [2022]. Some works elaborate on these ideas by adapting variance reduction methods like
STORM Khanduri et al. [2021], Yang et al. [2021] or SAGA Dagréou et al. [2022]. We take a similar
approach and extend the SARAH variance reduction method to the bilevel setting. Finally, recent
works propose to approximate the Jacobian of z∗ by stochastic finite difference Sow et al. [2022] or
Bregman divergence-based methods Huang et al. [2022].

In single-level optimization, the problem of finding complexity lower bound for optimization problems
has been widely studied since the seminal work of Nemirovsky and Yudin [1983]. On the one hand,
Agarwal and Bottou [2015] provided a lower bound to minimize strongly convex and smooth finite sum
with deterministic algorithms that have access to individual gradients. These results were extended
to randomized algorithms for (strongly) convex and eventually nonsmooth finite sum objective by
Woodworth and Srebro [2016]. On the other hand, Carmon et al. [2017b] provided a lower bound
for minimizing nonconvex functions with deterministic and randomized algorithms. The nonconvex
finite sum case is treated in Fang et al. [2018], Zhou and Gu [2019]. In the bilevel case, Ji and Liang
[2023] showed a lower bound for deterministic, full-batch algorithms. However, this result is restricted
to the case where the value function h is convex or strongly convex, which is not the case with most
ML-related bilevel problems. Our results are instead in a non-convex setting.

Notation The quantity A• refers to Az, Av, or Ax, depending on the context. If f : Rp ×Rd → R is
a twice differentiable function, we denote ∇if(z, x) its gradient w.r.t. its ith variable. Its Hessian with

respect to z is denoted ∇2
11f(z, x) ∈ Rp×p and its cross derivative matrix

(
∂2f

∂zi∂xj

)
i∈[p]
j∈[d]

is denoted

∇2
12f(z, x) ∈ Rp×d. We denote ΠC the projection on a closed convex set C.
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2 SRBA: a Near-Optimal Algorithm for Bilevel Empirical Risk
Minimization

In this section, we introduce SRBA (Stochastic Recursive Bilevel Algorithm), a novel algorithm for
bilevel empirical risk minimization which is provably near-optimal for this problem. This algorithm is
inspired by the algorithms SPIDER [Fang et al., 2018] and SARAH [Nguyen et al., 2017, 2022] which
are known for being near-optimal algorithms for nonconvex finite sum minimization problems. It relies
on a recursive estimation of directions of interest, which is restarted periodically. Proofs are deferred to
the appendix.

2.1 Assumptions

Before presenting our algorithm, we formulate several Assumptions on the functions F and G. As for
SARAH, the regularity assumptions are made on the individual functions (Gi)1≤i≤n and (Fj)1≤j≤m
rather than on the empirical means G and F . In Assumption 2.1 and Assumption 2.2, we state the
regularity needed on the outer function F and inner function G respectively.

Assumption 2.1 (Regularity of F ). For all j ∈ [m], the function Fj is twice differentiable. The
function Fj is LF0 -Lipschitz continuous, its gradient ∇Fj is LF1 -Lipschitz continuous and the Hessian
∇2Fj is LF2 -Lipschitz continuous.

Assumption 2.2 (Regularity of G). For all i ∈ [n], The function Gi is three times differentiable.
Its first, second, and third order derivatives are respectively LG1 -Lipschitz continuous, LG2 -Lipschitz
continuous, and LG3 -Lipschitz continuous. For any x ∈ Rd, the function Gi( . , x) is µG-strongly convex.

The strong convexity and the smoothness with respect to z hold for instance when we consider
an `2-regularized logistic regression problem with non-separable data. These regularity assumptions
up to first-order for F and second-order for G are standard in the stochastic bilevel literature [Arbel
and Mairal, 2022, Ji et al., 2021, Yang et al., 2021]. The second-order regularity for F and third-order
regularity for G are necessary for the analysis of the dynamics of v, as it is the case in Dagréou et al.
[2022].

As shown in Ghadimi and Wang [2018, Lemma 2.2], these assumptions are sufficient to get the
smoothness of h, which is a fundamental property to get a descent on h.

Proposition 2.3 (Smoothness of the value function). Under Assumptions 2.1 and 2.2, the function h
is Lh smooth for some Lh > 0 which is precised in Appendix A.2.

Another consequence of Assumptions 2.1 and 2.2 is the boundedness of the function v∗.

Proposition 2.4 (Boundedness of v∗). Assume that Assumptions 2.1 and 2.2 hold. Then, for R =
LF0
µG

it holds that for any x ∈ Rd, we have ‖v∗(x)‖ ≤ R.

In what follows we denote Γ the closed ball centered in 0 with radius R and ΠΓ the projection onto
Γ. Moreover, for (z, v, x) ∈ Rp × Rp × Rd, we denote Π(z, v, x) = (z,ΠΓ(v), x).

2.2 Hypergradient Approximation

The gradient of h given by (2) is intractable in practice because it requires the perfect knowledge of z∗(x)
and v∗(x) which are usually costly to compute, for instance when the inner problem is ill-conditioned.
As classically done in the stochastic bilevel literature [Ji et al., 2021, Arbel and Mairal, 2022, Li et al.,
2022], z∗(x) and v∗(x) are replaced by approximate surrogate variables z and v. The variable z is
typically the output of one or several steps of an optimization procedure applied to G( . , x). The
variable v can be computed by using Neumann approximations or doing some optimization steps on the
quadratic v 7→ 1

2v
>∇2

11G(z, x)v +∇1F (z, x)>v. We consider the approximate hypergradient given by

Dx(z, v, x) = ∇2
21G(z, x)v +∇2F (z, x) .

4



The motivation behind this direction is that if we take z = z∗(x) and v = v∗(x), we recover the true
gradient, that is Dx(z∗(x), v∗(x), x) = ∇h(x). Proposition 2.5 from [Dagréou et al., 2022, Lemma 3.4]
controls the hypergradient approximation error with the distances between z and z∗(x) and between v
and v∗(x).

Proposition 2.5 (Hypergradient approximation error). Let x ∈ Rd. Assume that F is differentiable
and LF1 smooth with bounded gradient, G is twice differentiable with Lipschitz gradient and Hessian
and G( . , x) is µG-strongly convex. Then there exists a constant Lx such that

‖Dx(z, v, x)−∇h(x)‖2≤L2
x(‖z − z∗(x)‖2 + ‖v − v∗(x)‖2).

Thus, it is natural to make z and v move towards their respective equilibrium values which are
given by z∗(x) and v∗(x). As a consequence, we also introduce the directions Dz and Dx as follows

Dz(z, v, x) = ∇1G(z, x) ,

Dv(z, v, x) = ∇2
11G(z, x)v +∇1F (z, x) .

The interest of considering the directions Dz and Dv is expressed in Proposition 2.6.

Proposition 2.6 (First-order conditions). Assume that G is strongly convex with respect to its first
variable. Then for any x ∈ Rd, it holds Dz(z

∗(x), v∗(x), x) = 0 and Dv(z
∗(x), v∗(x), x) = 0.

The directions Dz, Dv, and Dx can be written as sums over the samples. Hence, as mentioned by
Dagréou et al. [2022], following these directions enables us to adapt any classical algorithm suited for
single-level finite sum minimization to bilevel finite sum minimization. In what follows, for two indices
i ∈ [n] and j ∈ [m], we consider the sampled directions Dz,i,j , Dv,i,j and Dx,i,j defined by

Dz,i,j(z, v, x) = ∇1Gi(z, x) (4)

Dv,i,j(z, v, x) = ∇2
11Gi(z, x)v +∇1Fj(z, x) (5)

Dx,i,j(z, v, x) = ∇2
21Gi(z, x)v +∇2Fj(z, x) . (6)

When i and j are randomly sampled uniformly, these directions are unbiased estimators of the true
directions Dz, Dv, and Dx. Nevertheless, as in Nguyen et al. [2017], we use them to recursively build
biased estimators of the directions that enable fast convergence.

2.3 SRBA: Stochastic Recursive Bilevel Algorithm

We propose SRBA which is a combination of the idea of recursive gradient coming from [Fang et al.,
2018, Nguyen et al., 2022] and the framework proposed in [Dagréou et al., 2022]. The SRBA algorithm
relies on a recursive estimation of each direction Dz, Dv, Dx which is updated following the same
strategy as SARAH. Let us denote by ρ the step size of the update for the variables z and v and γ the
step size for the update of the variable x. We use the same step size for z and v because the problems
of minimizing the inner function G and solving the linear system (3) have the same conditioning driven
by ∇2

11G. For simplicity, we denote the joint variable u = (z, v, x) and the joint directions weighted by
the step sizes ∆ = (ρDz, ρDv, γDx) = (∆z,∆v,∆x).

At iteration t, the estimate direction ∆ is initialized by computing full batch directions:

∆t,0 = (ρDz(ũ
t), ρDv(ũ

t), γDx(ũt))

and a first update is performed by moving from ũt in the direction −∆t,0. As done in Hu et al. [2022],
we project the variable v onto Γ to leverage the boundedness property of v∗. Then, during the kth
iteration of an inner loop of size q − 1, two indices i ∈ [n] and j ∈ [m] are sampled and the estimate

5



Algorithm 1 Stochastic Recursive Bilevel Algorithm

Input: initializations z0 ∈ Rp, x0 ∈ Rd, v0 ∈ Rp, number of iterations T and q, step sizes ρ and γ.
Set ũ0 = (z0, v0, x0)
for t = 0, . . . , T − 1 do

Reset ∆: ∆t,0 = (ρDz(ũ
t), ρDv(ũ

t), γDx(ũt))
Update u: ut,1 = Π(ũt −∆t,0) ,
for k = 1, . . . , q − 1 do

Draw i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
∆t,k
z = ρ(Dz,i,j(u

t,k)−Dz,i,j(u
t,k−1)) + ∆t,k−1

z

∆t,k
v = ρ(Dv,i,j(u

t,k)−Dv,i,j(u
t,k−1)) + ∆t,k−1

v

∆t,k
x = γ(Dx,i,j(u

t,k)−Dx,i,j(u
t,k−1)) + ∆t,k−1

x

Update u: ut,k+1 = Π(ut,k −∆t,k)
end for
Set ũt+1 = ut+1,q

end for
Return (z̃T , ṽT , x̃T ) = ũT

directions are updated according to Equations (7) to (9)

∆t,k
z = ρ(Dz,i,j(u

t,k)−Dz,i,j(u
t,k−1)) + ∆t,k−1

z (7)

∆t,k
v = ρ(Dv,i,j(u

t,k)−Dv,i,j(u
t,k−1)) + ∆t,k−1

v (8)

∆t,k
x = γ(Dx,i,j(u

t,k)−Dx,i,j(u
t,k−1)) + ∆t,k−1

x (9)

where the sampled directions Dz,i,j , Dv,i,j and Dx,i,j are defined by the Equations (4) to (6). Then
the joint variable u is updated by

ut,k+1 = Π(ut,k −∆t,k) . (10)

Recall that the projection is only performed on the variable v. The other variables z and x keep
unchanged after the projection step. At the end of the inner procedure, we set ũt+1 = ut,q. The
method is summarized in Algorithm 1. Note that this two loops structure with periodic full batch
computations is similar to the structure of SVRG. Unlike SVRG, there is no reference point and the
directions are updated recursively.

In Algorithm 1, the three variables z, v, and x are updated simultaneously rather than alternatively.
From a computational perspective, this allows us to share the common computations between the
different oracles and to do the update of each variable in parallel. As a consequence, there is no
sub-procedure to approximate the solution of the inner problem and the solution of the linear system.

Note that in Yang et al. [2021], the authors propose VRBO, another adaptation of SPIDER/SARAH
for bilevel problems. VRBO has a double loop structure where the inner variable is updated by several
steps in an inner loop. In this inner loop, the estimate of the gradient of G and the gradient of h are
also updated using SARAH’s update rules. SRBA has a different structure. First, in SRBA, the inner
variable z is updated only once between two updates of the outer variable instead of several times.
Second, the solution of the linear system evolves following optimization steps whereas in VRBO a
Neumann approximation is used. Finally, in Yang et al. [2021], the algorithm VRBO is analyzed in the
case where the functions F and G are general expectations but not in the specific case of empirical risk
minimization, as we do in Section 3, and achieves a worse sample complexity (see Table 1).

3 Theoretical Analysis of SRBA

In this section we provide the theoretical analysis of Algorithm 1 leading to a final sample complexity

in O
(

(n+m)
1
2 ε−1 ∨ (n+m)

)
. The detailed proofs of the results are deferred to the appendix.
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Before diving into the details, let us define a few concepts. In Definition 3.1, we recall the definition
of ε-stationary point.

Definition 3.1 (ε-stationary point). Let d a positive integer, f : Rd → R a differentiable function and
ε > 0. We say that a point x ∈ Rd is an ε-stationary point of f if ‖∇f(x)‖2 ≤ ε.

With a slight abuse of language, in a stochastic context, we also call ε-stationary point a random
variable x such that E[‖∇f(x)‖2] ≤ ε. This notion of ε-stationary point is necessary since we are
dealing with nonconvex objectives.

In this paper, the theoretical complexity of the algorithms is given in terms of number of calls to
oracle, that is to say the number of times the quantity

[∇Fj(z, x),∇Gi(z, x),∇2
11Gi(z, x)v,∇2

21Gi(z, x)v] (11)

is queried for i ∈ [n], j ∈ [m], z ∈ Rp, v ∈ Rp and x ∈ Rd. Note that in practice, although the second-
derivatives of the inner functions ∇2

11Gi(z, x) ∈ Rp×p and ∇2
21Gi(z, x) ∈ Rd×p are involved, they are

never computed or stored explicitly. We rather work with Hessian-vector products ∇2
11Gi(z, x)v ∈ Rp

and Jacobian-vector products ∇2
21Gi(z, x)v ∈ Rd which can be computed efficiently thanks to automatic

differentiation with a computational cost similar to the cost of computing the gradients ∇1Gi(z, x) and
∇2Gi(z, x) Pearlmutter [1994]. The cost of one query (11) is therefore of the same order of magnitude
as that of computing one stochastic gradient.

3.1 Mean Squared Error of the Estimated Directions

One strength of our method is its simple expression of the estimation error of the directions which
comes from the bias-variance decomposition of the mean squared error provided by Nguyen et al. [2017].
Let us denote the estimate directions Dt,k

z = ∆t,k
z /ρ, Dt,k

v = ∆t,k
v /ρ and Dt,k

x = ∆t,k
x /γ. We also

introduce the residuals

St,k• =

k∑
r=1

E[‖D•(ut,r)−D•(ut,r−1)‖2]

S̃t,k• =

k∑
r=1

E[‖Dt,r
• −Dt,r−1

• ‖2] .

Proposition 3.2 provides a simple link between the mean squared error E[‖Dt,k
• −D•(ut,k)‖2] and the

residuals St,k• and S̃t,k• .

Proposition 3.2 (MSE of the estimate directions). For any t ≥ 0 and k ∈ {1, . . . , q− 1}, the estimate

Dt,k
• of the direction D•(u

t,k) satisfies

E[‖Dt,k
• −D•(ut,k)‖2] = S̃t,k• − St,k• .

We observe that the above error has two components: the accumulation of the difference between
two successive full batch directions and the accumulation of the difference between two successive
estimate directions. Proposition 3.2 will play a critical role in the analysis of SRBA.

3.2 Fundamental Lemmas

As usually done in optimization, we start by establishing descent lemmas which are key ingredients to
get the final convergence result. Lemma 3.3 aims at characterizing the joint dynamic of u on the inner
problem. To do so, we introduce the function φz defined as

φz(z, x) = G(z, x)−G(z∗(x), x) .

7



In the bilevel literature, direct control on the distance to optimum δt,kz , E[‖zt,k − z∗(xt,k)‖2] is
established. Here, the biased nature of the estimate direction Dt,k

z makes it hard to upper bound
appropriately the scalar product 〈Dz(u

t,k)−Dt,k
z , zt,k−z∗(xt,k)〉. This explains the choice of considering

φt,kz instead of δt,kz . By combining the smoothness property of φz and the bias-variance decomposition
provided in Proposition 3.2, we can show some descent property on the sequence φt,kz defined by
φt,kz = E[φz(z

t,k, xt,k)]. Before stating Lemma 3.3, let us define Gt,kv = 1
ρ

(
vt,k −ΠΓ(vt,k − ρDt,k

v )
)

so that vt,k+1 = vt,k − ρGt,kv . This is the actual update direction of v. Note that if there were no
projections, we would have Gt,kv = Dt,k

v . As a consequence, it acts as a surrogate of Dt,k
v in our analysis.

We also define

V t,kz =E[‖Dt,k
z ‖2], V t,kv = E[‖Gt,kv ‖2], V t,kx = E[‖Dt,k

x ‖2]

the variances and their respective sums over the inner loop

Vt,kz =

k∑
r=1

E[‖Dt,r−1
z ‖2], Vt,kv =

k∑
r=1

E[‖Gt,r−1
v ‖2], Vt,kx =

k∑
r=1

E[‖Dt,r−1
x ‖2] .

Lemma 3.3 (Descent on the inner level). Assume that the step sizes ρ and γ verify γ ≤ Czρ for
some positive constant Cz specified in the appendix. Then it holds

φt,k+1
z ≤

(
1− µG

2
ρ
)
φt,kz −

ρ

2
(1− Λzρ)V t,kz + ρ3βzzVt,kz + γ2ρβzvVt,kv (12)

+ γ2ρβzxVt,kx +
Λz
2
γ2V t,kx +

γ2

ρ
βzxE[‖Dt,k

x (ut,k)‖2]

for some positive constants Λz, βzz, βzx and βzx that are specified in the appendix.

In (12) we recover a linear decrease of φt,kz by a factor (1− ρµG) but the outer variable’s movement
and the stochasticity make appear the direction Dx(ut,k) and the noise that slow down the convergence
of z towards z∗(x).

For the variable v, the quantity we consider is

φv(v, x) = Ψ(z∗(x), v, x)−Ψ(z∗(x), v∗(x), x)

where Ψ(z, v, x) is defined as

Ψ(z, v, x) =
1

2
v>∇2

11G(z, x)v +∇1F (z, x)>v .

The intuition behind considering this quantity is that solving the linear system (3) is equivalent to
minimizing over v the function Ψ(z∗(x), v, x).

Lemma 3.4 (Descent on the linear system). Assume that the step sizes ρ and γ verify ρ ≤ Bv and
γ ≤ Cvρ for some positive constants Bv and Cv specified in the appendix. Then it holds

φt,k+1
v ≤

(
1− ρµG

16

)
φt,kv − β̃vvρV tv + ρ3βvzVt,kz + 2ρ3βvvVt,kv + γ2ρβvxVt,kx

+ ραvzφ
t,k
z +

Λv
2
γ2E[‖Dt,k

x ‖2] +
γ2

ρ
βvxE[‖Dx(ut,k)‖2]

for some positive constants Λv, βvz, βvx, β̃vv and βvx that are specified in the appendix.

Lemma 3.4 is similar to Lemma 3.3. The appearance of φt,kz is a consequence of the fact Dv(z, v, x)
is a step towards −[∇2

11G(z, x)]−1∇1F (z, x) instead of −[∇2
11G(z∗(x), x)]−1∇1F (z∗(x), x). The proof

of this lemma harnesses the generalization of Polyak- Lojasiewicz inequality for composite functions
introduced in Karimi et al. [2016].

The following lemma is a consequence of the smoothness of h. Let us denote the expected values
ht,k = E[h(xt,k)] and expected gradient gt,k = E[‖∇h(xt,k)‖2].
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Lemma 3.5 (Descent on the value function h). There exist constants βhz, βhv, βhx > 0 such that

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(φt,kz + φt,kv ) + γρ2βhzVt,kz

+ γρ2βhvVt,kv + γ3βhxVt,kx −
γ

2

(
1− Lhγ

)
V t,kx .

This lemma shows that the control of the approximation error φ• (Lemma 3.3 and Lemma 3.4) and
the sum of variances V• is crucial to get a decrease of E[h(xt,k)].

3.3 Complexity Analysis of SRBA

In Theorem 1, we provide the convergence rate of SRBA towards a stationary point.

Theorem 1 (Convergence rate of SRBA). Assume that Assumptions 2.1 and 2.2 hold. Assume that
the step sizes verify ρ ≤ ρ and γ ≤ min(γ, ξρ) for some constants ξ, ρ and γ specified in appendix.
Then it holds

1

Tq

T−1∑
t=0

q−1∑
k=0

E[‖∇h(xt,k)‖2] = O
(

1

qTγ

)
where O hides regularity constants that are independent from n and m.

The proof combines classical proof techniques from the bilevel literature and elements from SARAH’s
analysis [Nguyen et al., 2017, 2022]. We introduce the Lyapunov function L(ut,k) = ht,k+ψzφ

t,k
z +ψvφ

t,k
v

where ψz and ψv are non-negative constants chosen so that we have the inequality L(ut,k+1) ≤
L(ut,k)− γ

4 g
t,k. Summing and telescoping this inequality provides the convergence rate.

Note that if we set q = 1, we are actually in a nonstochastic regime and we can observe that we
recover the convergence rate of Gradient Descent for nonconvex single-level problems [Nesterov, 2018]
since the step size γ depends neither on the current iteration t nor the horizon T . Increasing q allows a
faster convergence in terms of iterations but makes each iteration more expensive since the number of
oracle calls per iteration is (2n+ 3m) + 2× 5(q− 1). Thus, there is a trade-off between the convergence
rate and the overall complexity. In Corollary 3.6, we state that the value of q that gives the best sample
complexity is O(n+m).

Corollary 3.6 (Sample complexity of SRBA). Suppose that Assumptions 2.1 and 2.2 hold. If we take

ρ = ρ(n + m)−
1
2 , γ = min(γ, ξρ)(n + m)−

1
2 and q = n + m, then O

(
(n+m)

1
2 ε−1 ∨ (n+m)

)
calls to oracles are sufficient to find an ε-stationary point with SRBA.

This sample complexity is analogous to the sample complexity of SARAH in the nonconvex finite-
sum setting. To the best of our knowledge, such a rate is the best known for bilevel empirical risk
minimization problems in terms of dependency on the number of samples n + m and the precision
ε. This improve by a factor (n + m)−

1
6 the previous result which was achieved by SABA [Dagréou

et al., 2022]. As a comparison, VRBO [Yang et al., 2021] achieves a sample complexity in Õ(ε−
3
2 ).

Note that, for large value of n+m we can have actually (n+m)
1
2 ε−1 & ε−2. This means that, just

like single-level SARAH, the complexity of SRBA can be beaten by others when the number of samples
is too high with respect to the desired accuracy (actually, if n+m = Ω(ε−2)).

4 Lower Bound for Bilevel ERM

In this section, we derive a lower bound for bilevel empirical risk minimization problems. This show
that SRBA is a near-optimal algorithm for this class of problems.
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4.1 Functions and Algorithms Classes

We start by defining the function class and the algorithm class we consider.

Definition 4.1 (Function class). Let n,m two positive integers, LF1 and µG two positive constants.

The class of the smooth empirical risk minimization problems denoted by CLF1 ,µG is the set of pairs of
real-valued function families ((Fj)1≤j≤m, (Gi)1≤i≤n) defined on Rp ×Rd such that for all j ∈ [m], Fj is
LF1 smooth and for all i ∈ [n], Gi is twice differentiable and µG-strongly convex.

Note that we do not require F to be convex in the class CLF1 ,µG . In particular, the class of bilevel
problems that we consider is nonconvex. This class contains, for instance, the functions defining the
bilevel formulation of the datacleaning task (see Section 5).

For the algorithmic class, we consider algorithms that implement approximate implicit differentiation,
using oracles of the form (11).

Definition 4.2 (Algorithmic class). Given initial points z0, v0, x0, a linear bilevel algorithm A
is a measurable mapping such that for any ((Fj)1≤j≤m, (Gi)1≤i≤n) ∈ CLF1 ,µG , the output of
A((Fj)1≤j≤m, (Gi)1≤i≤n) is a sequence {(zt, vt, xt, it, jt)}t≥0 of points (zt, vt, xt) and random vari-
ables it ∈ [n] and jt ∈ [m] such that for all t ≥ 0

zt+1 ∈ z0+Span{∇1Gi0(z0, x0), . . . ,∇1Git(z
t, xt)}

vt+1 ∈ v0+Span{∇2
11Gi0(z0, x0)v0 +∇1Fj0(z0, x0),

. . . ,∇2
11Git(z

t, xt)vt +∇1Fjt(z
t, xt)}

xt+1 ∈ x0+Span{∇2
21Gi0(z0, x0)v0 +∇2Fj0(z0, x0),

. . . ,∇2
21Git(z

t, xt)vt +∇2Fjt(z
t, xt)}.

This algorithmic class includes popular stochastic bilevel first-order algorithms, such as AmIGO
[Arbel and Mairal, 2022], FSLA [Li et al., 2022], SOBA, and SABA [Dagréou et al., 2022]. Note that
despite the projection step, SRBA is part of this algorithmic class since the projection of a vector onto
Γ is actually just a rescaling.

4.2 Main Theorem

Problem (1) is actually a smooth nonconvex optimization problem. The lower complexity bound for
nonconvex finite sum problem has been studied in Fang et al. [2018], Zhou and Gu [2019]. In particular,
they show that the number of gradient calls needed to get an ε-stationary point for a smooth nonconvex
finite sum is at least O(m

1
2 ε−1), where m is the number of terms in the finite sum.

Intuitively, we expect that the lower complexity bound to solve (1) to be larger. Indeed, bilevel
problems are harder than single-level problems because a bilevel problem involves the resolution of
several subproblems to progress in its resolution. Theorem 2 formalizes this intuition by showing that
the classical single-level lower bound is also a lower bound for bilevel problems.

Theorem 2 (Lower bound for bilevel ERM). For any linear bilevel algorithm A, and any LF , n,

∆, ε, p such that ε2 ≤ (∆LFm−1)/103, there exists a dimension d = O(∆ε−1m
1
2LF ), an ele-

ment ((Fj)1≤j≤m, (Gi)1≤i≤n) ∈ CLF1 ,µG such that the value function h defined as in (1) satisfies
h(x0) − infx∈Rd h(x) ≤ ∆ and in order to find x̂ ∈ Rd such that E[‖∇h(x̂)‖2] ≤ ε, A needs at least

Ω(m
1
2 ε−1) calls to oracles of the form (11).

The proof is an adaptation of the proof of Zhou and Gu [2019, Theorem 4.7]. It consists in taking
as outer function F defined by F (z, x) =

∑m
j=1 f(U (j)z) where f is the “worst-case function” used by

Carmon et al. [2017a], U = [U (j), . . . , U (m)]> is an orthogonal matrix and G(z, x) = 1
2‖z − x‖

2. We
harness the fact that ‖∇f(y)‖2 > K as long as the two last coordinates of y are zero for some known
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Figure 1: Left: Comparison of the performances of SRBA for different values of q on a hyperparameter
selection task for `2-regularized logistic regression with IJCNN1 dataset with respect to time and
iterations. Right: Comparison of SRBA with other stochastic bilevel methods on the datacleaning
task with the MNIST dataset. The solvers are run with 10 different seeds and the median performance
over these seeds is reported. The shaded area corresponds to the performances between the 20% and
the 80% percentiles. We report the test error with respect to wall clock time. We notice that SRBA
achieves the best final accuracy even though it is slower than the others at the beginning.

constant K. Then we use the “zero chain property” to upper bound the number of indices j such the
two last components of U (j)xt are zero at a given iteration t, implying ‖∇h(xt)‖2 > ε when t is smaller

than O(m
1
2 ε−1).

Note that here, the function class considered is less restrictive than the function class that verifies
the upper complexity bound achieved by SRBA in Corollary 3.6. Considering a class as restrictive as
the class needed for the analysis of SRBA could lead to a smaller lower bound.

As a comparison to the existing lower bound for bilevel optimization in Ji and Liang [2023], we
consider randomized algorithms and do not assume the value function h to be convex or strongly
convex.

5 Numerical Experiments

Even though our contribution is mostly theoretical, we run several experiments to highlight the influence
of the inner loop size on the performances of SRBA and to compare the proposed algorithm with
state-of-the-art stochastic bilevel solvers. A more detailed description of the experiments is available in
Appendix C.

5.1 Influence of the Period q

We are interested in the impact of the period q on the algorithm’s performance. We consider the
hyperparameter selection problem for `2-regularized logistic regression with the dataset IJCNN11. In
this case, F is the validation loss and G the training loss. We run SRBA for several values of q. In
Figure 1, we display the suboptimality h(xt)− h∗ where h∗ is the minimum value reached among all
the runs. The performances are reported both relatively to wall clock time and iterations. An iteration
corresponds to one update of the variables z, v, and x with the full batch or stochastic directions.

The first observation is that the parameter q impacts dramatically the convergence speed of SRBA
in practice. While all the runs converge, the variance and the speed of the suboptimality h(xt)− h∗

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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differ. The figure shows that reducing the period q gives performances with less variance, due to
improved gradient estimators. However, we notice a difference between the performances with respect
to time and with respect to iteration. For instance, the curve corresponding to q = n+m is among the
best curves when looking in terms of iterations while it becomes the second slowest with respect to time.
This suggests that there is a trade-off between computing too many times the full batch quantities
versus improving the gradient estimates. In the presented experiment, q = 4(n + m) gives the best
performances.

5.2 Comparison of SRBA with Competitors

We compare the performances of SRBA with stochastic bilevel solvers on the datacleaning problem
[Franceschi et al., 2017] with MNIST dataset2. In this task, the training set is composed of ntrain

labeled samples (dtrain
i , ytrain

i )i∈[ntrain] that possibly have corrupted labels with a probability pc. The
validation set has nval clean labels. The datacleaning task consists in learning simultaneously a classifier
and a weighting on the training samples. This problem can be cast as a bilevel optimization problem
where the inner loss is the training loss where the training samples are weighted and the outer loss
is the validation loss. The inner variable is the parameter of the classifier and belongs to Rp and the
outer variable is the weighting of the training set and belongs to Rntrain . A more formal formulation of
the problem is provided in the appendix.

In Figure 1 (right), we compare the final test error of SRBA with AmIGO [Arbel and Mairal,
2022], MRBO [Yang et al., 2021], StocBiO [Ji et al., 2021] and SABA [Dagréou et al., 2022]. In this
experiment, we have pc = 0.5. The parameters of each algorithm have been selected by a grid search.
We observe that SRBA reaches the lowest plateau. Nevertheless, it is the slowest at the beginning due
to the full batch computations.

6 Conclusion

In this paper, we have introduced SRBA, an algorithm for bilevel empirical risk minimization. We
have demonstrated that the sample complexity of SRBA is O((n+m)

1
2 ε−1) for any bilevel problem

where the inner problem is strongly convex. Then, we have demonstrated that any bilevel empirical risk
minimization algorithm has a sample complexity of at least O(m

1
2 ε−1) on some problems where the

inner problem is strongly convex. This demonstrates that SRBA is optimal, up to constant factors, and
that bilevel empirical risk minimization is as hard as single-level nonconvex empirical risk minimization.
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Appendix A contains the necessary lemmas and proofs of Section 3. Appendix B contains the proof
of the lower bound for stochastic bilevel optimization. Finally, Appendix C details the setting of the
numerical experiments.

A Convergence analysis of SRBA

A.1 Proof of Proposition 2.6

Proof. Let x ∈ Rd. Since G( . , x) is differentiable and z∗(x) minimizes G( . , x), the first order optimality
condition ensures ∇1G(z∗(x), x) = 0 = Dz(z

∗(x), v∗(x), x). Since G is strongly convex with respect to
z, the Hessian ∇2

11G(z∗(x), x) is invertible. As a consequence, the equation in v

Dv(z
∗(x), v, x) = ∇2

11G(z∗(x), x)v +∇1F (z∗(x), x) = 0 (13)

admits a unique solution given by v∗(x).

A.2 Smoothness constant of h

We can find in Ghadimi and Wang [2018, Lemma 2.2] the following value for the smoothness constant
of h

Lh = LF1 +
2LF1 L

G
2 + (LF0 )2LG2
µG

+
LG11L

G
1 L

F
0 + LG1 L

G
2 L

F
0 + (LG1 )2LF1

µ2
G

+
(LG1 )2LG2 L

F
0

µ3
G

.

A.3 Proof of Proposition 3.2

Proof. Let t > 0 and k ∈ [q− 1]. For k = 0, we directly have E[‖Dt,k
• −D•(ut,k)‖2] = 0. For k ≥ 1 and

r ∈ {1, . . . , k}, the bias/variance decomposition of Dt,r
• reads

Et,r[‖Dt,r
• −D•(ut,r)‖2] = Et,r[‖Dt,r

• −Dt,r−1
• +D•(u

t,r−1)−D•(ut,r)‖2]

+ ‖D•(ut,r) +D•(u
t,r−1)−Dt,r−1

• −D•(ut,r)‖2

= Et,r[‖Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(ut,r))‖2]

+ ‖Dt,r−1
• −D•(ut,r−1)‖2

The term Et,r[‖Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(ut,r))‖2] is the variance of Dt,r

• −Dt,r−1
• , and then

can written as

Et,r[‖Dt,r
• −Dt,r−1

• − (D•(u
t,r−1)−D•(ut,r))‖2] = Et,r[‖Dt,r

• −Dt,r−1
• ‖2]

− ‖D•(ut,r)−D•(ut,r−1)‖2

Plugging this in the previous inequality and taking the total expectation leads to

E[‖Dt,r
• −D•(ut,r)‖2] = E[‖Dt,r

• −Dt,r−1
• ‖2]− E[‖D•(ut,r)−D•(ut,r−1)‖2]

+ E[‖Dt,r−1
• −Dt,r−1

• (ut,r−1)‖2]

Summing for r ∈ {1, . . . , k} and telescoping gives the final result (taking into account thatDt,0
• = D•(u

t,0)):

E[‖Dt,k
• −D•(ut,k)‖2] =

k∑
r=1

E[‖Dt,r
• −Dt,r−1

• ‖2]−
k∑
r=1

E[‖D•(ut,r)−D•(ut,r−1)‖2] .
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A.4 Technical lemmas

Lemma A.1. There exists a constant L∗ such that for any x1, x2 ∈ Rd, we have

‖z∗(x1)− z∗(x2)‖ ≤ L∗‖x1 − x2‖ and ‖v∗(x1)− v∗(x2)‖ ≤ L∗‖x1 − x2‖

Proof. The Jacobian of z∗ reads dz∗(x) = [∇2
11G(z∗(x), x)]−1∇2

12G(z∗(x), x). By µG-strong convexity

and LG1 -smoothness of G, we have ‖dz∗(x)‖ ≤ LG1
µG

which implies that z∗ is
LG1
µG

Lipschtiz.
For v∗ we do the computation directly:

‖v∗(x1)− v∗(x2)‖ = ‖[∇2
11G(z∗(x1), x1)]−1∇1F (z∗(x1), x1)

− [∇2
11G(z∗(x2), x2)]−1∇1F (z∗(x2), x2)‖

≤ ‖[∇2
11G(z∗(x1), x1)]−1(∇1F (z∗(x1), x1)−∇1F (z∗(x2), x2))‖

+ ‖([∇2
11G(z∗(x1), x1)− [∇2

11G(z∗(x2), x2)]−1]−1∇1F (z∗(x2), x2)‖

≤
(

1

µG
LF1 + LG2 L

F
0

)
‖(z∗(x1), x1)− (z∗(x2), x2)‖

≤
(

1

µG
LF1 + LG2 L

F
0

)
(‖z∗(x1)− z∗(x2)‖+ ‖x1 − x2‖)

≤ LG1
µG

(
1

µG
LF1 + LG2 L

F
0

)
‖x1 − x2‖

Then taking L∗ = max
[
LG1
µG

(
1
µG
LF1 + LG2 L

F
0

)
,
LG1
µG

]
concludes the proof.

Lemma A.2. Let us consider the update directions Dt,k
z = ∆t,k

z /ρ, Dt,k
v = ∆t,k

v /ρ and Dt,k
x = ∆t,k

x /γ
where ∆t,k

z , ∆t,k
v and ∆t,k

x verify Equations (7) to (9). Then it holds

E[‖Dt,k
z −Dz(u

t,k)‖2] ≤
k∑
r=1

LG1 (ρ2E[‖Dt,r−1
z ‖2] + γ2E[‖Dt,r−1

z ‖2])

E[‖Dt,k
v −Dv(u

t,k)‖2] ≤ 4ρ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
z ‖2] + 4ρ2(LG1 )2

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
x ‖2]

E[‖Dt,k
x −Dx(ut,k)‖2] ≤ 4ρ2

(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
z ‖2] + 4ρ2(LG1 )2

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
x ‖2] .

Proof. Direction Dz
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We start from Proposition 3.2.

E[‖Dt,k
z −Dz(u

t,k)‖2] = E[‖Dt,k
z −∇1G(zt,k, xt,k)‖2]

=

k∑
r=1

E[‖Dt,r
z −Dt,r−1

z ‖2]−
k∑
r=1

E[‖∇1G(zt,r, xt,r)−∇1G(zt,r−1, xt,r−1)‖2]

≤
k∑
r=1

E[‖Dt,r
z −Dt,r−1

z ‖2]

≤
k∑
r=1

LG1 (ρ2E[‖Dt,r−1
z ‖2] + γ2E[‖Dt,r−1

z ‖2])

where the last inequality comes from the smoothness of each Gi.
Direction Dv For Dv, the proof is almost the same. Proposition 3.2 gives us

E[‖Dt,k
v −Dv(u

t,k)‖2] ≤
k∑
r=1

E[‖Dt,r
v −Dt,r−1

v ‖2] .

Then, using the boundedness of v and regularity of each Gi and Fj , we have

E[‖Dt,r
v −Dt,r−1

v ‖2] ≤ 2(E[‖∇2
11Gi(z

t,r, xt,r)vt,r −∇2
11Gi(z

t,r−1, xt,r−1)vt,r−1‖2]

+ E[‖∇2Fj(z
t,r, xt,r)−∇2Fj(z

t,r−1, xt,r−1)‖2])

≤ 4(E[‖∇2
11Gi(z

t,r, xt,r)(vt,r − vt,r−1)‖2]

+ E[‖(∇2
11Gi(z

t,r, xt,r)−∇2
11Gi(z

t,r−1, xt,r−1))vt,r−1‖2]

+ (LF1 )2(γ2E[‖Dt,r−1
z ‖] + ρ2E[‖Dt,r−1

x ‖2]))

≤ 4((LG1 )2ρ2E[‖Gt,r−1
v ‖2]

+ (LG2 )2R2(ρ2E[‖Dt,r−1
z ‖] + γ2E[‖Dt,r−1

x ‖2])

+ (LF1 )2(ρ2E[‖Dt,r−1
z ‖] + γ2E[‖Dt,r−1

x ‖2]))

≤ 4ρ2
(
(LG2 R)2 + (LF1 )2

)
E[‖Dt,r−1

z ‖2] + 4ρ2(LG1 )2E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

)
E[‖Dt,r−1

x ‖2] .

Direction Dx The proof is the same as the proof for Dv.

A.5 Proof of Lemma 3.3

Let φz(z, x) = G(z, x)−G(z∗(x), x) the inner suboptimality gap. The proof of Lemma 3.3 is based on
the smoothness of φz, which is the object of the following lemma.

Lemma A.3. The function φz has Λz-Lipschitz continuous gradient on Rp × Rd, for some constant
Λz.

Proof. For any (z, x) ∈ Rp × Rd, we have

∇1φz(z, x) = ∇1G(z, x) and ∇2φz(z, x) = ∇2G(z, x)−∇2G(z∗(x), x) .

Let us consider (z, x) ∈ Rp × Rd and (z′, x′) ∈ Rp × Rd. Since ∇G is LG1 -Lipschitz continuous, we
have directly

‖∇1φz(z, x)−∇1φz(z
′, x′)‖ ≤ LG1 ‖(z, x)− (z′, x′)‖ .
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Moreover, we have

‖∇2φz(z, x)−∇2φz(z
′, x′)‖ ≤ ‖∇2G(z, x)−∇2G(z′, x′)‖

+ ‖∇2G(z∗(x), x)−∇2G(z∗(x′), x′)‖
≤ LG1 ‖(z, x)− (z′, x′)‖+ LG1 ‖(z∗(x), x)− (z∗(x′), x′)‖
≤ LG1 ‖(z, x)− (z′, x′)‖+ LG1 ‖(z∗(x), x)− (z∗(x′), x′)‖
≤ LG1 ‖(z, x)− (z′, x′)‖+ LG1 (‖z∗(x)− z∗(x′)‖+ ‖x− x′‖) .

From Lemma A.1, z∗ is L∗ Lipschitz continuous, so

‖∇2φz(z, x)−∇2φz(z
′, x′)‖ ≤ LG1 ‖(z, x)− (z′, x′)‖+ LG1 (‖z∗(x)− z∗(x′)‖+ ‖x− x′‖)

≤ LG1 ‖(z, x)− (z′, x′)‖+ LG1 (L∗ + 1)‖x− x′‖
≤ LG1 (L∗ + 2)‖(z, x)− (z′, x′)‖ .

As a consequence

‖∇φz(z, x)−∇φz(z′, x′)‖ ≤ ‖∇1φz(z, x)−∇1φz(z
′, x′)‖+ ‖∇2φz(z, x)−∇2φz(z

′, x′)‖
≤ LG1 (L∗ + 3)‖(z, x)− (z′, x′)‖ .

Hence, φz is Λz smooth with Λz = LG1 (L∗ + 3).

We can now turn to the proof of Lemma 3.3.

Proof. The smoothness of φz provides us the following upper bound

φz(z
t,k+1, xt,k+1) ≤ φz(zt,k, xt,k)− ρ〈Dt,k

z ,∇1G(zt,k, xt,k)〉+
Λz
2
ρ2‖Dt,k

z ‖2 (14)

− γ〈Dt,k
x ,∇2G(zt,k, xt,k)−∇2G(z∗(xt,k), xt,k)〉+

Λz
2
γ2‖Dt,k

x ‖2 .

Using the equality 〈a, b〉 = 1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2), we get

−〈Dt,k
z ,∇1G(zt,k, xt,k)〉+

Λz
2
ρ‖Dt,k

z ‖2 =
1

2
(‖Dt,k

z −∇1G(zt,k, xt,k)‖2 (15)

− ‖∇1G(zt,k, xt,k)‖2 − (1− Λzρ) ‖Dt,k
z ‖2) .

Plugging Equation (15) into Equation (14) and tacking the expectation conditionally to the past iterates
yields

Et,k[φt,k+1
z ] ≤ φt,kz +

ρ

2
Et,k[‖Dt,k

z −∇1G(zt,k, xt,k)‖2] (16)

− ρ

2
‖∇1G(zt,k, xt,k)‖2 − ρ

2
(1− Λzρ)Et,k[‖Dt,k

z ‖2]

− γ〈Et,k[Dt,k
x ],∇2G(zt,k, xt,k)−∇2G(z∗(xt,k), xt,k)〉+

Λz
2
γ2Et,k[‖Dt,k

x ‖2] .

From Young inequality, we have for any c > 0

〈Et,k[Dt,k
x ],∇2G(zt,k, xt,k)−∇2G(z∗(xt,k), xt,k)〉 ≤ 1

2c
‖Et,k[Dt,k

x ]‖2 (17)

+
c

2
‖∇2G(zt,k, xt,k)−∇2G(z∗(xt,k), xt,k)‖2
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The smoothness of G and strong convexity give us

‖∇2G(zt,k, xt,k)−∇2G(z∗(xt,k), xt,k)‖2 ≤ LG1 ‖zt,k − z∗(xt,k)‖2 ≤ 2LG1
µG

φz(z
t,k, xt,k) (18)

Let us denote L′ =
LG1
µG

. Plugging Inequalities (17) and (18) into Equation (16) yields

Et,k[φz(z
t,k+1, xt,k+1)] ≤ (1 + cL′γ)φz(z

t,k+1, xt,k+1)− ρ

2
Et,k[‖∇1G(zt,k, xt,k)‖2] (19)

+
ρ

2
Et,k[‖Dt,k

z −∇1G(zt,k, xt,k)‖2]− ρ

2
(1− Λzρ)Et,k[‖Dt,k

z ‖2]

+
γ

2c
‖Et,k[Dt,k

x ]‖2 +
Λz
2
γ2Et,k[‖Dt,k

x ‖2]

From Lemma A.2, we have

E[‖Dt,k
z −∇1G(zt,k, xt,k)‖2] ≤

k∑
r=1

LG1 (ρ2E[‖Dt,r−1
z ‖2] + γ2E[‖Dt,r−1

z ‖2]) .

Taking the total expectation and plugging the previous inequality into Equation (19) yields

φt,k+1
z ≤ (1 + cL′γ)φt,k +

LG1
2

k∑
r=1

(ρ3E[‖Dt,r−1
z ‖2] + γ2ρE[‖Dt,r−1

x ‖2]) (20)

− ρ

2
E[‖∇1G(zt,k, xt,k)‖2]− ρ

2
(1− Λzρ)E[‖Dt,k

z ‖2]

+
γ

2c
E[‖E[Dt,k

x ]‖2] +
Λz
2
γ2E[‖Dt,k

x ‖2]

Since G is µG-strongly convex with respect to z, Polyak- Lojasiewicz inequality holds:

‖∇1G(zt,k, xt,k)‖2 ≥ 2µGφz(z
t,k, xt,k)

As a consequence, Equation (20) becomes

φt,k+1
z ≤ (1 + cL′γ − µGρ)φt,k +

LG1
2

k∑
r=1

(ρ3E[‖Dt,r−1
z ‖2] + γ2ρE[‖Dt,r−1

x ‖2])

− ρ

2
(1− Λzρ)E[‖Dt,k

z ‖2] +
γ

2c
E[‖E[Dt,k

x ]‖2] +
Λz
2
γ2E[‖Dt,k

x ‖2]

Taking c = µGρ
2L′γ yields

φt,k+1
z ≤

(
1− µG

2
ρ
)
φt,k +

LG1
2

k∑
r=1

(ρ3E[‖Dt,r−1
z ‖2] + γ2ρE[‖Dt,r−1

x ‖2])

− ρ

2
(1− Λzρ)E[‖Dt,k

z ‖2] +
L′

µG

γ2

ρ
E[‖E[Dt,k

x ]‖2] +
Λz
2
γ2E[‖Dt,k

x ‖2]

For the term E[‖Et,k[Dt,k
z ]‖2], we have

E[‖Et,k[Dt,k
x ]‖2] = E[‖Dx(zt,k, vt,k, xt,k)−Dx(zt,k−1, vt,k−1, xt,k−1) +Dt,k−1

x ‖2]

= E[‖Dx(zt,k, vt,k, xt,k)−Dx(zt,k−1, vt,k−1, xt,k−1)− E[Dt,k−1
x ]‖2]

+ E[‖Dt,k−1
x − E[Dt,k−1

x ]‖2]

= E[‖Dx(zt,k, vt,k, xt,k)‖2] (21)

+ E[‖Dt,k−1
x −Dx(zt,k−1, vt,k−1, xt,k−1)‖2] .
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Using Lemma A.2, we get

E[‖Dt,k−1
x −Dx(ut,k−1)‖2] ≤ 4ρ2

(
(LG2 R)2 + (LF1 )2

) k−1∑
r=1

E[‖Dt,r−1
z ‖2]

+ 4ρ2(LG1 )2
k−1∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

) k−1∑
r=1

E[‖Dt,r−1
x ‖2] .

Putting all together yields

φt,k+1
z ≤

(
1− µG

2
ρ
)
φt,k − ρ

2
(1− Λzρ)E[‖Dt,k

z ‖2] +
Λz
2
γ2E[‖Dt,k

x ‖2] (22)

+
L′

µG

γ2

ρ
E[‖Dt,k

x (ut,k)‖2] + 4(LG1 )2 L
′

µG
γ2ρ

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ ρ

[
ρ2L

G
1

2
+

4(LG2 R)2L′

µG
γ2 +

4(LF1 )2L′

µG
γ2

] k∑
r=1

E[‖Dt,r−1
z ‖2]

+ γ2

[
ρ
LG1
2

+ 4(LG2 R)2 L
′

µG

γ2

ρ
+ 4(LF1 )2 L

′

µG

γ2

ρ

] k∑
r=1

E[‖Dt,r−1
x ‖2]

By assumption, γ ≤ Czρ, with Cz =

√
µGLG1

8L′((LG2 R)2+(LF1 )2)
therefore

φt,k+1
z ≤

(
1− µG

2
ρ
)
φt,kz −

ρ

2
(1− Λzρ)E[‖Dt,k

z ‖2] +
Λz
2
γ2E[‖Dt,k

x ‖2]

+
L′

µG

γ2

ρ
E[‖Dt,k

x (ut,k)‖2] + ρ3LG1

k∑
r=1

E[‖Dt,r−1
z ‖2]

+ 4(LG1 )2 L
′

µG
γ2ρ

k∑
r=1

E[‖Gt,r−1
v ‖2] + γ2ρLG1

k∑
r=1

E[‖Dt,r−1
x ‖2]

≤
(

1− µG
2
ρ
)
φt,k − ρ

2
(1− Λzρ)V t,kz +

Λz
2
γ2V t,kx + βzx

γ2

ρ
E[‖Dt,k

x (ut,k)‖2]

+ ρ3βzzVt,kz + γ2ρβzvVt,kv + γ2ρβzxVt,kx

with βzz = LG1 , βzv =
4(LG1 )2L′

µG
, βzx = LG1 and βzx = L′

µG
.

A.6 Proof of Lemma 3.4

Recall that we denote Ψ(z, v, x) = 1
2v
>∇2

11G(z, x)v + ∇1F (z, x)>v and φv(v, x) = Ψ(z∗(x), v, x) −
Ψ(z∗(x), v∗(x), x). As for Lemma 3.3, the key property we need is the smoothness of φv. The derivatives
of φv involve the third derivative of G. For a tensor T ∈ Rp1×p2×p3 and a vector a ∈ Rp3 we denote
(T |a) the matrix in Rp1×p2 defined by:

(T |a) =

[
p3∑
k=1

Ti,j,kak

]
1≤i≤p1
1≤j≤p2

.

Lemma A.4. The function φv has Λv-Lipschitz continuous gradient on Γ×Rd, for some constant Λv.
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Proof. For any (v, x) ∈ Γ× Rd, we have

∇1φv(v, x) = Dv(z
∗(x), v, x)

and

∇2φv(v, x) = (dz∗(x))>
[

1

2
(∇3

111G(z∗(x), x)|v)v − 1

2
(∇3

111G(z∗(x), x)|v∗(x))v∗(x)

+∇2
11F (z∗(x), x)v −∇2

11F (z∗(x), x)v∗(x)
]

+

[
1

2
(∇3

211G(z∗(x), x)|v)v − 1

2
(∇3

211G(z∗(x), x)|v∗(x))v∗(x)

+∇2
21F (z∗(x), x)v −∇2

21F (z∗(x), x)v∗(x)
]
.

Let us consider (v, x) ∈ Γ× Rd and (v′, x′) ∈ Γ× Rd. We have

‖∇1φv(v, x)−∇1φv(v
′, x′)‖ ≤ ‖∇2

11G(z∗(x), x)v −∇2
11G(z∗(x′), x′)v′‖

+ ‖∇1F (z∗(x), x)−∇1F (z∗(x′), x′)‖

For the first term,

‖∇2
11G(z∗(x), x)v −∇2

11G(z∗(x′), x′)v′‖ ≤ ‖∇2
11G(z∗(x), x)(v − v′)‖

+ ‖(∇2
11G(z∗(x), x)−∇2

11G(z∗(x′), x′))v′‖
+ ‖∇2

11G(z∗(x′), x′)(v − v′)‖
≤ 2LG1 ‖v − v′‖+ LG2 (L∗ + 1)‖v′‖‖x− x′‖
≤ [2LG1 + LG2 (L∗ + 1)R]‖(v, x)− (v′, x′)‖

For the second terms, we use the smoothness of F and the Lipschitz continuity of z∗ (Lemma A.1):

‖∇1F (z∗(x), x)−∇1F (z∗(x′), x′)‖ ≤ LF1 ‖(z∗(x), x)− (z∗(x′), x′)‖
≤ LF1 (‖z∗(x)− z∗(x′)‖+ ‖x− x′‖)
≤ LF1 (L∗ + 1)‖x− x′‖
≤ LF1 (L∗ + 1)‖(x, v)− (x′, v′)‖ .

As a consequence
‖∇1φv(v, x)−∇1φv(v

′, x′)‖ ≤ Λ1‖(v, x)− (v′, x′)‖ (23)

with
Λ1 = LF1 (L∗ + 1) + 2LG1 + LG2 (L∗ + 1)R . (24)

To prove the Lipschitz continuity of ∇2φv, we remark that ∇3
111G, ∇3

211G are Lipschitz and bounded
by assumption. (v 7→ v) is Lipschitz and bounded on Γ. Also by Lemma A.1, z∗ and v∗ are Lipschitz and
bounded. Finally, dz∗ is bounded (Lemma A.1) and Lipschitz according to Chen et al. [2021][Lemma
9]. As a consequence, ∇2φv is Λ2-Lpischitz for some constant Λ2 > 0. Hence, ∇φv is Λv-Lipschitz
continuous with Λv = Λ1 + Λ2.

Lemma A.5. Let t > 0. For k ∈ [q − 1], we have

0 ≤ −
〈

1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉
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Proof. The function ιΓ beging convex (since Γ is convex), let us consider its sub-differential

∂ιγ(v) = {η ∈ Rp,∀v′ ∈ Rp, ιΓ(v′) ≥ ιΓ(v) + 〈η, v′ − v〉}

By definition

vt,k+1 = arg min
v

(ιΓ(v) +
1

2ρ
‖v − (vt,k − ρDt,k

v )‖2) .

Using Fermat’s rule, we get

−1

ρ
(vt,k+1 − vt,k)−Dt,k

v ∈ ∂ιΓ(vt,k+1) .

We can use the definition of the sub-differential with η = − 1
ρ (vt,k+1 − vt,k)−Dt,k

v to get

ιΓ(vt,k+1)︸ ︷︷ ︸
=0

≤ ιΓ(vt,k)︸ ︷︷ ︸
=0

−
〈

1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉

.

We can now turn to the proof of Lemma 3.4.

Proof. The smoothness of φv provides us the following upper bound

φv(v
t,k+1, xt,k+1) ≤ φv(vt,k, xt,k) + 〈ΠΓ(vt,k − ρDt,k

v )− vt,k, Dv(z
∗(xt,k), vt,k, xt,k)〉 (25)

+
Λv
2
ρ2‖ΠΓ(vt,k − ρDt,k

v )− vt,k‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Let us denote ∆t,k
Π = ΠΓ(vt,k − ρDt,k

v )−ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k)). Adding and subtracting

〈ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k)− vt,k, Dv(z

∗(xt,k), vt,k, xt,k)〉

+
Λv
2
‖ΠΓ(vt,k − ρDv(z

∗(xt,k), vt,k, xt,k)− vt,k‖2

yields

φv(v
t,k+1, xt,k+1) ≤ φv(vt,k, xt,k) + 〈∆t,k

Π , Dv(z
∗(xt,k), vt,k, xt,k)〉 (26)

+
Λv
2
‖ΠΓ(vt,k − ρDv(z

∗(xt), vt,k, xt,k))− vt,k‖2

+ 〈ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k, Dv(z

∗(xt,k), vt,k, xt,k)〉

+
Λv
2
‖∆t,k

Π ‖
2 + Λv〈∆t,k

Π ,ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k〉

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Taking ρ ≤ 1
Γ v

gives

φv(v
t,k+1, xt,k+1) ≤ φv(vt,k, xt,k) + 〈∆t,k

Π , Dv(z
∗(xt,k), vt,k, xt,k)〉 (27)

+
1

2ρ
‖ΠΓ(vt,k − ρDv(z

∗(xt), vt,k, xt,k))− vt,k‖2

+ 〈ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k, Dv(z

∗(xt,k), vt,k, xt,k)〉

+
Λv
2
‖∆t,k

Π ‖
2 + Λv〈∆t,k

Π ,ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k〉

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .
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Let ιΓ the indicator function of the convex set Γ. Similarly to Karimi et al. [2016, Equation 13] we
define for any α > 0 and v ∈ Rp

DιΓ(v, x, α) = −2α min
v′∈Rp

[
〈∇1φv(v, x), v′ − v〉+

α

2
‖v′ − v‖2 + ιΓ(v′)− ιΓ(v)

]
.

Hence, for v ∈ Γ and x ∈ Rd, we have

−ρ
2
DιΓ

(
v, x,

1

ρ

)
= 〈ΠΓ(v − ρDv(z

∗(x), v, x))− v,Dv(z
∗(x), v, x)〉

+
1

2ρ
‖ΠΓ(v − ρDv(z

∗(x), v, x))− v‖2 .

Therefore, Equation (27) can be written as

φv(v
t,k+1, xt,k+1) ≤ φv(vt,k, xt,k)− ρ

2
DιΓ

(
vt,k, xt,k,

1

ρ

)
+ 〈∆t,k

Π , Dv(z
∗(xt,k), vt,k, xt,k)〉

+
Λv
2
‖∆t,k

Π ‖
2 + Λv〈∆t,k

Π ,ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k〉

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

By strong convexity of φv with respect top v and smoothness, we haveDιΓ(vt,k, xt,k,Λv) ≥ 2µGφv(vt,k, xt,k).
According to Karimi et al. [2016, Lemma 1], DιΓ(vt,k, xt,k, •) is an increasing function. As a consequence,

since Λv ≤ 1
ρ , we have DιΓ

(
vt,k, xt,k, 1

ρ

)
≥ 2µGφv(v

t,k, xt,k). This leads to

φv(v
t,k+1, xt,k+1) ≤ (1− ρµG)φv(v

t,k, xt,k) + 〈∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)〉 (28)

+
Λv
2
‖∆t,k

Π ‖
2 + Λv〈∆t,k

Π ,ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k〉

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

The non-expansiveness of ΠΓ yields

‖∆t,k
Π ‖ ≤ ρ‖D

t,k
v −Dv(z

∗(xt,k), vt,k, xt,k)‖ (29)

and

‖ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k)− vt,k︸︷︷︸

∈Γ

‖ = ‖ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))−ΠΓ(vt,k)‖

≤ ρ‖Dv(z
∗(xt,k), vt,k, xt,k)‖ . (30)

Moreover, using Equation (29) and Young Inequality, we have for any c > 0

〈∆t,k
Π , Dv(z

∗(xt,k), vt,k, xt,k)〉 ≤ c

2
‖∆Π‖2 +

1

2c
‖Dv(z

∗(xt,k), vt,k, xtk,)‖2

≤ cρ2

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

+
1

2c
‖Dv(z

∗(xt,k), vt,k, xtk,)−Dv(z
∗(xt,k), v∗(xt,k), xtk,)︸ ︷︷ ︸

=0

‖2

≤ cρ2

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2 (31)

+
LG1
µGc

φv(v
t,k, xt,k)
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Plugging Equation (31) into Equation (28) with c =
2LG1
µ2
Gρ

yields

φv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

2

)
φv(v

t,k, xt,k) +
LG1 ρ

µ2
G

‖Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k)‖2 (32)

+
Λv
2
‖∆t,k

Π ‖
2 + Λv〈∆t,k

Π ,ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k))− vt,k〉

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Using Equation (29), Equation (30) and Young Inequality for d > 0 yields

〈∆t,k
Π ,ΠΓ(vt,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k〉 ≤ d

2
‖∆t,k

Π ‖
2

+
1

2d
‖ΠΓ(vt,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k‖2

≤ dρ2

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2 (33)

+
ρ2

2d
‖Dv(z

∗(xt,k), vt,k, xt,k)‖2

≤ dρ2

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2 (34)

+
LG1 ρ

2

µGd
φv(v

t,k, xt,k) .

Plugging Equation (34) into Equation (32) with d =
4LG1 Λv)ρ

µ2
G

gives

φv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
φv(v

t,k, xt,k) (35)

+

[
LG1 ρ

µ2
G

+
2LG1 Λ2

vρ
3

µ2
G

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

+
Λv
2
‖∆t,k

Π ‖
2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Using once again (29), we get

φv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
φv(v

t,k, xt,k) (36)

+

[
LG1 ρ

µ2
G

+
2LG1 Λ2

vρ
3

µ2
G

+
Λvρ

2

2

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

By Lemma A.5, we have for any α > 0

0 ≤ −α
〈

1

ρ
(vt,k+1 − vt,k) +Dt,k

v , vt,k+1 − vt,k
〉

.
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By adding this to Equation (36), we get

φv(v
t,k+1, xt,k+1) ≤

(
1− ρµG

4

)
φv(v

t,k, xt,k) (37)

− α

ρ
‖vt,k+1 − vt,k‖2 − α〈Dt,k

v , vt,k+1 − vt,k〉

+

[
LG1 ρ

µ2
G

+
2LG1 Λ2

vρ
3

µ2
G

+
Λvρ

2

2

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

We can control −
〈
Dt,k
v , vt,k+1 − vt,k

〉
by Cauchy-Schwarz and Young for some c, d, e, f > 0

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
= −

〈
Dv(z

∗(xt,k), vt,k, xt,k),ΠΓ(vt,k − ρDv(z
∗(xt,k), vt,k, xt,k)− vt,k

〉
−
〈
Dv(z

∗(xt,k), vt,k, xt,k),∆t,k
Π

〉
−
〈
Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k),ΠΓ(vt,k − ρDv(z
∗(x)))− vt,k

〉
−
〈
Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k),∆t,k
Π

〉
≤ c

2
‖Dv(z

∗(xt,k), vt,k, xt,k)‖2

+
1

2c
‖ΠΓ(vt,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k‖2

+
d

2
‖Dv(z

∗(xt,k), vt,k, xt,k)‖2 +
1

2d
‖∆t,k

Π ‖
2

+
e

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

+
1

2e
‖ΠΓ(vt,k − ρDv(z

∗(xt,k), vt,k, xt,k))− vt,k‖2

+
f

2
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2 +

1

2f
‖∆t,k

Π ‖
2

≤
(
c+ d

2
+ ρ2

(
1

2c
+

1

2e

))
‖Dv(z

∗(xt,k), vt,k, xt,k)‖2

+

(
e+ f

2
+ ρ2

(
1

2d
+

1

2f

))
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

≤
(
c+ d

2
+ ρ2

(
1

2c
+

1

2e

))
2LG1
µG

φv(v
t,k, xt,k)

+

(
e+ f

2
+ ρ2

(
1

2d
+

1

2f

))
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

Let us take c = d = e = f = ρ. We get

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
≤ 4LG1

µG
ρφv(v

t,k, xt,k) + 2ρ‖Dt,k
v −Dv(z

∗(xt,k), vt,k, xt,k)‖2 . (38)

Then, by plugging the last Inequality in Equation (37) and setting α =
µ2
G

32LG1
, we end up with
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φv(v
t,k+1, xt,k+1) ≤

(
1− µG

8
ρ
)
φv(v

t,k, xt,k)− α

ρ
‖vt,k+1 − vt,k‖2

+ ρ

[
LG1
µ2
G

+
µ2
G

16LG1
+

Λvρ

2
+

2LG1 Λ2
vρ

2

µ2
G

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2

≤
(

1− µG
8
ρ
)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρ‖Gt,kv ‖2

+ ρ

[
LG1
µ2
G

+
µ2
G

16LG1
+

Λvρ

2
+

2LG1 Λ2
vρ

2

µ2
G

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Since ρ ≤ Bv ,
[
LG1
µ2
G

+
µ2
G

16LG1

]
min

(
2

Λv
, µG√

2LG1 Λv

)
yields

φv(v
t,k+1, xt,k+1) ≤

(
1− µG

8
ρ
)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρ‖Gt,kv ‖2

+ 3ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
‖Dt,k

v −Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2

≤
(

1− µG
8
ρ
)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρ‖Gt,kv ‖2 (39)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
‖Dt,k

v −Dv(u
t,k)‖2

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
‖Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)‖2

− γ〈Dt,k
x ,∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2‖Dt,k

x ‖2 .

Tacking the expectation conditionally to the past iterates yields

Et,k[φv(v
t,k+1, xt,k+1)] ≤

(
1− µG

8
ρ
)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2] (40)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[‖Dt,k

v −Dv(u
t,k)‖2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[‖Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)‖2]

− γ〈Et,k[Dt,k
x ],∇2φv(v

t,k, xt,k)〉+
Λv
2
γ2Et,k[‖Dt,k

x ‖2] .

From Young inequality, we have for any c > 0

〈Et,k[Dt,k
x ],∇2φv(v

t,k, xt,k)〉 ≤ c−1‖Et,k[Dt,k
x ]‖2 + c‖∇2φv(v

t,k, xt,k)‖2 . (41)

Moreover, using the Lipschitz continuity of z∗, of ∇2
11G and ∇F and the fact that v and v∗ are

bounded, we have

‖∇2φv(v, x)‖ ≤ ‖dz ∗ (x)‖
[∥∥∥∥1

2
(∇3

111G(z∗(x), x)|v)v − 1

2
(∇3

111G(z∗(x), x)|v∗(x))v∗(x)

∥∥∥∥
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+‖∇2
11F (z∗(x), x)v −∇2

11F (z∗(x), x)v∗(x)‖
]

+ ‖1

2
(∇3

211G(z∗(x), x)|v)v − 1

2
(∇3

211G(z∗(x), x)|v∗(x))v∗(x)‖

+ ‖∇2
21F (z∗(x), x)v −∇2

21F (z∗(x), x)v∗(x)‖

≤ L∗
[∥∥∥∥1

2
(∇3

111G(z∗(x), x)|v − v∗(x))v − 1

2
(∇3

111G(z∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥
+LF2 ‖v − v∗(x)‖

]
+

∥∥∥∥1

2
(∇3

211G(z∗(x), x)|v − v∗(x))v − 1

2
(∇3

211G(z∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥
+ LF2 ‖v − v∗(x)‖

≤ L∗
[∥∥∥∥1

2
(∇3

111G(z∗(x), x)|v − v∗(x))v

∥∥∥∥
+

∥∥∥∥1

2
(∇3

111G(z∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥+ LF2 ‖v − v∗(x)‖
]

+

∥∥∥∥1

2
(∇3

211G(z∗(x), x)|v − v∗(x))v

∥∥∥∥
+

∥∥∥∥1

2
(∇3

211G(z∗(x), x)|v∗(x))(v − v∗(x))

∥∥∥∥+ LF2 ‖v − v∗(x)‖

≤ L∗
[
LG2
2

(‖v‖+ ‖v∗(x)‖)‖v − v∗(x))‖+ LF2 ‖v − v∗(x)‖
]

+
LG2
2

(‖v‖+ ‖v∗(x)‖)‖v − v∗(x))‖+ LF2 ‖v − v∗(x)‖

≤ (L∗ + 1)
[
LG2 R+ LF2

]
‖v − v∗(x)‖ .

On the other hand, we have by strong convexity

‖v − v∗(x)‖2 ≤ 2

µG
φv(v, x) .

As a consequence, we have

‖∇2φv(v
t,k, xt,k)‖2 ≤ L′′φv(vt,k, xt,k) (42)

with L′′ =
2(L∗+1)2[LG2 R+LF2 ]

2

µG
.

Plugging Inequalities (41) and (42) into (40) yields

Et,k[φv(v
t,k+1, xt,k+1)] ≤

(
1− µG

8
ρ+ cL′′γ

)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[‖Dt,k

v −Dv(u
t,k)‖2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[‖Dv(u

t,k)−Dv(z
∗(xt,k), vt,k, xt,k)‖2]

+
γ

c
‖Et,k[Dt,k

x ]‖2 +
Λv
2
γ2Et,k[‖Dt,k

x ‖2] .
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The Lipschitz continuity of ∇2
11G and ∇1F and the boundedness of v give us

‖Dv(u
t,k)−Dv(z

∗(xt,k), vt,k, xt,k)‖2 ≤
(
‖∇2

11G(zt,k, xt,k)vt,k −∇2
11G(z∗(xt,k), xt,k)vt,k‖

+‖∇1F (zt,k, xt,k)−∇1F (z∗(xt,k), xt,k)‖
)2

≤ (LG2 R+ LF1 )2‖zt,k − z∗(xt,k)‖2

≤ 2(LG2 R+ LF1 )2

µG
φz(z

t,k, xt,k) .

As a consequence

Et,k[φv(v
t,k+1, xt,k+1)] ≤

(
1− µG

8
ρ+ cL′′γ

)
φv(v

t,k, xt,k)− µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2] (43)

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
Et,k[‖Dt,k

v −Dv(u
t,k)‖2]

+ 6ρ

[
LG1
µ2
G

+
µ2
G

16LG1

]
2(LG2 R+ LF1 )2

µG
φz(z

t,k, xt,k)

+
γ

c
‖Et,k[Dt,k

x ]‖2 +
Λv
2
γ2Et,k[‖Dt,k

x ‖2] .

From Lemma A.2, we have

E[‖Dt,k
v −Dv(u

t,k)‖2] ≤ 4ρ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
z ‖2] + 4ρ2(LG1 )2

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
x ‖2]

Taking the total expectation and plugging the previous inequality in Equation (43) yields

φt,k+1
v ≤

(
1− µG

8
ρ+ cL′′γ

)
φt,kv −

µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2]

+ 24ρ3
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
z ‖2]

+ 24ρ3(LG1 )2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 24ργ2
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
x ‖2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )2

µG
ρφt,kz

+
γ

c
E[‖[Et,kDt,k

x ]‖2] +
Λv
2
γ2E[‖Dt,k

x ‖2] .
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Taking c = µGρ
16L′′γ yields

φt,k+1
v ≤

(
1− µG

16
ρ
)
φt,kv −

µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2]

+ 24ρ3
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
z ‖2]

+ 24ρ3(LG1 )2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 24ργ2
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
x ‖2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )2

µG
ρφt,kz

+
16L′′

µG

γ2

ρ
E[‖[Et,kDt,k

x ]‖2] +
Λv
2
γ2E[‖Dt,k

x ‖2] .

Combining Equation (21) and Lemma A.2 yields

φt,k+1
v ≤

(
1− µG

16
ρ
)
φt,kv −

µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2]

+ 8ρ
(
(LG2 R)2 + (LF1 )2

) [
3

(
LG1
µ2
G

+
µ2
G

16LG1

)
ρ2 +

8L′′

µG
γ2

] k∑
r=1

E[‖Dt,r−1
z ‖2]

+ 8ρ(LG1 )2

[
3

(
LG1
µ2
G

+
µ2
G

16LG1

)
ρ2 +

8L′′

µG
γ2

] k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 8γ2
(
(LG2 R)2 + (LF1 )2

) [
3

(
LG1
µ2
G

+
µ2
G

16LG1

)
γ +

8L′′

µG

γ2

ρ

] k∑
r=1

E[‖Dt,r−1
x ‖2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )2

µG
ρφt,kz

+
16L′′

µG

γ2

ρ
E[‖Dx(utk,)‖2] +

Λv
2
γ2E[‖Dt,k

x ‖2] .
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By assumption, γ ≤ Cvρ with Cv =

√
µG
8L′′

(
LG1
µ2
G

+
µ2
G

16LG1

)
, therefore

φt,k+1
v ≤

(
1− µG

16
ρ
)
φt,kv −

µ2
G

32LG1
ρEt,k[‖Gt,kv ‖2]

+ 32ρ3
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
z ‖2]

+ 32ρ3(LG1 )2

(
LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 32γ2ρ
(
(LG2 R)2 + (LF1 )2

)(LG1
µ2
G

+
µ2
G

16LG1

) k∑
r=1

E[‖Dt,r−1
x ‖2]

+

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+ LF1 )2

µG
ρφt,kz

+
16L′′

µG

γ2

ρ
E[‖Dx(utk,)‖2] +

Λv
2
γ2E[‖Dt,k

x ‖2] .

We get finally

φt,k+1
v ≤

(
1− ρµG

16

)
φt,kv − β̃vvρV tv + ρ3βvzVt,kz + 2ρ3βvvVt,kv + γ2ρβvxVt,kx

+ ραvzφ
t,k
z +

Λv
2
γ2E[‖Dt,k

x ‖2] +
γ2

ρ
βvxE[‖Dx(ut,k)‖2]

with βvz = βvx = 32
(
(LG2 R)2 + (LF1 )2

) (LG1
µ2
G

+
µ2
G

16LG1

)
, βvv = (LG1 )2

(
LG1
µ2
G

+
µ2
G

16LG1

)
, βvx = 16L′′

µG
,

β̃vv =
µ2
G

32LG1
and αvz =

[
LG1
µ2
G

+
µ2
G

16LG1

]
12(LG2 R+LF1 )2

µG
.

A.7 Proof of Lemma 3.5

Proof. The smoothness of h (Proposition 2.3) gives us

h(xt,k+1) ≤ h(xt,k)− γ〈∇h(xt,k), Dt,k
x 〉+ γ2L

h

2
‖Dt,k

x ‖2 .

Then, we use the identity 〈a, b〉 = 1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2) to get

h(xt,k+1) ≤ h(xt,k)− γ

2
‖∇h(xt,k)‖2 − γ

2
‖Dt,k

x ‖2 +
γ

2
‖∇h(xt,k)−Dt,k

x ‖2 + γ2L
h

2
‖Dt,k

x ‖2

≤ h(xt,k)− γ

2
‖∇h(xt,k)‖2 − γ

2
‖Dt,k

x ‖2 + γ‖∇h(xt,k)−Dx(ut,k)‖2

+ γ‖Dx(ut,k)−Dt,k
x ‖2 + γ2L

h

2
‖Dt,k

x ‖2 .

Then taking the expectation gives and using Proposition 2.5 yields

ht,k+1 ≤ ht,k − γ

2
gt,k + γE[‖∇h(xt,k)−Dx(ut,k)‖2]

+ γE[‖Dx(ut,k)−Dt,k
x ‖2]− γ

2

(
1− Lhγ

)
E[‖Dt,k

x ‖2]

≤ ht,k − γ

2
gt,k + γL2

x(E[‖zt,k − z∗(xt,k)‖2] + E[‖vt,k − v∗(xt,k)‖2])

+ γE[‖Dx(ut,k)−Dt,k
x ‖2]− γ

2

(
1− Lhγ

)
E[‖Dt,k

x ‖2] .
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The µG-strong convexity ofG( . , x) ensures that ‖z−z∗(x)‖2 ≤ 2
µG
φz(z, x) and ‖v − v∗(x)‖2 ≤ 2

µG
φv(v, x).

As a consequence

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(φt,kz + φt,kv ) + γE[‖Dx(zt,k, vt,k, xt,k)−Dt,k

x ‖2]

− γ

2

(
1− Lhγ

)
E[‖Dt,k

x ‖2] .

From Lemma A.2, we have

E[‖Dt,k
x −Dx(ut,k)‖2] ≤ 4ρ2

(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
z ‖2] + 4ρ2(LG1 )2

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ2
(
(LG2 R)2 + (LF1 )2

) k∑
r=1

E[‖Dt,r−1
x ‖2] .

As a consequence

ht,k+1 ≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(φt,kz + φt,kv )

+ 4γρ2
(
(LG2 R)2 + 2(LF1 )2

) k∑
r=1

E[‖Dt,r−1
z ‖2] + 4γρ2(LG1 )2

k∑
r=1

E[‖Gt,r−1
v ‖2]

+ 4γ3
(
(LG2 R)2 + 2(LF1 )2

) k∑
r=1

E[‖Dt,r−1
x ‖2]− γ

2

(
1− Lhγ

)
E[‖Dt,k

x ‖2]

≤ ht,k − γ

2
gt,k + γ

2L2
x

µG
(φt,kz + φt,kv ) + γρ2βhzVt,kz + γρ2βhvVt,kv

+ γ3βhxVt,kx −
γ

2

(
1− Lhγ

)
E[‖Dt,k

x ‖2]

with βhz = 4
(
(LG2 R)2 + 2(LF1 )2

)
, βhv = 4(LG1 )2 and βhx = 4

(
(LG2 R)2 + 2(LF1 )2

)
.

A.8 Proof of Theorem 1 and Corollary 3.6

The constants involved in Theorem 1 are

ψz =
1

16βzx
, ψv = min

[
1

16βvx
,
αzvµG

12
ψz

]

ρ = min

[√
ψz

12q(ψzβzz + ψvβzv)
,

√
1

6Λz
,

√
1

12qβvv
, sqrt

β̃vv
3Λv

, Bv

]
,

ξ = min

[
Cz, Cv, 1,

ψvµ
2
G

16L2
x

,

√
µG

8βvx
,
ψzµ

2
G

24L2
x

,

√
µG

12βzx

]
,

γ = min

√ 1

12q(ψzβzx + ψvβvx)
,

√
1

12qβhx
,

1

6(Lh + ψzΛz + ψvΛv)
,

√
ψvβ̃vv

6q(βhv + ψzβvz)
,

√
ψz

12qβhz

 .
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Proof. The proof is a classical Lyapunov analysis. Consider the following Lyapunov function Lt,k =
ht,k + ψzφ

t,k
z + ψvφ

t,k
v for some positive constants ψz and ψv. We use use Lemmas 3.3 to 3.5 to upper

bound Lt,k − Lt,k+1.
We have

Lt,k+1 − Lt,k ≤ −γ
2
gt,k + (ψzβzx + ψvβvx)

γ2

ρ
E[‖Dx(ut,k)‖2] (44)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ

)
φt,kz +

(
2L2

x

µG
γ − ψv

µG
16
ρ

)
φt,kv

+

(
ψz

Λz
2
ρ2 − ψz

1

2
ρ

)
V t,kz − ψvβ̃vvρV t,kv

+

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2

)
V t,kx

+
(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)
Vt,kz

+
(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)
Vt,kv

+
(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxρ

3
)
Vt,kx .

We bound E[‖Dx(ut,k)‖2] crudely by using Proposition 2.5

E[‖Dx(ut,k)‖2] ≤ 2E[‖∇h(xt,k)‖2] + 2E[‖Dx(ut,k)−∇h(xt,k)‖2]

≤ 2gt,k + 2(E[‖zt,k − z∗(xt,k)‖2] + E[‖vt,k − v∗(xt,k)‖2])

≤ 2gt,k +
4

µG
(φt,kz + φt,kv ) .

Summing in (44) for k = 0, . . . , q − 1 yields

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k (45)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ

) q−1∑
k=0

φt,kz

+

(
2L2

x

µG
γ − ψv

µG
16
ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

φt,kv − ψzβ̃vvρ
q−1∑
k=0

V t,kz

+

(
ψv

Λv
2
ρ2 − ψv

1

2
ρ

) q−1∑
k=0

V t,kv +

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2

) q−1∑
k=0

V t,kx

+
(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
) q−1∑
k=0

Vt,kz

+
(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
) q−1∑
k=0

Vt,kv

+
(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxρ

3
) q−1∑
k=0

Vt,kx .
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Since we have

q−1∑
k=0

Vt,k• =

q−1∑
k=0

k∑
r=1

E[‖Dt,r−1
• ‖2] =

q−1∑
r=1

q−1∑
k=r

E[‖Dt,r−1
• ‖2]

=

q−1∑
r=1

(q − r)E[‖Dt,r−1
• ‖2] ≤ q

q−1∑
k=1

E[‖Dt,k−1
• ‖2]

we get

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k (46)

+

(
2L2

x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ

) q−1∑
k=0

φt,kz

+

(
2L2

x

µG
γ − ψv

µG
2
ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

φt,kv

+

(
ψz

Λz
2
ρ2 − ψz

1

2
ρ+ q

(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)) q−1∑

k=0

V t,kz

+

(
ψv

Λv
2
ρ2 − ψvβ̃vvρ+ q

(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)) q−1∑

k=0

V t,kv

+

(
Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2
+ q

(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxργ

2
)) q−1∑

k=0

V t,kx .

Since ρ ≤ ρ ≤ min
[√

ψz
12q(ψzβzz+ψvβzv) ,

√
1

6Λz

]
and γ ≤ γ ≤

√
ψz

12qβhz
, we have

ψz
Λz
2
ρ2 − ψz

1

2
ρ+ q

(
βhzργ

2 + ψzβzzρ
3 + ψvβzvρ

3
)
< 0 . (47)

Moreover, the conditions ρ ≤ ρ ≤ min

[√
β̃vv

6qβvv
,
√

β̃vv
3Λv

]
and γ ≤ γ ≤

√
ψvβ̃vv

6q(βhv+ψzβvz) , ensure that

ψv
Λv
2
ρ2 − ψvβ̃vvρ+ q

(
βhvργ

2 + ψzβvzγ
2ρ+ ψvβvvρ

3
)
< 0 . (48)

The conditions ρ ≤ ρ ≤
√

1
12q(ψzβzx+ψvβvx) and γ ≤ γ ≤ min

[√
1

12q(ψzβzx+ψvβvx) ,
√

1
12qβhx

, 1
6(Lh+ψzΛz+ψvΛv)

]
yields

Lh

2
γ2 + ψz

Λz
2
γ2 + ψv

Λv
2
γ2 − γ

2
+ q

(
βhxγ

3 + ψzβzxγ
2ρ+ ψvβvxργ

2
)
< 0 . (49)

The condition γ ≤ ξρ ≤ min

[
ψvµ

2
G

16L2
x
,
√

µG
8βvx

]
ρ ensures

2L2
x

µG
γ − ψv

µG
2
ρ+ ψvβvx

γ2

ρ
≤ 0 (50)

By definition, we have ψv ≤ αzvµG
12 ψz and by assumptions γ ≤ ξρ ≤ min

[
ψzµ

2
G

24L2
x
,
√

µG
12βzx

]
ρ. As a

consequence

2L2
x

µG
γ − ψz

µG
2
ρ+ ψvαzvρ+ ψzβzx

γ2

ρ
< 0 . (51)
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Plugging Inequalities (47) to (51) into Equation (46) gives

Lt,q − Lt,0 ≤ −
(
γ

2
− 2ψzβzx

γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k .

Since ψz = ρ

16βzx
and ψv ≤ ρ

16βvx
and γ2

ρ ≤ ξ ≤ 1, we get

Lt,q − Lt,0︸ ︷︷ ︸
Lt+1,0−Lt,0

≤ −γ
4

q−1∑
k=0

gt,k .

Summing, telescoping and dividing by Tq gives

1

Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4

Tqγ

(
h0,0 − h∗ + ψzφ

0,0 + ψvφ
0,0]
)︸ ︷︷ ︸

Γ0

.

From Theorem 1 we deduce Corollary 3.6.

Proof. Let us take ρ = ρ(n+m)−
1
2 , γ = min(ξρ, γ) and q = n+m. Then Theorem 1 holds:

1

Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4

Tqγ
Γ0 .

with Γ0 = O(1). To get an ε-stationary solution, we set T ≥ 4
qγΓ0ε−1 ∨ 1 = O

(
1
qγε ∨ 1

)
. One iteration

has Θ(q) = Θ(n+m) oracle complexity. As a consequence, the sample complexity to get an ε-stationary

point is O
(

(n+m)
1
2 ε−1 ∨ (n+m)

)
.

B Lower bound for bilevel problems (proof of Theorem 2)

The proof of Theorem 2 is an adaptation of the proof of [Zhou and Gu, 2019, Theorem 4.7] from
single-level to bilevel problems. We build the outer function from the worst-case instance of [Zhou and
Gu, 2019, Theorem 4.7] and we add a bilevel component by using as inner function the function G
defined by G(z, x) = µG

2 ‖z − x‖
2. We start by introducing the different tools used in this proof.

B.1 Preliminary results

In what follows, we provide the building blocks of our worst-case instance. The proof uses the following
quadratic function presented by [Nesterov, 2018].

Definition B.1. Let d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. We define Q(.; ξ, d) : Rd → R by

Q(x; ξ, d) =
ξ

2
(x1 − 1)2 +

1

2

d−1∑
k=1

(xk+1 − xk)2 .

Proposition B.2 proposition comes directly from [Zhou and Gu, 2019, Proposition 3.5]. The
first part of the proposition gives us the regularity of Q. In the second part shows that a function
defined as Q(U × · ; ξ, d) +

∑q
p=1 g(〈up, · 〉) verifies the so-called ”zero-chain property” Carmon et al.

[2017b]: if Ux ∈ Span(u1, . . . , uk), then we gain a non zero coordinate by calling the gradient
∇ [Q (U × · ; ξ, d) +

∑q
p=1 g(〈up, · 〉)](x). In other words, that makes us progress in the problem

resolution.
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Proposition B.2. For d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. The following holds:

1. Q( · ; ξ, d) is convex and 4-smooth.

2. Let q ∈ N>0, U = [u1, . . . , ud]
> ∈ Rd×q such that UU> = I and for k ≤ d, U (≤k) = [u1, . . . , uk, 0, . . . , 0]> ∈

Rd×q. Let g : R → R differentiable such that g′(0) = 0. Then for any x ∈ Rq such that
Ux = U (≤k)x, then

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(〈up, · 〉)

]
(x) ∈ Span(u1, . . . , uk, uk+1) .

Proof. Let x ∈ Rq such that Ux = U (≤k)x. For 0 ≥ k ≤ d, we denote

Rk,d = {v ∈ Rd, vk+1 = · · · = vd = 0} .

Let us write Q(x; ξ, d) = 1
2x
>Ax+ b>x+ c with

A =



1 + ξ −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


∈ Rd×d ,

b = ξ(1, 0, . . . , 0)> and c = ξ
2 (1, 0, . . . , 0)>.

On the one hand it is known from [Nesterov, 2018, Lemma 2.5.1] that if v ∈ Rk,d,

∇Q(v; ξ, d) ∈ Rk+1,d

As a consequence,
∇Q(Ux; ξ, d) = ∇Q(U (≤k)x︸ ︷︷ ︸

∈Rk,d
; ξ, d) ∈ Rk+1,d

and
∇[Q(U × · ; ξ, d)](x) = U>∇Q(Ux; ξ, d) ∈ Span(u1, . . . , uk+1) .

On the other hand,

∇

[
d∑
p=1

g(〈up, · 〉)

]
(x) =

d∑
p=1

g′(〈up, x〉)up =

k∑
p=1

g′(〈up, x〉)up ∈ Span(u1, . . . , uk+1) .

Thus

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(〈up, · 〉)

]
(x) ∈ Span(u1, . . . , uk, uk+1) .

However, the function Q is convex. That is why we also use the function Γ introduced in Carmon
et al. [2017a]. As explained in Carmon et al. [2017a], this function is essential to lower bound the
gradient of our worst wase instance.

Definition B.3. Let d ∈ N>0. We define Γ( · ; d) : Rd+1 → R by

Γ(x; d) = 120

d∑
k=1

∫ xk

1

t2(t− 1)

1 + t2
dt .
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An important property of Γ shown in [Carmon et al., 2017a, Lemma 2] is the smoothness of the
function Γ.

Proposition B.4. There exists a constant c > 0 such that Γ( · ; d) is c-smooth.

Now we introduce the function fnc we use to build our worst-case instance. This function comes
from [Zhou and Gu, 2019, Definition 3.5]. It is the sum of the quadratic function defined by B.1 and
the non-convex component given by Definition B.3.

Definition B.5. For α > 0 and d ∈ N>0, fnc( · ;α, d) : Rd+1 → R is defined a

fnc(x;α, d) = Q(x;
√
α, d+ 1) + αΓ(x) .

The essential properties of fnc come from [Carmon et al., 2017a, Lemmas 2, 3, 4]. The first part
provides the regularity properties of fnc. The second part bounds the distance between fnc( · ;α, d)
and the optimal value of the function. The third part will be key to the overall proof. In words, it
states that as long x ∈ Rd+1 has its two last components equal to zero, the norm of the gradient of
fnc( · ;α, d) is higher than a constant controlled by α. As a consequence, if α is properly chosen, as
soon as xd = xd+1 = 0, we are ensured that ‖∇fnc(x;α, d)‖ ≥ ε.

Proposition B.6. For α ∈ [0 , 1], it holds

1. −αc � ∇2fnc � 4 + αc.

2. fnc(0;α, d)− infx fnc(x;α, d) ≤
√
α

2 + 10αd.

3. For x ∈ Rd+1 such that xd = xd+1 = 0, ‖∇fnc(x;α, d)‖ ≥ α
3
4

4 .

From now we denote
O(a, b) = {U ∈ Ra×b, UU> = Ia} .

The following Lemma adapted from Zhou and Gu [2019] is fundamental for our lower bound proof.

Lemma B.7. Let d,m ∈ N>0 and U ∈ O((d + 1)m, (d + 1)m). We denote U =

U
(1)

...
U (m)

 with

U (i) ∈ O(d + 1, (d + 1)m). Let {hj}j∈[m] with hj(x) = fnc(U
(j)x;α, d) and h = 1

m

∑m
j=1 hj. Let

x ∈ R(d+1)m and y(j) = U (j)x ∈ Rd+1. Let I = {j ∈ [m], y
(i)
d = y

(i)
d+1 = 0}. Then it holds

‖∇h(x)‖2 ≥ α
3
2 |I|

16m2
.
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Proof. We have

‖∇h(x)‖2 =

∥∥∥∥∥∥ 1

m

d∑
j=1

∇hj(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

m

m∑
j=1

(U (j))>∇fnc(U (j)x;α, d)

∥∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥∥
m∑
j=1

(U (j))>∇fnc(U (j)x;α, d)

∥∥∥∥∥∥
2

+
2

m2

m∑
j,l=1
j 6=l

∇fnc(U (j)x;α, d)>U (l)(U (j))>∇fnc(U (j)x;α, d)

=
1

m2

m∑
j=1

∥∥∥(U (j))>∇fnc(U (j)x;α, d)
∥∥∥2

where the last equality comes from the fact that for j 6= l, U (l)(U (j))> = 0 since U ∈ O ((d + 1)m, (d+
1)m). Now, using the third part of Proposition B.6, we get

‖∇h(x)‖2 ≥ 1

m2

∑
j∈I

∥∥∥(U (j))>∇fnc(U (j)x;α, d)
∥∥∥2

≥ 1

m2

∑
j∈I

∥∥∥∇fnc(U (j)x;α, d)
∥∥∥2

≥ α
3
2 |I|

16m2
.

B.2 Main proof

Now we are ready to prove Theorem 2.

Proof. We consider U ∈ O((T + 1)m, (T + 1)m) and we denote

U =

U
(1)

...
U (m)


with U (j) = (u

(j)
1 , . . . , u

(j)
T+1)> ∈ O(T + 1, (T + 1)m).

For j ∈ [m], we choose F j : R(T+1)m+(T+1)m → R defined by

F j(z, x) = fnc(U (j)z;α, T )

and we set F = 1
m

∑m
j=1 F j . We also define for i ∈ [n] Gi(z, x) = 1

2‖z − x‖2, G = 1
n

∑n
i=1Gi,

z∗(x) = arg minz G(z, x) and h(x) = F (z∗(x), x) = fnc(U (j)x;α, T ). By Proposition B.6, F j is 4 + αc
m

smooth, and Gi is 1-smooth and 1-strongly convex.
We have

h(0)− inf
x
h(x) ≤

√
α+ 10αT .
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We finally consider Fj(z, x) = λFF j(z/β, x/β), Gi(z, x) = λGGi(z/β, x/β). As a consequence, we
have z∗(x) = arg minG = z∗(x) and h(x) = F (z∗(x), x). We also consider a fixed indices sequence
(it, jt). We set

α = min
{

1,
m

c

}
, λF =

160mε

LF1 α
3/2

, β =
√

5λF /LF1 , λG = β2µG, T =
∆LF1

1760mε

√
α .

We can check that each Fj is LF1 -smooth, and eachGi is µG-strongly convex. Assuming ε ≤ ∆LF1 α/(1760m)
ensures that h(0)− infx h(x) ≤ ∆ (we can check that h(0) = λFh(0) and inf h = λF inf h).

Let us assume without loss of generality that the algorithm at initialization we have z0 = v0 = x0 = 0
and consider (zt, vt, xt) the output of an algorithm with the known sequence (it, jt).

Given our inner function and the fact that ∇2F (z, x) = 0 for any (z, x) ∈ R(m+1)d+(m+1)d, we have

zt+1 ∈ Span(z0 − x0, . . . , zt − xt) (52)

vt+1 ∈ Span(v0 +∇1Fj0(z0, x0), . . . , vt +∇1Fjt(z
t, xt)) (53)

xt+1 ∈ Span(v0, . . . , vt) . (54)

Since v0 = 0, we have by Equation (53) v1 ∈ Span(∇1Fj0(z0, x0)) and by induction

vt+1 ∈ Span(∇1Fj0(z0, x0), . . . ,∇1Fjt(z
t, xt)) .

Therefore, using Equation (54), we have

xt+1 ∈ Span(∇1Fj0(z0, x0), . . . ,∇1Fjt(z
t, xt)) .

Since z0 = 0, by Equation (52), z1 ∈ Span(x0) and by induction

zt+1 ∈ Span(x0, . . . , xt) .

As a consequence,

xt ∈ Span(∇1Fj0(Span(x0), x0), . . . ,∇1Fjt(Span((xs)s≤t), x
t)) .

Let us denote y(j,t) = U (j)xt. Since x0 = 0, y(j0,0) = 0 and by the second part of Proposition B.2,

x1 ∈ Span(u
(j0)
1 ).

Now we assume that for all s ≤ t we have

xs ∈ Span(u
(j0)
1 , . . . , u(j0)

s , . . . , u
(js−1)
1 , . . . , u(js−1)

s ) .

There exist scalars α1, . . . , αr, β1,1, β2,1, β2,2, . . . , βt,1, . . . , βt,t such that

xt+1 =

t∑
r=1

αr∇1Fjr

(
r∑
s=1

βr,sx
s, xr

)
.

Let Xr =
∑r
s=1 βr,sx

s. For r ∈ {1, . . . , t}, we have by induction hypothesis

Xr ∈ Span(u
(j0)
1 , . . . , u(j0)

r , . . . , u
(jr−1)
1 , . . . , u(jr−1)

r ) .

By orthogonality, we have

Span(u
(j0)
1 , . . . , u(j0)

r , . . . , u
(jr−1)
1 , . . . , u(jr−1)

r ) ⊥ Span(u
(jr)
r+1, . . . , u

(jr)
T+1) .

As a consequence

U (jr)Xr = (〈u(jr)
1 , Xr〉, . . . , 〈u(jr)

r , Xr〉, 0, . . . , 0) .
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We can use Proposition B.2 to say

∇1Fjr (Xr, xr) ∈ Span(u
(jr)
1 , . . . , u

(jr)
r+1) ⊂ Span(u

(j0)
1 , . . . , u(j0)

r , u
(j0)
r+1, . . . , u

(jr)
1 , . . . , u

(jr)
r+1) .

And we get finally

xt+1 ∈ Span(u
(j0)
1 , . . . , u

(j0)
t , u

(j0)
t+1, . . . , u

(jt)
1 , . . . , u

(jt)
t+1) .

By induction, for any t, we have

xt ∈ Span(u
(j0)
1 , . . . , u

(j0)
t , . . . , u

(jt)
1 , . . . , u

(jt)
t︸ ︷︷ ︸

at most mt vectors

)

and so
xt ⊥ Span((u

(j)
1 , . . . , u

(j)
T+1)j∈[m]\{j0,...,jt}, (u

(j)
t+1, . . . , u

(j)
T+1)j∈{j0,...,jt}) .

As a consequence, for t ≤ m
2 T , let I = {j, y(j,t)

T = y
(j,t)
T+1 = 0} with y(j,t) = U (j)xt. Since t ≤ m

2 T ,
we have |I| ≤ m

2 and by Theorem B.7, we have

‖∇h(xt)‖ ≥ ε .

If we define T ((xt)t, h) = inf{t ∈ N, ‖∇h(xt)‖2 ≤ ε}, we just showed that for the fixed sequence (it, jt),
we have

T ((xt)t, h) ≥ m

2
T = Ω(

√
mε−1) .

The right-hand side being independent from the sequence (it, jt), for t ≤ m
2 T , we have

E[‖∇h(xt)‖2] > ε

where the expectation is taken over the random choice of i0, . . . , it−1, j0, . . . , jt−1.

C Details on the experiments

We performed the experiments with the Python package Benchopt [Moreau et al., 2022]. For each
experiment, we use minibatches instead of single samples to estimate oracles because it is more efficient
in practice. We use a batch size of 64 for the stochastic inner and outer oracles.

C.1 Influence of the parameter q

We solve a regularization selection problem for an `2-regularized logistic regression problem. Here,
we assume that we have a regularization parameter per feature. We have ntrain = 49, 990 training
samples (dtrain

i , ytrain
i )i∈[ntrain] and nval = 91, 701 validation samples (dval

i , yval
i )i∈[ntrain] coming from the

IJCNN13 dataset. Mathematically, it boils down to solve Problem (1) with F and G given by

F (θ, λ) =
1

nval

nval∑
j=1

ϕ(yval
j 〈dval

j , θ〉)

G(θ, λ) =
1

ntrain

ntrain∑
i=1

ϕ(ytrain
i 〈dtrain

i , θ〉) +
1

2

p∑
k=1

eλkθ2
k

where ϕ is the logistic loss defined by ϕ(u) = log(1 + e−u). The inner and outer step sizes are set to
0.05.

31https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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C.2 Comparison with competitors on the datacleaning task

The datacleaning problem aims to train a multiclass classifier while having some training samples with
noisy labels. On the one hand we have training labelled samples (dtrain

i , ytrain
i )i∈[ntrain] with potentially

corrupted labels with probability pc (in the experiments pc = 0.5). On the other hand, we have a
validation set (dval

j , yval
j )j∈[nval] where all the samples are clean. The datacleaning problem consists in

learning a classifier on all these samples by giving less weight to corrupted labels. It can be cast as a
bilevel optimization problem like (1) where the function F and G are given by

F (θ, λ) =
1

nval

nval∑
j=1

`(θdval
j , yval

j )

G(θ, λ) =
1

ntrain

ntrain∑
i=1

σ(λi)`(θd
train
i , ytrain

i ) + Cr‖θ‖2

where θ ∈ RC×p, λ ∈ Rntrain , ` is the cross entropy loss and σ is the sigmoid function defined by
σ(λ) = 1

1+e−λ ∈ (0 , 1].
We run this experiment on the MNIST dataset. We used 20, 000 training samples, 5, 000 validation

samples and 10, 000 test samples. The parameter Cr is set to 0.2 after a manual search to get the best
performance. For the tuning of the step sizes of each method, we set (ρt, γt) = (αt−a, βt−b) where
(a, b) are the rate provided by the analysis of each method, α is chosen among 4 values between 10−3
and 100 spaced on a logarithmic scale. The scaling parameter β is set to β

r where r is chosen among 6
values between 10−5 and 100 spaced on a logarithmic scale. The size of the inner loop q is parametrized
as q = an+m

b where b = 64 is the batch size and a is chosen in {2−1, 23, 26, 29}.
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