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Abstract

This paper presents and defines a new design optimization method for kinematic redun-
dant robot manipulators based on their applications. Kinematic redundant manipulators
can reach a pose with an infinite number of postures. So, identifying the best robot design
and configuration for a set of desired tasks is a highly complex non-linear problem. This
approach employs a task priority control algorithm to perform a task oriented robot design
optimization. The design parameters are replaced by controllable prismatic or revolute vir-
tual joints and controlled by the algorithm to accomplish the desired tasks. Therefore, this
new method finds an optimal robot design for a set of tasks taking advantage of the robot
kinematic redundancy. This method is evaluated on a highly kinematic redundant manipu-
lator, which tracks a set of paths with its end-effector while maintaining good kinetostatic
performance.
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1. Introduction

Redundant manipulators are increasingly being used in many applications thanks to
their ability to perform secondary tasks, which improves the robot performance [1]. This
paper focuses on the design optimization of such robots. When building a new robot, an
important step is optimizing its design with respect to relevant performance indices. Angeles,
in [2], proposed an approach to design isotropic redundant manipulators by minimizing the
condition number of the robot kinematic Jacobian matrix. However, a complete way to
optimize redundant robots is to consider global indices. In [1], the authors optimized a

∗Corresponding author
Email addresses: aginnante@nimbl-bot.com (Angelica Ginnante), Enrico.Simetti@unige.it
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redundant serial manipulator using the global conditioning index. The design can also
be optimized through both kinematic and dynamic global indices to obtain a robot with a
high global dexterity through its workspace, ensuring high dynamic performance and energy
efficiency [3].

It is important to consider the main robot tasks during the robot design optimization
process. An example limited to non-redundant manipulators is presented in [4]. In [5], the
authors worked with re-configurable modular manipulator systems to address the problem of
task-based robot design. The work presented in [6] explored a method to optimize the design
parameters and the desired path together, considering the desired task with interesting
results.

A critical issue in these task-oriented robot optimization processes is the complexity
caused by the problem non-linearity. There are many ways to reduce the complexity, for
example, breaking down the problem into multiple easier steps [5]. In [7], the authors
adopted a particle swarm optimization algorithm to determine the design parameter values
of two collaborative robots. Other solutions employed a grid method [8] or a complex direct
search method [9]. However, none of these techniques benefits from the robot redundancy
to perform an optimization as a function of multiple tasks. In [10], the authors developed
a novel method for optimizing manipulator design using kinematic redundancy resolution.
The authors use a combination of kinematic redundancy resolution and a multi-objective op-
timization algorithm. Kinematic redundancy resolution involves adding additional degrees
of freedom in the place of the design parameters to optimize in the robot architecture. This
allows performing the same task with different robot configurations. Through the Jacobian
null-space projection, the optimization algorithm modifies the chosen design parameters to-
gether with the robot configuration solving the main task and some additional performance
optimization sub-tasks. This algorithm gave promising results being able to identify some
optimal parameter values. However, the algorithm was tested only on a two degrees of free-
dom non-redundant robot to which other two degrees of freedom were added for redundancy
resolution optimization.

This paper stands from the idea of [10] and extends the design optimization concept. As
in [10], virtual prismatic or revolute joints replace the design parameters to be optimized by
a kinematic redundancy resolution algorithm. The first main novelty consists in the chosen
kinematic control framework that can solve both equality and inequality tasks simultane-
ously. For example, an inequality task employed in the optimization process could be the
joint limit avoidance. The joint limit task can be applied on the both real and virtual joints
resulting fundamental for respecting the robot and design parameter constraints. Another
important feature of the kinematic control framework is the task activation/deactivation
ability to prevent over-constraining the system without causing discontinuities in the ve-
locity generation. The second significant difference between the two design algorithms lies
in the optimization methodology implementation. In [10], the arm design is optimized for
singular poses in its workspace. Here, the proposed optimization algorithm is based on
a trajectory planning task for machining application. The robot end-effector moves along
some trajectories that characterize a workspace area. The results are guidelines for building
optimal robots for that desired workspace area. The design optimization algorithm here
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presented is then applied on a 21 degrees of freedom manipulator tracing a set of squared
paths. The performance of the robot are improved using three kinetostatic indices.

This paper is outlined as follows. Section 2 describes the employed task-priority-based
kinematic control algorithm and illustrates the tasks used to optimize the manipulator kine-
tostatic performance. Section 3 explains the new method for design optimization of robotic
manipulators, which is the central topic. Section 4 discusses and compares the obtained
results. Section 5 presents the conclusions and future work.

2. Background and methods

In this section, the kinematic control algorithm used to perform the task-oriented design
optimization and the tasks employed to improve the robot kinetostatic performance are
described.

2.1. Kinematic control algorithm

In the literature, many kinematic control algorithms exist to deal with redundant robots
and exploit the redundancy to solve simultaneous tasks. In [11], the authors present a
hierarchical quadratic programming control algorithm used to find a solution to multiple
and antagonistic objectives for humanoid robot motion generation. Another interesting
multiple tasks control framework is presented in [12], called Set-Based Multi-Task Priority
Inverse Kinematics Framework. In [13], the so-called Saturation in the Null Space (SNS)
algorithm implements a predictive prioritizing technique for multiple tasks. However, these
task priority algorithms generate discontinuities in the null space projector when activating
or deactivating one or more tasks. Here, the new optimization method employs a task-
priority based control algorithm named Task Priority Inverse Kinematic (TPIK), presented
in [14, 15, 16, 17]. The distinctive aspect of this algorithm is its ability to activate and
deactivate control tasks without causing discontinuities in the control variables. In [17], the
TPIK algorithm was employed in the control of a highly redundant robot demonstrating its
ability of optimizing the robot configuration.

Some definitions are taken from [15] that are necessary for the introduction of the kine-
matic control algorithm. The vector q ∈ Rn is the joint variable vector, describing the
arm configuration, where n is the number of joints. The joint velocities are collected in the
vector q̇ ∈ Rn.

The control objectives are used to define the robot goals. A control objective corresponds
to a scalar variable x(q) computed as a function of the robot configuration vector q and
represents the state of one task. There exists two types of control objectives, equality and
inequality. Equality control objectives aim to satisfy the relationship x(q) = x0. Inequality
control objectives take the form x(q) ≤ xM , or x(q) ≥ xm, or both simultaneously, where xm
and xM are the lower and upper bounds of the variable x(q). A conceptual division can be
done to divide the control objectives into categories depending on their scope, simplifying
the identification of their priority levels. These categories are system safety objectives, e.g.
joint limits or obstacle avoidance, action oriented objectives, e.g. reaching a pose or following
a trajectory, and optimization objectives, e.g. minimizing the joint velocities or optimizing
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the kinetostatic performance indices. Then, each scalar control objective is associated with
a feedback reference rate ẋ. A closed-loop rate control law drives the actual variable x(q)
to the desired point x∗ with the associated feed-forward changing rate ẋ∗ and is defined as

ẋ = λ(x∗ − x(q)) + ẋ∗, (1)

where λ is a positive gain related to the target convergence rate. The actual derivative of x
is defined as a function of the joint velocity vector q̇ as follows:

ẋ(q, q̇) = Jtask(q)q̇ =
[
∂x
∂q1

. . . ∂x
∂qn

]
q̇, (2)

where q = [q1 . . . qn].
An activation function ai(x) ∈ [0, 1] is associated with each control objective x(q) indi-

cating whether or not the objective has to be taken into account at a specific time instant.
The tasks associated with inequality control objectives are relevant only when the scalar
variable x(q) is close or outside its validity region bounded by xm and xM . Thus, the activa-
tion function is equal to zero within the validity region of its associated inequality objective.
When it is near or out of the validity region, its value is set to one with a smooth transition.
For tasks associated with equality control objectives, the activation function is always equal
to ai(x) , 1 because these control objectives never become inactive.

A specific priority level is assigned to each task based on its objective importance. The
highest priority tasks are solved as first using the available robot degrees of freedom and
are not affected by the lower priority ones. Hence, lower priority tasks are handled with the
remaining robot degrees of freedom. When two or more tasks have the same priority level,
they are grouped into a multidimensional control task. A specific list of prioritized tasks is
called control action A . A control action A collects the vectors and matrices associated
with each priority level These vectors and matrices are defined in [17] as:

� ẋk = [ẋ1,k, ẋ2,k, . . . , ẋmk,k]
> is the vector containing all the reference rates of the

scalar control tasks, where mk is the number of scalar tasks for the priority level k.

� Jk is the Jacobian matrix associated with the kth task vector [ẋ1,k, . . . , ẋmk,k]
> with

respect to the joint velocity vector q̇.

� Ak = diag(a1,k, . . . , amk,k) is a diagonal matrix of the activation functions.

The TPIK algorithm solves a sequence of nested minimization problems to compute the
system velocity reference vector q̇ that meets all the priority requirements inside a given
control action A . The solution Sk to the kth priority level can be written as

Sk = arg R−min
q̇∈Sk−1

||Ak(ẋk − Jkq̇)||2, (3)

where Sk−1 is the manifold of all the previous priority level solutions. The notation R−min
highlights that each minimization is performed through specific regularized space projections
to implement priorities among the tasks defined in [14]. In addition to Eq. (3), other
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regularization costs are included. These regularization costs avoid discontinuities in the
system velocity vector due to kinematic and algorithmic singularities. In [14], the authors
fully describe these regularization costs that are not analyzed in this paper.

A significant advantage of the TPIK algorithm is the use of the activation functions
to handle inequality control objectives without over-constraining the system. Both equality
and inequality objectives require a certain amount of robot degree-of-freedom to be handled.
When an inequality task is inside its validity region, the activation function is set to zero to
avoid locking any degrees of freedom. So, safety tasks, like joint limits, can be placed at the
top of the hierarchy without over-constraining the optimization problem.

Finally, the TPIK algorithm adopts another continuous sigmoidal function ap(p) that
includes the previous and current executed actions and the time elapsed in the current step
to perform a smooth transition between two actions. This function ap(p) is employed in the
algorithm execution together with ai(x). More details are presented in [14].

2.2. Tasks for optimization of robot kinematic performance

The TPIK algorithm employs different kinetostatic performance tasks to optimize the
robot design, namely dexterity, manipulability and robot transmission ratio, to optimize the
robot design. Some of these tasks were used with the TPIK algorithm in [17]. To introduce
the definition of these indices, let us consider the kinematic Jacobian matrix Je related to
the end-effector velocity:

t =

[
ṗ
ω

]
= Je(q)q̇ =

[
Jl(q)
Ja(q)

]
q̇, (4)

where t =
[
ṗ>,ω>

]> ∈ R6 is the robot end-effector twist, with ṗ ∈ R3 and ω ∈ R3 the
linear and angular velocity vectors of the end-effector, respectively. Since the kinematic
Jacobian matrix Je contains non-homogeneous terms, namely linear and angular, it needs
to be weighted to compute the kinetostatic performance indices correctly. The weighting
of Je employs the characteristic length L that was introduced in [2] to solve the absence of
dimensional homogeneity in the kinematic Jacobian matrix entries and is computed in [18].
To weight Je, the revolute joint columns of the linear kinematic Jacobian matrix part are
divided by L. The weighted kinematic Jacobian matrix is written as Jw. The weighting is
a critical issue when analyzing the kinetostatic performance of Je [19, 20].

2.2.1. Manipulability

The manipulability is an index that measures the kinematic abilities of the robotic system
through its Jacobian matrix Jw [21]. The manipulability of a manipulator is defined as

µ =
√

det(JwJ>w), (5)

and amounts to the product of all the singular values of Jw. The higher the manipulability
value, the larger the manipulability hyper-ellipsoid and the better the kinematic perfor-
mance of the mechanism [22]. It should be noted that the manipulator reaches a kinematic
singularity when µ vanishes.
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The derivative of the manipulability as a function of the joint variables is explained
in [23] and used in [24]:

∂µ

∂qi
= µ trace

{
∂Jw
∂qi

J+
w

}
, (6)

where the matrix J+
w is the pseudo-inverse of the weighted kinematic Jacobian matrix.

Hence, the manipulability Jacobian matrix Jµ as a function of the joint variables is:

Jµ =
[
∂µ
∂q1

. . . ∂µ
∂qn

]
, (7)

where n, which represents the number of columns of Jw, is the dimension of joint space.

2.2.2. Dexterity

The dexterity η(Jw) characterizes the kinematic performance of a manipulator in a given
configuration and is defined as the inverse of the conditioning number κ(Jw) of its Jacobian
matrix [25]:

κ(Jw) = ||Jw|| ||J−1
w || and η(Jw) = 1/κ(Jw). (8)

The index η is bounded by 0 and 1. The higher η, the better the manipulator dexterity.
The manipulator reaches an isotropic posture when η = 1. The smaller η, the worse the
manipulator dexterity and the closer to a singularity. Moreover, η can be defined as the ratio
between the smallest and largest singular values of Jw indicating how close the manipulability
hyper-ellipsoid is to being a hyper-sphere [26].

In order to obtain an analytical expression of η, the Frobenius norm of Jw can be used [27]:

η(Jw) =
m√

trace(JwJ>w) trace[(JwJ>w)−1]
, (9)

where m, which represents the number of rows of Jw, is the dimension of the task space.
The following definitions are introduced to increase the readability of the equations:

γ1 ,
√

trace(JwJ>w) and γ2 ,
√

trace[(JwJ>w)−1], (10)

where , is the define operator. With these definition, it follows that

η(Jw) =
m

γ1(Jw) γ2(Jw)
. (11)

Then, the dexterity Jacobian matrix is determined to relate the velocity rate of η with
respect to the joint velocity vector q̇. The Frobenius formula used in Eq. (9) expresses η
as a function of joint position vector q in an analytical way allowing its derivation. So, the
derivative of Eq. (9) with respect to each joint position qi ∈ q is

∂η

∂qi
= −η

(
∂γ1

∂qi

1

γ1

+
1

γ2

∂γ2

∂qi

)
, (12)
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where
∂γ1

∂qi
=

1

γ1

trace

{
Jw
∂J>w
∂qi

}
and

∂γ2

∂qi
=

1

γ2

trace

{
− Jw

∂J>w
∂qi

(JwJ
>
w)2

}
. (13)

In conclusion, the dexterity Jacobian matrix Jη as a function of the joint variables is:

Jη =
[
∂η
∂q1

. . . ∂η
∂qn

]
, (14)

where n, which represents the number of columns of Jw, is the dimension of joint space.

2.2.3. Robot transmission ratio

The robot transmission ratio (RTR) ρ(Jw) quantifies the effectiveness of the actuator
force in producing a prescribed robot motion [20]. It corresponds to the angle between the
joint velocity q̇ and torque τ vectors in the joint space and is defined as

ρ =
|τ>q̇|
||τ || ||q̇||

= | cos∠(τ , q̇)|. (15)

This metric is bounded between 0 and 1. In case of kinetostatic redundancy, ρ can be
expressed in terms of the end-effector twist t and the wrench w applied to it, leading to

ρ =
|w>t|

||J>ww|| ||J+
wt||

, (16)

where t is the robot end-effector twist defined in Eq. (4) and w = [f>,m>]> is the wrench
that collects the forces f and moments m exerted by the environment on the end-effector.
To ensure that ρ is dimensionless, the linear part ṗ in t and the moment m in w are divided
by the characteristic length L.

The RTR Jacobian matrix is obtained upon differentiation of Eq. (16) with respect to
each joint position qi ∈ q:

∂ρ

∂qi
= ρ

w>Jw
∂J>w
∂qi

w||J+
wt||2 − ||J>ww||2t>J+>

w
∂J+

w

∂qi
t

(||J>ww|| ||J+
wt||)2

, (17)

where the values of the end-effector twist t and wrench w are known from the trajectory
planning. The derivative of the pseudo-inverse weighted kinematic Jacobian matrix ∂J+

w/∂qi
is defined in [28].

The RTR Jacobian matrix Jρ as a function of the joint variables is:

Jρ =
[
∂ρ
∂q1

. . . ∂ρ
∂qn

]
, (18)

where n = columns(Jw) is the dimension of joint space.
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3. Design and optimization method

This paper proposes a new optimization method intended for redundant robots. The
main idea is to optimize the design of a robot exploiting the same algorithm used during its
real-time control. In particular, the idea is to benefit from the fact that the TPIK algorithm
was specifically designed to control highly redundant robot manipulators. This section
presents the problem formulation and all the phases that compose this optimization method.
In the considered case study, the robot main application requires following a trajectory inside
a defined workspace while maintaining satisfactory kinetostatic performance. However, this
optimization methodology can be applied to any robot and task.

3.1. Problem formulation

The application considered is the tracking of a set of trajectories describing a workspace
area while maintaining high kinetostatic performance. So, two principal inputs are defined
and given to the optimization algorithm. The first one is a series of p trajectories with
desired orientations and velocities. These trajectories describe the workspace area where
the robot will work. The second input is the list of tasks that the robot should achieve
while tracking the trajectories. The main tasks are related to the end-effector pose and
velocity to track the desired trajectories. A safety task is added for joint limit compliance.
Three tasks based on dexterity, manipulability and RTR evolution are used to improve the
robot kinetostatic performance. While the dexterity and the manipulability are kinematic
performance indices, maximizing them forces the manipulability hyper-ellipsoid to be as big
as possible and close to a hyper-sphere. So, ideally, the robot will be able to move with
the same high velocity amplification factor in all directions while reducing actuator velocity
limits. For this reason, the optimization method uses both dexterity and manipulability in
design optimization. A final task based on the robot center of mass position is included.
This task aims to to maintain the robot center of mass position as close as possible to the
base and, as a result, to maximize the robot compactness.

Table 1 reports all the information about the tasks used during the optimization. The
dexterity, manipulability and RTR tasks have the same priority level since they have the
same relevance in the design optimization process. The optimization algorithm uses a convex
combination ε(η, ν, ρ) of the three kinetostatic performance indices to rate and compare the
kinetostatic performance of the obtained designs. It should be noted that η and ρ are
bounded between [0, 1] whereas µ is not bounded, [0,∞). So, it is necessary to bound µ
in the range [0, 1] before writing the convex combination. A new index called bounded
manipulability ν is defined as:

ν = 1− 1

1 + µ
. (19)

When µ = 0 then ν = 0, and when µ = ∞ then ν = 1. Now, η, ν and ρ are all bounded
between 0 and 1 and can then be used in a convex combination:

ε(η, ν, ρ) = λ1η + λ2ν + λ3ρ, (20)
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Table 1: Details about the task names, control objective types, and hierarchy levels. Symbol (E) represents
the equality control objective tasks and (I) the inequality ones. The last two columns list the task hierarchies
for actions A1 (Reach Pose) and A2 (Follow Trajectory). The symbol “/” means that a task is not present
in an action.

Hierarchy level
Task Category Type A1 A2

Joint Limit system safety I 1st 1st

End-Effector Pose action oriented E 2nd /
End-Effector Velocity action oriented E / 2nd

Dexterity optimization I 3rd 3rd

Manipulability optimization I 3rd 3rd

RTR optimization I 3rd 3rd

Center of Mass Position optimization I 4th 4th

where λ1, λ2 and λ3 are scaling factors. Since all the kinetostatic performance indices are
valid in the same range, the weighting factors are selected as λ1 = λ2 = λ3 = 1/3.

3.2. Preliminary phase

The optimization algorithm is divided into two main phases. The first is the candidate
generation phase, where several design candidates are generated. The second phase is the
candidate selection one, where the robot designs obtained from the optimization process
are evaluated and compared. Before these phases, some preliminary steps are necessary.
The robot design parameters ζ to be optimized need to be selected, for example, the link
length or the angular offset amplitude between two consecutive joints. Then, controllable
virtual joints are inserted in the robot architecture to substitute these design parameters.
A link is substituted by a prismatic joint to control its length, while an angular offset by
a revolute joint to modify its angle. So, the vector of the design parameters ζ is converted
in the virtual joint vector qv. During the candidate generation phase, the vector of the
joint variables contains both the position of the real and virtual joints q = [qr,qv] ∈ Rn,
with qr ∈ Rr, qv ∈ Rv and the robot degrees of freedom is n = r + v. The joint limit task
constrains the virtual joints qv value between the desired limits and so the resulting value
of the design parameters ζ is limited.

3.3. Candidate generation phase

This phase employs the robot with real and virtual joints q = [qr,qv]. The robot
configuration vector q is randomly initialized. From here, the robot is moved to track all
the p trajectories in a random order to ensure more general results. The robot reaches the
starting pose of the trajectories and tracks it entirely under the kinematic control of the
TPIK algorithm. When the robot finishes tracking a trajectory, it is moved to another
one until it follows all the p trajectories. At equidistant time steps on each trajectory,
the optimization algorithm saves the values of the virtual joints qv, which will be used as
design parameters ζ, and the ε value in that configuration. Once the robot has tracked
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Algorithm 1 Candidate Generation Phase

Require: Actions A1 = Reach Pose and A2 = Follow Path and trajectory vector p.

1: for r := 1→ number of repetitions do
2: Random initialization of q = [qr,qv].
3: Random shuffle of p.
4: for k := 1→ p do
5: Reach starting pose of p(k) using A1.
6: while Trajectory p(k) not finished do
7: Move to next step on p(k) using A2.
8: if ti = equidistant time step then
9: Save qv as ζti .

10: Save εti .
11: end if
12: end while
13: end for
14: Compute weighted average ζ for all [t0, . . . , tf].
15: end for

all the p trajectories, the optimization algorithm makes the weighted average ζ of ζ using
the values already stored at equidistant steps along each trajectory and the associated ε as
weighting factor:

ζ =
εt0ζt0 + · · ·+ εtfζtf

εt0 + · · ·+ εtf
, (21)

where [t0, . . . , tf] are the equidistant time steps in which the design parameter vector ζ was
saved. The average result ζ is also stored. The process described above is repeated several
times. At the end of this phase, the optimization algorithm has collected a list of candidate
designs described by ζ. Algorithm 1 sums up all the steps of the candidate generation phase.

During this phase, the optimization algorithm computes the kinetostatic performance
indices η, ν and ρ of the real robot architecture without virtual joints. To correctly compute
these metrics and their derivatives, the columns corresponding to the virtual joints qv in Jw
and its derivative ∂Jw/∂qi, ∀qi ∈ q are set to zero.

3.4. Candidate selection phase

The candidate selection phase tests the designs obtained from the candidate generation
phase to identify the best one. Here, the virtual joints are removed from the robot archi-
tecture vector and replaced by constant links and offsets whose value was stored inside ζ.
Hence, from now on q = [qr] and v = 0, and the total amount of degrees of freedom n = r.
The robot configuration vector q is randomly initialized for each optimized design. Again,
the robot is moved to the starting pose of one trajectory and tracks it entirely under the
kinematic control of the TPIK algorithm. When the robot finishes tracking one trajectory,
it is moved to the next one until it has followed all the p trajectories. At each step on each
trajectory, the optimization algorithm stores the value of ε for that robot configuration.
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Algorithm 2 Candidate Selection Phase

Require: Actions A1 = Reach Pose and A2 = Follow Path and trajectory vector p.

1: for d := 1→ number of optimized designs do
2: for r := 1→ number of repetitions do
3: Random initialization of q = [qr].
4: for k := 1→ p do
5: Reach starting pose of p(k) using A1.
6: while Trajectory p(k) not finished do
7: Move to next step on p(k) using A2.
8: Save εti at the time step ti.
9: end while

10: end for
11: Compute ε̂ = 0.5 εmin + 0.25 (ε+ εmax).
12: end for
13: end for
14: Select the best design as max(ε̂).

When the robot has tracked all the trajectories, the optimization algorithm computes ε̂ as

ε̂ , 0.5 εmin + 0.25 (ε+ εmax), (22)

where εmin, ε and εmax are respectively the minimum, mean and maximum of ε values along
all the p trajectories. The ε̂ value is used to compare the designs and identify the best one.
The process is repeated for all the designs obtained from the previous phase. The design
that has the highest ε̂ is identified as the best one. Algorithm 2 sums up all the steps of the
candidate selection phase.

4. Application and results

The following section introduces the robot used to test the proposed optimization method
and discusses the obtained results.

4.1. Robot under study

A new highly redundant robot actuated by a mechanism recently developed and patented
by the company Nimbl’Bot [29] is used as a case study in this section. Both the mechanism
and the robot are fully introduced in [17, 30]. The mechanism that actuates the robot has
two degrees of freedom, and ten mechanisms are arranged in a serial way assembling the
Nimbl’Bot robot, shown in Fig. 1. The robot is divided into three regions attached by two
links: a shoulder composed of three mechanisms, an elbow consisting of four mechanisms,
and a wrist composed of three mechanisms. At the end of the robot, a revolute joint is
attached to adjust the wrist orientation. In total, the robot has 21 degrees of freedom,
i.e., r = 21. Thus, this robot is hyper-redundant, which means that the end-effector can
reach a given pose in an infinite number of configurations [31].
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Figure 1: The 21 degrees of freedom robot under
optimization; the shoulder and the wrist are com-
posed of three mechanisms, and the elbow is made
of four mechanisms. In the bottom left corner, the
Nimbl’Bot mechanism is shown with its design pa-
rameters half height h and slope α.

Figure 2: Robot design parameters under optimiza-
tion: link lengths l1 and l2, angular offsets β1, β2
and β3.

In this case, the dimensions of the mechanism are constant and not included in the
optimization. The optimized robot design parameters are the link lengths l1 and l2 and the
amplitude of three angular offsets β1, β2 and β3, shown in Fig. 2. The angular offsets are
respectively inserted between the first link and first mechanism of the elbow, the second
link and first mechanism of the wrist, and between the second-to-last and last mechanisms
of the wrist. The angles β1, β2 and β3 rotate about the axis x, depicted in red in Fig. 2.
An ending tool is mounted on the last revolute joint of the robot. The design parameters
of the tool are inserted in the optimized variables, namely its length lt and orientation βt,
shown in Fig. 3. So, the number of virtual joints is v = 7 and the robot with virtual joints
has 28 degrees of freedom, i.e. r + v = 28. Table 2 gives the main parameter values and
limits of the robot.

The design parameters under optimization are limited, but the limits are large enough
not to over-constrain the optimization process. The link lengths l1 and l2 are constrained
in the range [0, 3] m, and the angular offsets amplitude β1 in [−3π/4, π/4] and β2 and β3

in [−3π/4, 3π/4]. The tool length lt is valid in the range [0, 0.5] m, and the tool orientation
offsets βt in [0, 3π/4]. These ranges are used by the joint limits task to constrain the virtual
joints. The Nimbl’Bot mechanism actuators can rotate infinitely and have no limits.

4.2. Workspace area

The robot application requires tracking horizontal and vertical paths in a cube whose
sides are 0.7 m × 0.7 m long and centered in (x, y, z) = (0.0, 0.75, 0.65) m. The orien-
tation of the end-effector is expressed in terms of roll φ, pitch θ and yaw ψ. The angle
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Figure 3: Ending tool design parameters under optimization: tool length lt and orientation βt.

Table 2: Robot details.

Mechanism half height h 0.07 m
Mechanism slope α 15◦

Max/min revolute joint velocities ±1.0 rad/s
Max module revolute joint accelerations/decelerations 2.5 rad/s2

Max/min prismatic joint velocities ±1.0 m/s
Max module prismatic joint accelerations/decelerations 2.5 m/s2

values for the horizontal paths are (φ, θ) = (π, 0), ∀ ψ ∈ [−π, π], and for the vertical
paths (φ, θ) = (π/2, 0), ∀ ψ ∈ [−π, π].

Figure 4 shows the p = 4 paths used during the candidate generation and selection
phases of the optimization process. Two paths are horizontal, i.e. the green and the ma-
genta ones, and the other two are vertical, i.e. the blue and the black ones. The horizontal
paths have the corners placed in x = (−0.35, 0.35) m and y = (0.4, 1.1) m at the height
of z = 0.3 m, green path, and z = 1.0 m, magenta path. The vertical paths have the corners
placed in x = (−0.35, 0.35) m and z = (0.3, 1.0) m at the depth of y = 0.4 m, blue path,
and y = −1.1 m, black path. The small arrows along the paths express the z-axis orientation
of the end-effector frame while following the paths. These four paths were chosen for the
design optimization because they describe the cube where the robot is supposed to work in
the real world. Then, the kinetostatic performance of the best and worst designs are com-
pared on two new paths, one horizontal and one vertical, placed inside the cubic workspace
area to confirm the optimization process ability to identify the best design for kinetostatic
performance. Figure 5 shows the two paths used for testing the design obtained from the
optimization process. The horizontal path has the corners placed in x = (−0.35, 0.35) m
and y = (0.4, 1.1) m at the height of z = 0.65 m, red path. The vertical path has the corners
placed in x = (−0.35, 0.35) m and z = (0.3, 1.0) m at the depth of y = 0.75 m, cyan path.
Table 3 gives the trajectory details.
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Figure 4: The four paths used in the optimization
process and a version of Nimbl’bot robot of size:
l1 = 0.5 m, l2 = 0.5 m, β1 = π/4, β2 = π/4, β3 = π/4,
lt = 0.1 m, , βt = π/4.

Figure 5: The two paths used to validate the designs
obtained from the optimization process and a version
of Nimbl’bot robot of size: l1 = 0.5 m, l2 = 0.5 m,
β1 = π/4, β2 = π/4, β3 = π/4.

Table 3: Trajectory details.

Steps 560
Magnitude velocity vector ||~v|| 0.002 m/s

Magnitude tangential force vector ||~ft|| 60 N

Magnitude radial force vector ||~fr|| 20 N
Time 1400 s

4.3. Computational time evaluation and comparison

Before optimizing all the design variables of Figs. 2 and 3, a brute force optimization
process is run to have a baseline for the comparison with the proposed methodology. In
this case, only the design variables l2 ∈ [0, 1] m and β2 ∈ [−3π/4, 3π/4] are optimized as
a function of the green and blue paths shown in Fig. 4. The other design variables are set
to l1 = 0.2 m, β2 = β3 = 0, lt = 0.1 m and βt = π/4. Several robot designs are generated
combining the discretization of l2 and β2 over their allowed ranges. Namely, l2 is bounded
between 0 and 1 with a step equal to 0.1 m, leading to 11 possible values. The parameter β2 is
bounded between−3π/4 and 3π/4 with a step equal to 5◦, leading to 55 values. Combining l2
and β2 generates 605 designs that are tested on the green and blue trajectories. The goal is
to identify the design with the highest performance in terms of ε̂. Each design is tested ten
times on each trajectory to obtain general results. If a design is not able to follow one or
more trajectories, it is discarded.

Then, the design optimization process presented in this paper is run optimizing l2 and β2

as a function of the green and blue trajectories and the kinetostatic performance. The
candidate generation phase is repeated four times and produces only 76 designs. So, the
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Table 4: Design parameter and kinetostatic performance values ε̂, η̂, ν̂ and ρ̂ for the best designs obtained
from discretization and optimization, respectively.

Method l2 β2 ε̂ η̂ ν̂ ρ̂ Time
Discretization 0.1 m -105◦ 0.269 0.222 0.087 0.558 120 min
Optimization 0.06 m -102◦ 0.281 0.221 0.086 0.595 20 min

Table 5: Machine details.

Operating System Linux
Distribution Ubuntu 20.04

CPUs number 4
CPU model Intel Core i7 10th Gen, 1.30GHz
Language C++

Control frequency 10Hz
Time to track one trajectory 5 s

candidate selection phase takes less time in testing the 76 designs on the desired trajectories.
Each design is tested ten times along each path to obtain general results. If one design is
not able to follow one or more trajectories, it is discarded.

Table 4 shows the designs obtained from the two tests described above and their kineto-
static performance ε̂, η̂, ν̂ and ρ̂. The values of η̂, ν̂ and ρ̂ are computed in the same way of
Eq. (22) using the η, ν and ρ values collected at path step. The best designs identified by
the two methods are highly similar. However, the optimization process reached a higher ε̂
because the identified values for l2 and β2 were not included in the discretized values. More-
over, the time required by the optimization process, 20 minutes, is lower than testing all
the designs obtained from the discretization, more than 120 minutes. Therefore, the op-
timization method is six times faster in this case. In this case, only two design variables
were considered. Testing all the possible combinations for seven design parameters, which
correspond to more than two billion designs, would be highly time consuming.

4.4. Optimization test and results

Here, the optimization process is applied to all the design variables of Figs. 2 and 3. The
optimization is performed with respect to the four desired trajectories of Fig. 4, and the
kinetostatic performance indices, dexterity η, bounded manipulability ν and RTR ρ. The
candidate generation phase is run ten times generating 370 designs. Then, the candidate
selection phase tests these designs on the four trajectories collecting ε, η, ν and ρ at each
step. In total, 282 designs passed the candidate selection phase. The others could not
properly track all the trajectories and were discarded. During the candidate selection phase,
each design follows each trajectory ten times starting from a random configuration to obtain
general results. Table 5 shows the machine and implementation details.

Table 6 reports the correlation coefficients between the kinetostatic performance in-
dices ε̂, η̂, ν̂ and ρ̂ and the optimized design parameters for all the solutions obtained from
the optimization process. The higher the absolute value of the correlation coefficient, the
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Table 6: Correlation coefficients between kinetostatic performance indices ε̂, η̂, ν̂ and ρ̂ and design pa-
rameters, bottom left, and their standard deviation along the diagonal, gray. The higher the correlation
coefficient absolute value, the darker the blue shade. Correlation coefficients ∈ [−1, 1].

ε̂ η̂ ν̂ ρ̂ l1 l2 β1 β2 β3 lt βt
ε̂ 0.06
η̂ 0.947 0.09
ν̂ 0.654 0.579 0.06 Standard deviation

ρ̂ 0.810 0.770 0.176 0.05
l1 0.394 0.310 0.823 -0.026 0.41 m
l2 0.326 0.206 0.753 -0.035 0.743 0.4 m
β1 0.090 0.048 -0.081 0.280 -0.104 0.100 27.2◦

β2 -0.326 -0.336 -0.225 -0.328 0.049 -0.008 -0.261 116.7◦

β3 -0.141 -0.148 -0.132 -0.098 0.076 -0.089 -0.081 0.426 52.5◦

lt 0.155 0.187 0.182 0.082 0.105 0.105 -0.118 0.111 -0.083 0.08 m
βt -0.016 -0.018 0.092 -0.165 -0.012 -0.079 -0.107 -0.069 -0.213 -0.098 13.7◦

Figure 6: Box plot of the values assumed by the kinetostatic indices ε̂, η̂, ν̂ and ρ̂ for the selected candidates.
Symbol × represents the mean and ◦ indicates the outliers. The kinetostatic index range is displayed next
to the plots.

darker the shade of blue associated. A positive correlation coefficient indicates a directly
proportional relation between two parameters. A negative correlation coefficient means a
indirectly proportional relationship. The value of η̂, ν̂ and ρ̂ is computed in the same way of
Eq. (22) using the η, ν and ρ values collected at each step on each trajectory. The diagonal
of Table 6 collects the standard deviation of the kinetostatic performance indices and design
parameters between all the solutions identified by the optimization process. Figures 6 and 7
show the box plots of all the values assumed by the kinetostatic indices ε̂, η̂, ν̂ and ρ̂ and the
design parameters for the selected candidates, respectively. From Table 6, it is clear that ν̂ is
directly linked to the size of l1 and l2. The longer the links, the higher ν̂. Moreover, a longer
link l1 tends to be associated with a longer l2. Another interesting aspect concerns η̂. The
higher η̂, the higher both ν̂ and ρ̂. This means that the same design parameters influence
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(a) Box plot for the links l1, l2 and lt. (b) Box plot for the offset β1, β2, β3 and βt.

Figure 7: Box plots of the values assumed by the design parameters for the selected candidates. Symbol ×
represents the mean and ◦ indicates the outliers. The design variable range is displayed next to each plot.

them. On the contrary, the correlation coefficient between ν̂ and ρ̂ is low meaning that
different design variables influence these two metrics. However, the correlation coefficients
between η̂, ν̂ and ρ̂ are always positive meaning that these performance indices are not an-
tagonistic. A consideration can be done on the correlation coefficients between β2 and the
indices ε̂, η̂, ν̂ and ρ̂, which are negative. This means that the lower β2 the larger ε̂, η̂, ν̂
and ρ̂. Moreover, there is a relevant positive correlation between β2 and β3, meaning that
a bigger β2 is associated to a bigger β3. The other design parameters do not present sig-
nificant correlation coefficients. However, this fact does not mean that any value can be
used for these design parameters. For example, the standard deviation of the kinetostatic
indices ε̂, η̂, ν̂ and ρ̂ is small meaning that the obtained results are closer to each other.
The plots in Fig. 6 show how each index is concentrated in a smaller area compared to the
available one. Considering the design parameters, the standard deviation of lt is much lower
than l1 and l2. This means that almost all the obtained designs have a similar value for lt.
So, the optimization algorithm identified a small optimal range of values for lt. This can also
be noticed by comparing the interquartile size, i.e. the distance between the lower and upper
quartile, of the box plots in Fig. 7a. Similarly, β1, β3 and βt have a standard deviation lower
than β2 meaning that the optimization algorithm found a smaller optimal range of values
for these parameters. Moreover, the β2 interquartile size in Fig. 7b is much bigger than the
other ones. This can justify why the correlation coefficients between β1, β3 and βt and ε̂, η̂, ν̂
and ρ̂ are low as well. There is no design that can be identified globally as the best one, but
several combinations can lead to a good kinetostatic design for the Nimbl’Bot robot. This
is mainly due to the high kinetostatic redundancy of the robot that allows infinite possible
solutions for the same problem. Moreover, more than one kinetostatic performance index
is considered in the optimization process. So, the designs identified by the optimization
process can perform better in dexterity, manipulability or RTR. It is necessary to make a
trade-off for choosing the best design.
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Table 7: Design parameters and kinetostatic performance indices ε̂, η̂, ν̂ and ρ̂ for best and worst designs
obtained during candidate selection phase. Green and red colors indicate the highest and lowest values
for ε̂, η̂, ν̂ and ρ̂ obtained during the candidate selection and testing phases.

l1 l2 β1 β2 β3 lt βt Candidate selection Testing
ε̂ η̂ ν̂ ρ̂ ε̂ η̂ ν̂ ρ̂

Best ε̂ ρ̂ 2.19 m 2.33 m -61◦ -131◦ -3◦ 0.44 m 131◦ 0.555 0.695 0.214 0.698 0.556 0.671 0.209 0.718
Best η̂ 2.05 m 1.99 m -108◦ -131◦ 17◦ 0.44 m 97◦ 0.537 0.705 0.259 0.631 0.538 0.703 0.242 0.639
Best ν̂ 2.94 m 2.78 m -131◦ -108◦ 38◦ 0.44 m 105◦ 0.509 0.599 0.372 0.564 0.449 0.526 0.320 0.527

Worst ε̂ η̂ ν̂ 0.07 m 0.31 m 11◦ -105◦ 1◦ 0.44 m 73◦ 0.247 0.280 0.018 0.458 0.292 0.350 0.024 0.522
Worst ρ̂ 1.54 m 2.32 m -131◦ 131◦ -14◦ 0.44 m 105◦ 0.309 0.363 0.137 0.435 0.435 0.552 0.176 0.540

Figure 8: Link lengths of best and worst design for
indices ε̂, η̂, ν̂ and ρ̂ during candidate selection phase.

Figure 9: Offset amplitudes of best and worst design
for indices ε̂, η̂, ν̂ and ρ̂ during candidate selection
phase.

An analysis of the designs that performed the best and the worst in terms of ε̂, η̂, ν̂ and ρ̂
is accomplished. The right side of Table 7 shows the parameter values of the designs that
performed the best and worst for each index, i.e. ε̂, η̂, ν̂ and ρ̂, along the four trajectories used
by the optimization process, shown in Fig. 4. In some cases, one design had the best or worst
performance for more than one index. Figures 8 and 9 present the link lengths and offset
amplitudes collected in Table 7 on graphs. The middle of Table 7 reports the values of ε̂, η̂, ν̂
and ρ̂ obtained during the candidate selection phase. The green and red colors highlight the
highest and lowest values for ε̂, η̂, ν̂ and ρ̂ during the candidate selection phase. One design
has the worst performance in terms of ε̂, η̂ and especially for ν̂. Small links characterize
this design. In fact, the design that is characterized by the best ν̂ has the largest links.
The value of ρ̂ is generally higher for all the designs, best and worst. This means that the
Nimbl’Bot robot generally has high performance in terms of ρ̂, independently of the design
parameters. Finally, β3 is generally close to 0◦ while βt is generally high and take the place
of β3. So, β3 could be removed from the optimized design parameters. Figures 10 and 11
show the designs that reached the best and worst ε̂.

18



Figure 10: Representation of the design with the
best ε̂ together with the four trajectories used for
the optimization, its design parameter values are in
the first line of Table 7.

Figure 11: Representation of the design with the
worst ε̂ together with the four trajectories used for
the optimization, its design parameter values are in
the fourth line of Table 7.

4.5. Selected designs performance inside desired workspace

The designs collected in Table 7 are tested on two trajectories inside the desired workspace
area, shown in Fig. 5, which are different from the ones used during the candidate genera-
tion and selection phases. This testing phase is performed to show that the best and worst
designs maintain similar performance in tracking trajectories inside the volume defined by
the four ones used in the optimization process. The left side of Table 7 reports the values
of ε̂, η̂, ν̂ and ρ̂ obtained during the testing phase. The green and red colors highlight the
highest and lowest values for ε̂, η̂, ν̂ and ρ̂ during the testing phase. The results show the
same trend during the candidate selection and testing phases meaning that each design has
uniform performance in the desired workspace area. To conclude, this optimization process
identified several possible optimal designs for a specific set of tasks in the desired workspace
area. There is no unique global solution, but more than one design can reach high values
for ε̂. For designs that share the same global index ε̂, choosing the final one is a trade-off
between optimizing one of the three indices that contribute to ε̂.

5. Conclusions

This paper presented and analyzed a new method for designing and optimizing kinematic
redundant manipulators as a function of their application and kinetostatic performance. The
process employs a task priority kinematic control algorithm to solve several tasks simulta-
neously exploiting the robot high kinematic redundancy. First, the process was tested on a
simple case with two design variables and two paths. The obtained best design was com-
pared with the results obtained from testing some discretized combinations of the two design
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variables. The best designs in terms of the global kinetostatic performance index ε̂ obtained
from the two tests are close and the optimization process converged toward a better design.
This means that the optimization process can identify the best solution for a specific prob-
lem without testing all possible combinations of design parameter values and reduce the
computational time.

Then, this new method worked on more design parameters identifying several possible
Nimbl’Bot manipulators with high kinetostatic performance for the desired workspace area.
It also pointed out some general guidelines for building a kinetostatic efficient Nimbl’Bot
robot. However, there is no specific design trend to obtain high kinetostatic performance.
This is due to the high redundancy of the robot that admits infinite possible robot config-
urations to solve the same problem. Moreover, the kinetostatic performance index ε̂ is a
linear combination of dexterity η, bounded manipulability ν and RTR ρ. Choosing the best
design is a trade-off between these metrics.

Future work will involve more analysis to identify if some global guidelines exist for build-
ing a Nimbl’Bot robot design with high kinetostatic performance, giving more importance to
one index than others or searching for specific relationships between the design parameters.
Other design parameters will be included to study how they affect the kinetostatic perfor-
mance. New tasks based on self-collision and obstacle avoidance will be added to consider
more complex problems.
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