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The article aims to demonstrate the effectiveness of using the Koopman operator and dynamic mode decomposition (DMD) for iterated function systems (IFS). Specifically, we show how these tools can be used to analyze and predict the behaviour of stochastic nonlinear dynamical systems represented by discrete-time Markov chains on a compact state space. In particular, we focus on an ergodic nonlinear IFS, which has not been studied with these approaches before. Our paper presents the first application of dynamic mode decomposition to this type of system.

I. INTRODUCTION

This article introduces dynamic mode decomposition (DMD), and Koopman operator theory for iterated function systems (IFS) [START_REF] Ghosh | Iterated function systems: A comprehensive survey[END_REF]. IFS is a category of stochastic dynamical systems modelled as a discrete-time Markov chain on a general state space. Under some regularity assumption, it admits an invariant measure through the associated Markov operator [START_REF] Ghosh | Iterated function systems: A comprehensive survey[END_REF]. The governing equations for several complex systems and processes cannot be derived from first principles, and their resulting models are too complicated to be of practical use or both. Using a state-space model for applications such as control and prediction is troublesome due to the difficulty or impossibility of measuring the actual state of the system when applied to such a system, which further complicates the issue. As an alternative, just a subset of measurements, also known as observables, will be exposed. For such a complicated system, the Koopman operator is one of the modelling tools that may be utilized [START_REF] Budišic | The koopman operator in systems and control: Concepts, methodologies, and applications[END_REF]. Since the Koopman operator represents a system in a high-dimensional linear space, spectral techniques may be used to investigate the system. Koopman Mode Decomposition, which decomposes the system based on the eigenfunctions of the Koopman operator, was initially presented in [START_REF] Koopman | Hamiltonian systems and transformation in Hilbert space[END_REF]. Since then, the Koopman Operator has gained popularity for its utility as a data-driven method through various forms of Koopman Mode Decomposition [START_REF] Mezić | Spectral properties of dynamical systems, model reduction and decompositions[END_REF]. Dynamic Mode Decomposition (DMD) is a well-established ATU Sligo supported all the authors R. Ghosh is with the Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland.

ramen.ghosh@atu.ie marion.mcafee@atu.ie data-driven technique first described in [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF]. In [START_REF] Rowley | Spectral analysis of nonlinear flows[END_REF], it was shown that the dynamic mode decomposition is related to the Koopman mode decomposition (KMD). The purpose of DMD methods is to locate a matrix close to approximating a finite approximation of the Koopman operator [START_REF] Mezić | On numerical approximations of the Koopman operator[END_REF]. DMD may be constructed in various forms and is suitable for usage in various contexts. Despite their widespread use, many DMD methods have a significant shortcoming: they are susceptible to failure if the data in question includes noise or unpredictability. Koopman operator technique has been used in random dynamical systems, especially in homogeneous Markov processes, stochastic differential equations driven by Gaussian white noise and stochastic systems generated by i.i.d random maps, see [START_REF] Mezić | Spectral properties of dynamical systems, model reduction and decompositions[END_REF][START_REF] Wanner | Robust approximation of the stochastic Koopman operator[END_REF]. To the author's knowledge, this work is the first to formally introduce the dynamic mode decomposition and Koopman operator for iterated function systems and guarantees the approximation of ergodic non-linear IFS.

II. MATHEMATICAL PRELIMINARIES

Definition 1 (Markov Chain on Metric Space). Let (Ω, E , P) be a probability space. A Markov chain on a metric space X is a sequence of X valued random variables {X k } k≥0 whose interdependence satisfies the Markov property, i.e, for all A ∈ B(X )

P [X k+1 ∈ A | X 0 , X 1 , . . . , X k ] = P [X k+1 ∈ A | X k = x] . (1) 
Definition 2 (IFS with state-independent probability with finite number of maps). Let (X , ρ) be a compact metric space. Let {w i } m i=1 be continuous self-transformations on X and µ be a probability measure on [m] := {1, 2, . . . , m}. Let σ 0 , σ 1 , . . . be i.i.d discrete random variables taking values in [m] and

P (σ i = j) = µ (j) j ∈ [m] and i = 0, 1, 2, . . . , m. (2)
An IFS with state-independent probability is a Markov process that is realized by the recursion

X k+1 := w σ k (X k ), k = 0, 1, 2, . . . , (3) 
where X 0 ∼ ν ∈ M p (X ) is assumed to be independent of σ k ∀k.

We describe below how the iteration progress in Algorithm 1.

A. 

X k+1 = w σ k (X k )
Step 3: Return {X k } k∈N current observables to the expected value of future observables

Kg(x) = ν(x, dy)g(y) = E [g(X k+1 ) | X k = x] = E [(g • w ω k ) (X k ) | X k = x] (4) 
We will denote the one-step Koopman evolution for a discretetime map as K 1 = K. The operator K τ is also called the transition operator for the associated Markov process. The Definition 3 will be useful once the family of Koopman operators {K τ } satisfy the following semigroup property:

K τ1+τ2 g = (K τ2 • K τ1 ) g for τ 1 , τ 2 ≥ 0.
For deterministic Koopman operator, this is true, provided the system is autonomous and solutions exist and are unique since, in this case, the flow forms a semigroup. For the stochastic Koopman family of operators on an i.i.d. system, the semigroup property is guaranteed by the independence of X τ1 (ω) and X τ2 (ω) since

K τ1+τ2 g(x) = E P [g (X τ1+τ2 (w))] = E P [(g (X τ2 )(X τ1 )(w))] = E P [K τ2 g (X τ1 (w))] = K τ1 K τ2 g.
We wish to find a matrix M which represents K on a finitedimensional subspace. We use dynamic mode decomposition [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF] to find that invariant subspace and the matrix M as presented in the Algorithm 2.

The accuracy of the approximation M depends on the observable g 1 , g 2 , . . . , g n spanning an invariant subspace V of K.

Assume that rank M 1 = n;

(5)

X 0 = 1 n M 1 M ⋆ 1 ; (6) 
X 1 = 1 n M 2 M ⋆ 1 . (7) 
Then we have,

M = M 2 M † 1 = (M 2 M ⋆ 1 ) (M 1 M ⋆ 1 ) -1 = X 1 X -1 0 (8)
More precisely

[X 0 ] ij = 1 n n-1 t=0 g i (t)g j (t) (9) 
But due to the assumption that the IFS possesses a unique invariant measure, we have,

lim n→∞ 1 n n-1 t=0 g i (t)g j (t) → ⟨g i , g j ⟩. (10) 
Similarly,

[X 1 ] ij = 1 n n-1 t=0 g i (t + 1)g j (t), (11) 
and,

lim n→∞ 1 n n-1 t=0 g i (t + 1)g j (t) → ⟨Kg i , g j ⟩. ( 12 
)
Algorithm 2: Koopman-DMD Algorithm Input: Let X 0 , X 1 , X 2 , . . . , X n be a trajectory of the IFS system, and

ĝ =      g 1 g 2 . . . g d      : R → R d (13)
be a vector-valued observable, let

ĝ(k) = ĝ(X k ) (14) 
be the vector containing the data from a sample. Output: the eigenvalues, left and right eigenvectors (λ i , u i , v i ), i = 1, 2, . . . , d of M. Then the dynamic eigenvalues are λ i , the dynamic modes are v i , and the numerical eigenfunctions.

Step 1: construct the matrices

M 1 = ĝ(0) ĝ(1) • • • ĝ(n -1) n×n ( 15 
)
M 2 = ĝ(1) ĝ(2) • • • ĝ(n) n×n (16) 
Step 2: Form the matrix

M = M 2 M † 1 ( 17 
)
where M † 1 is the Moore-Penrose pseudoinverse.

Step 3: Compute the eigenvalues, left and right eigenvectors (λ i , u i , v i ), i = 1, 2, . . . , d of M. Then the dynamic eigenvalues are λ i , the dynamic modes are v i , and the numerical eigenfunctions are given by

ϕ i = u ⊤ i M 1 (18) 
In the following result, we show the convergence of dynamic eigenvalues to the eigenvalues of the Koopman operator K under some regularity assumptions.

Theorem 1. Let ω 0 , ω 1 , ω 2 , . . . are i.i.d discrete random variables taking values in [m]. Let ν * be the unique invariant measure for the IFS generated by the self-maps {w 1 , w 2 , . . . , w m }. Let V be the K-invariant subspace of the linear space formed by the span of the observables {g 1 , g 2 , . . . , g n }. Let λ j,n be the dynamic eigenvalues and v j,n be the dynamic modes produced by Algorithm 2 generated by the trajectory X 0 , X 1 , . . . , X n .

Then the dynamic eigenvalues converge to the eigenvalues of K restricted to V almost surely.

III. A NUMERICAL ILLUSTRATION

Iterated function system generated by logistic maps and their asymptotic properties has been studied considerably and are still active research area. We consider an iterated function system generated by the following logistic maps on [0, 1] and probabilities as follows w 1 (x) = 0.8x(1 -x) with probability 1 4 ;

w 2 (x) = 2.8x(1 -x) with probability 1 2 ;

w 3 (x) = 3.8x(1 -x) with probability 1 4 .
Using the Algorithm 3, we approximated the above non-linear IFS and Figure 1234shows the numerical illustration. The code is available in https://github.com/M2219/ifsdmd.

Algorithm 3: IFS-DMD Algorithm

Input: Initial value X 0 , 3 functions {w k } 3 k=1 , probability measure µ over [START_REF] Koopman | Hamiltonian systems and transformation in Hilbert space[END_REF]; Output: A sequence of random variables X k , k = 100 with Markov property, dynamic mode spectrum λ i and associated dynamic modes.

Step 1: Set X 0

Step 2: Repeat the following for 100 iterations as Algorithm 1;

Step 3: Return {X k } k∈N as data snapshots.

Step 4:

M 1 = X 1 X 2 . . . X k-1 , M 2 = X 2 X 3 . . . X k ;
Step 5: compute SVD of M 1 , M 1 = U ΣV * , where U k×r , V k×r , are unitary, Σ r×r diagonal with singular values, r is the dimension of interest;

Step 6: define the matrix à = U * M 2 V Σ -1 ;

Step 7: compute eigenvalues and eigenvectors of Ã, Ãy = λy;

Step 8: the DMD mode corresponding to the DMD eigenvalue λ is given by Φ = U y. Error between actual values from IFS and predicted value via DMD

IV. CONCLUSION AND FUTURE WORK

In this article, the Koopman operator is defined for IFS, and an ergodic non-linear IFS has been approximated using Error between actual values from IFS and predicted value via DMD the DMD algorithm; the Koopman operator, dynamic mode decomposition (DMD), and data-driven dynamical systems are active fields of study in mathematics, engineering, and physics. Future research aims to develop efficient algorithms for approximating the Koopman operator, understand its relationship with other linear operators, and create more robust DMD variants. There are connections between Koopman-DMD and neural networks, as both offer data-driven approaches to analyze and model dynamics, extract features, and reduce dimensionality. Koopman-DMD captures nonlinear system dynamics without explicit assumptions, similar to how neural networks model complex nonlinear relationships. Both methods involve feature extraction and dimensionality reduction. Efforts have been made to combine Koopman-DMD with neural networks, leveraging their strengths to capture linear and nonlinear dynamics. Exploring these connections can lead to novel techniques for improved modelling and analysis of complex systems.
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 4 Figure 4.Error between actual values from IFS and predicted value via DMD
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