for creating visualizations are quickly becom-25 ing more and more accessible. In addition, the visual 26 literacy of the general public has been increasing due 27 to the pervasiveness of visualizations in everyday life. 28 As the appetite for decision making tools grows, so 29 does the need to convey error, confidence, missing, or 30 conflicting data visually.

31

However, practices around uncertainty visualiza-32 tion remain domain-specific, rooted in convention, 33 and in many instances, absent entirely. Part of the rea-34 son for this may be a lack of established guidelines 35 for navigating difficult choices of when uncertainty 36 should be added, how to visualize uncertainty, and 37 how to evaluate its effectiveness. Unsurprisingly, the 38 inclusion of uncertainty into visualizations has been 39 decried as a major challenge to visualization, and may 40 play a role in other current communication challenges, 41 like how to promote clear communication of 
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  experimental effects despite incentives for research-43 ers to overemphasize small effects, or how to explain 44 model workings and predictions in a way that is inter-45 pretable. As work concerned with uncertainty visuali-46 zation grows, it has become clear that simple visual 47 additions of uncertainty information to traditional 48 visualization methods do not appropriately convey the 49 meaning of the uncertainty, pose many perceptual 50 challenges, and, in the worst case, can lead a viewer 51 to a completely wrong understanding of the data.

52

  Numerous studies point to challenges people have in53 interpreting uncertainty-both conceptually and in 54 visual presentation. Visualizing uncertainty may be 55 perceived as conflicting with other goals of visualiza-56 tion authors, like conveying credible information. 57 There is no single definition of uncertainty, since 58 the term umbrellas things like confidence levels, distri-59 butions, and missing or erroneous data, among others, 60 and little by way of guidance to help visualization 61 authors understand how different sources of uncer-62 tainty manifest in different scientific domains 63 and may warrant different visual approaches. Finally, 64 large and heterogeneous datasets pose challenges 65 based on their size and the need to assimilate data 66 from multiple sources, all with uncertainty of different 67 type and scale.

  Types of Uncertainty 73 Uncertainty comes in many forms, mathematical 74 measures and conceptual ideas. We group these 75 potentially disparate ideas into the term uncertainty, 76 both for ease but also lack of understanding. Can we 77 develop a taxonomy of uncertainty types to help 78 define categories of uncertainty types that may be 79 treated in a similar fashion?80 Big Data Problems 81 The large scale of the data we are seeing today is just 82 going to grow. Many of the techniques to handle this 83 data use summarizations, sampling, or clustering, all 84 of which introduce uncertainties in and of themselves, 85 on top of the uncertainties within the data originally.Applications review process of the 10 submissions, we 174 accepted five papers for this special issue. In the arti-175 cle by Jin, Koesten, and M€ oller, A1 the authors present
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