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Abstract

We consider a distributed computing setting wherein a central entity
seeks power from computational providers by offering a certain reward in
return. The computational providers are classified into long-term stake-
holders that invest a constant amount of power over time and players
that can strategize on their computational investment. In this paper, we
model and analyze a stochastic game in such a distributed computing
setting, wherein players arrive and depart over time. While our model
is formulated with a focus on volunteer computing, it equally applies
to certain other distributed computing applications such as mining in
blockchain. We prove that, in Markov perfect equilibrium, only players
with cost parameters in a relatively low range which collectively satisfy
a certain constraint in a given state, invest. We infer that players need
not have knowledge about the system state and other players’ param-
eters, if the total power that is being received by the central entity is
communicated to the players as part of the system’s protocol. If players
are homogeneous and the system consists of a reasonably large num-
ber of players, we observe that the total power received by the central
entity is proportional to the offered reward and does not vary signif-
icantly despite the players’ arrivals and departures, thus resulting in
a robust and reliable system. We then study by way of simulations
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and mean field approximation, how the players’ utilities are influenced
by their arrival and departure rates as well as the system parameters
such as the reward’s amount and dispensing rate. We observe that the
players’ expected utilities are maximized when their arrival and depar-
ture rates are such that the average number of players present in the
system is typically between 1 and 2, since this leads to the system
being in the condition of least competition with high probability. Fur-
ther, their expected utilities increase almost linearly with the offered
reward and converge to a constant value with respect to its dispensing
rate. We conclude by studying a Stackelberg game, where the central
entity decides the amount of reward to offer, and the computational
providers decide how much power to invest based on the offered reward.

Keywords: Game theory, Stochastic game, Markov perfect equilibrium,
Stackelberg game, Distributed computing, Volunteer computing

1 Introduction

A distributed computing system could be viewed as several providers of com-
putational power contributing to solve large problems. In certain applications,
a common central entity coordinates and utilizes the provided computational
power (e.g., volunteer computing (Sarmenta, 2001b; Anderson and Fedak,
2006)), while in other applications, the computational providers compete for
being the first to solve a problem (e.g., mining in blockchain (Zheng and
Xie, 2018)). Where a common central entity is involved, the computational
providers typically contribute to the central entity’s power, which in turn could
use the combined power to either fulfil its own computational needs (e.g., min-
ing blocks or running demanding programs) or distribute it to the next level
of requesters of power (e.g., by a computing service provider to its customers
in a utility computing model). Based on the returns that the central entity
expects from completing the tasks for which the computational power is being
sought, it would usually decide the compensation or reward to be dispensed
to the providers. This reward would be distributed among the providers based
on their respective contributions. Throughout the paper, we will refer to the
central entity in charge of the distributed computing system as the center.

A computational provider incurs a certain cost per unit time for invest-
ing a certain amount of power. A higher power investment by a provider is
likely to fetch it a higher reward while also increasing its incurred cost, thus
resulting in a trade-off. In practice, most computational providers are neither
present constantly for providing their power, nor do they invest a constant
amount of power when they are present. In view of this, we consider two types
of computational providers, namely, long-term stakeholders that invest a con-
stant amount of power over time and providers that arrive and depart over
time as well as vary their invested power. This consideration becomes of par-
ticular significance when providers of the latter type are strategic, aiming to
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maximize their respective utilities, and their arrival or departure affects the
competition among them for obtaining the offered reward. Specifically, such
providers can harness this knowledge in order to strategize on the power that is
to be invested, based on the presence of the other providers and their invested
power. We will refer to computational providers that arrive and depart over
time and strategize on their invested power as players. In this paper, we for-
mulate a stochastic game where the players arrive and depart during a run
of volunteer computing. We hence analyze how the players would invest in an
equilibrium, from which no provider would want to deviate unilaterally. As we
shall see, while we formulate our model considering a volunteer computing set-
ting, our model applies equally well to decentralized settings such as mining
in blockchain.

In order to formulate our game and analyze its equilibrium, it is important
to understand what a stochastic game is and which equilibrium notion we
consider. Stochastic games (Shapley, 1953) are a multiagent generalization of
Markov decision processes (MDPs). In MDP, a player’s payoff and probabilistic
state transitions depend on the current state and the player’s strategy; while
in a stochastic game, they additionally depend on the strategies of all the other
players. Similar to MDP, a stochastic game continues until it reaches a terminal
state if there exists any, or continues indefinitely in absence of a terminal state.
The natural equilibrium notion that we consider is Markov perfect equilibrium
(MPE) (Maskin and Tirole, 2001), which is pertinent to stochastic games.
MPE could be viewed as an adaptation of subgame perfect Nash equilibrium.
Similar to policy in MDP, a player’s MPE policy is a mapping from the state
space to the player’s strategy space; it indicates the player’s strategy when the
system is in any given state. A player determines its strategy in each state by
foreseeing its effects on the state transitions and the resulting utilities, as well
as the strategies of all the other players in each state. Just as a player’s Nash
equilibrium strategy is a best response to the other players’ Nash equilibrium
strategies, a player’s MPE policy is a best response to the other players’ MPE
policies.

As described above, this paper focuses on a distributed computing setting
wherein the center offers reward in return for the power invested by computa-
tional providers, which comprises long-term stakeholders that invest a constant
amount of power and a dynamic set of players that invest strategically. We
now list our contributions along with an overview of our results, and then
highlight how our studied problem, model, and results compare with those in
the literature.

1.1 Our Contributions and Results

• We propose a stochastic game model that captures the arrival and depar-
ture of players and their strategic computational investments in a typical
distributed computing system. We formulate our model based on a continu-
ous time Markov chain framework, and hence obtain the utility function of a
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player while accounting for the state transitions and policies of all the play-
ers. We show that interestingly, a closed-form expression can be obtained
for the utility function (Section 2).

• Through a game theoretic analysis, we determine the players’ MPE policies
and prove that only players with cost parameters in a relatively low range
which collectively satisfy a certain constraint in a given state, invest. We
infer that players need not have knowledge about the system state and other
players’ parameters, if the total power that is being received by the center
is communicated to the players as part of the system’s protocol (Section 3).

• Using extensive simulations and mean field approximation, we study the
effects of the arrival and departure rates and other system parameters on
players’ utilities. We observe that if players are homogeneous, their expected
utilities are the highest when the competition in the system is the least,
i.e., when the system consists of one player. In line with this, the players’
expected utilities are maximized when their arrival and departure rates are
such that the average number of players present in the system is typically
between 1 and 2, since this leads to the system being in the condition of
least competition with high probability. The utilities increase almost lin-
early with the offered reward and converge to a constant value with respect
to its dispensing rate. We moreover observe that their individual invest-
ment is the highest when the system consists of two players, and thereafter
decreases almost inversely proportionally to the number of players present
in the system; the total power received by the center increases with the
number of players and converges to an amount proportional to the offered
reward (Section 4).

• We present a Stackelberg game, where the central entity as the leader decides
the amount of reward to offer, and the computational providers as the fol-
lowers decide how much power to invest based on the offered reward. The
amount of reward determined by the central entity influences the total power
invested by the providers, which in turn influences the central entity’s own
utility. We show that under practically reasonable assumptions, the central
entity’s utility is a concave function of the offered reward; we harness this
fact to analytically determine the optimal amount of reward that the central
entity should offer in order to maximize its utility (Section 5).

1.2 Related Work

In the literature, stochastic games have been extensively studied in terms
of theory (Goeree and Holt, 1999) as well as applicability in queuing sys-
tems (Altman, 1996), multiagent reinforcement learning (Bowling and Veloso,
2000), networks (Fu and Kozat, 2013), and complex living systems (Bellomo,
2008), among other applications. We briefly describe some of the works that
are relevant to ours, and position our work with respect to them. Altman and
Shimkin (1998) consider a processor-sharing service system where the service
rate to individual customers decreases with an increase in the load. Based on
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the observed load, an arriving customer’s decision comprises whether to join
the shared system or to use a constant-cost alternative such as a personal com-
puter. The authors show that if customers aim to minimize their individual
service times, any Nash equilibrium consists of threshold decision rules, with a
threshold on the queue length in the shared system. Nahir et al (2012) consider
a similar setup with the difference that customers consider using the system
over a long time scale and for multiple jobs. We consider a reverse of this
setup, wherein players provide computational resources instead of receiving
them. One could observe the difference in the obtained results; while a player’s
Nash equilibrium strategy follows a thresholding policy with a threshold on
the number of players present in the system in (Altman and Shimkin, 1998), it
follows a policy in our case that is smooth and non-monotone with respect to
the number of players present in the system (since a player’s investment is the
highest when the system consists of two players and thereafter decreases almost
inversely proportionally to the number of players present in the system). Wang
and Zhang (2013) investigate Nash equilibrium and socially optimal strategies
in a queuing system, where reentering the system (i.e., becoming a repeated
customer) is a strategic decision of the customers. Based on their observation of
the system and the underlying reward-cost structure, customers could employ
a pure strategy such as reentering or balking, or a mixed strategy such as reen-
tering with a certain probability. In our model, whether to reenter the system
is not explicitly a strategic decision, however, deciding to invest zero amount
of power is practically equivalent to deciding to be absent from the system.

Hu and Wellman (2003) generalize single-agent Q-learning to a noncooper-
ative multiagent context by updating the Q-function based on the presumption
that agents choose Nash equilibrium actions. In the framework of general-sum
stochastic games, their proposed method is shown to converge under highly
restrictive assumptions, and it is observed that agents are more likely to reach
a joint optimal path with Nash Q-learning than with single-agent Q-learning.
In contrast, we determine closed-form expressions for the equilibrium strategies
directly; this is possible because we are able to obtain closed-form expression
for a player’s utility given the system state and players’ strategies. Hassin and
Haviv (2002) propose a version of subgame perfect Nash equilibrium for games
with homogeneous players wherein the system state indicates the number of
players present in the system, and each player selects a strategy based on
its private information regarding the system state. Further, there exist works
which develop algorithms for computing reasonably good, not necessarily opti-
mal, strategies in a state-learning setting (Jiang et al, 2014; Wang et al, 2018).
In contrast to these works, our work focuses on analytically deriving equilib-
rium strategies and moreover, their closed-form expressions, in a setting where
players have knowledge regarding either the system state or the total power
that is being received by the center. Note that while the assumption of state
knowledge is perhaps strong in most general applications, the assumption of
having knowledge regarding the total power that is being received by the center
is justifiable in a volunteer computing setting, since the total power could be
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made a common knowledge by the center in order to exhibit its transparency
and trustworthiness for attracting players to be part of its system (we shall
subsequently provide details on such practical aspects).

As noted by (Abraham et al, 2006; Kwok et al, 2005), distributed systems
have been studied from the game theoretic perspective. Mengistu and Che
(2019) and Zheng and Xie (2018) respectively present surveys on the challenges
in volunteer computing and blockchain systems, which are two of most promi-
nent examples of modern-day distributed systems. In the literature, studies
considering strategic aspects in volunteer computing have primarily focused
on load balancing (Murata et al, 2008; Al Ridhawi et al, 2021) and sabotage-
tolerance (Sarmenta, 2001a; Watanabe et al, 2009), while those in blockchain
have focused on selfish mining (Eyal and Sirer, 2014; Sapirshtein et al, 2016;
Kwon et al, 2017) and pooled mining (Lewenberg et al, 2015; Eyal, 2015).
The aforementioned works on distributed systems do not consider game the-
oretic aspects of investment, which is the focus of our paper. Among the few
works that consider game theoretic aspects of investment, the closest to ours
are (Dimitri, 2017) and (Altman et al, 2020) (whose utility model is based on
that of (Dimitri, 2017)). A critical shortcoming of this utility model is that it
does not explicitly account for time (as acknowledged in (Dimitri, 2017)); in
particular, the cost incurred does not account for the time spent for mining.
Apart from the difference in the utility formulation, a fundamental differ-
ence is the formulation and analysis of a stochastic game resulting from the
arrival and departure of players, hence the difference in the equilibrium notion
(Markov perfect equilibrium versus Nash equilibrium) and the sets of analyses
and simulations studied.

To summarize, there exist game theoretic studies for distributed systems in
the literature, of which we have listed the representative works above. However,
the aspect of strategic investment of power by computational providers has not
been well studied. Furthermore, to the best of our knowledge, this work is the
first to study the game theoretic aspects of distributed computing when the
set of players is dynamic. In addition to proposing and analyzing a stochastic
game framework from the providers’ perspective, we study a Stackelberg game
that also considers the central entity’s perspective.

2 Our Model

We now model a distributed computing system wherein players arrive and
depart over time as well as strategize on the amount of power to be invested,
while receiving a certain reward for providing their computational power.
While we formulate our model considering a volunteer computing setting,
our model applies equally well to decentralized settings such as mining in
blockchain, as we shall discuss later. Table 1 presents the notation that we
follow throughout the paper.
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Table 1 Notation

r expected reward dispensed per segment

β rate of dispensing reward

ci cost incurred by player i when it invests unit power for unit time

λi arrival rate corresponding to player i

µi departure rate corresponding to player i

U universal set of players

ℓ amount of power apart from that invested by the players

S set of players currently present in the system

x
(S)
i strategy of player i in state S

x(S) strategy profile of players in state S

x policy profile

R
(S,x)
i expected utility of player i computed in state S under policy profile x

2.1 Model Formulation

Consider a center which seeks power from computational providers, so as to
utilize it for completing certain computational tasks. These tasks would gener-
ally be computationally demanding such as mining blocks, running simulations
with a very large number of iterations, or finding a good enough solution to
an NP-hard problem with a very large search space using randomized search.
The center expects certain returns from completing a task, and would dis-
pense reward to the providers either after the completion of a task or after
certain amount of time that is determined by the center. Based on the task
to be completed and the returns expected, the center can typically determine
the amount of reward that it can dispense and the amount of time after which
it can dispense the reward. The reward that is to be dispensed is distributed
among the providers based on their respective contributions.

Since our study focuses on the setting where players stochastically arrive
and depart over time, we can naturally formulate our model based on a contin-
uous time Markov chain framework. As an overview, a state would correspond
to the set of players present in the system, and the state transitions would
comprise the arrival and departure of players and the dispensing of reward
by the center. It is known that for preserving the Markov property that the
past and future states be independent if conditioned on the current state, it
is necessary that the time spent in each state has a memoryless property (i.e.,
the amount of additional time that would be spent in a state does not depend
on the amount of time that has been already spent in the state) and is hence
exponentially distributed. We shall see that this requirement is naturally satis-
fied in the studied setting. We now define the elements of the stochastic game
that results from our modeling based on the continuous time Markov chain
framework, namely, state space, reward, players’ policies (i.e., their strategies
corresponding to each state), state transitions and sojourn time corresponding
to each state, and players’ utility functions as computed in each state.
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2.1.1 State Space

Let U be the universal set of players, who arrive and depart over time. We
consider a standard setting for modeling the arrivals and departures of play-
ers. A player j, who is not present in the system, arrives after time which is
exponentially distributed with expected time 1

λj
. That is, λj is the arrival rate

parameter corresponding to player j. A player can depart by shutting down
its computer or by stopping/pausing its provision of the computational power
to the volunteer computing system (e.g., for running its own computation-
ally intensive tasks). A player j, who is present in the system, departs after
time which is exponentially distributed with expected time 1

µj
(i.e., µj is the

departure rate parameter corresponding to player j). The stochastic arrival
and departure of players and the stochastic dispensing of reward, make the
described process, a continuous time multi-state stochastic process. A state
corresponds to the set of players present in the system, that is, the system is
in state S if the set of players present in the system is S. Here, S ⊆ U , i.e.,
S ∈ 2U . Throughout the paper, we unambiguously write j ∈ U \ S as j /∈ S.

2.1.2 Reward

Let a segment be defined as the portion of time between consecutive instances
of dispensation of reward. Consider that the length of a segment is expo-
nentially distributed with rate parameter β. In other words, β is the rate of
dispensing reward. Also, based on the returns it expects, consider that the
center is willing to dispense an expected total reward of r per segment. As an
example, if the center utilizes the received power for mining blocks, a segment
can be imagined to be the time to mine a block, if the reward is dispensed
when a block is mined. The center would determine how much reward it can
dispense per block based on its expected returns. Since block mining typically
is a memoryless process, the time taken to mine a block is exponentially dis-
tributed (see Appendix A for details); the memoryless property of mining and
the exponential distribution of the mining time are well accepted conventions
in the literature (Liu et al, 2019; Biais et al, 2019; Dimitri, 2017; Grunspan
and Pérez-Marco, 2020).

Since the expected duration of a segment is 1
β and the expected total reward

dispensed per segment is r, the reward can be spread over a segment in a
continuous form such that the reward dispensed per unit time is rβ. Consider
that the reward at any time instant is allocated to the providers in proportion
to their respective investments at that instant. Using the continuous form of
the reward (i.e., rβ per unit time) and the aforementioned rule of allocating
the reward, the center can maintain account of the reward amount that a
player should receive and hence dispense it when the segment terminates.

2.1.3 Players’ Strategies and Policies

The above-mentioned accounting in a continuous form lets players compute
the amount of instantaneous reward they would receive if they invest a certain
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Fig. 1 A localized schema of the underlying continuous time Markov chain around a state
S (here, S = {a1, . . . , ap} where p = |S|, and U \ S = {b1, . . . , bq} where q = |U| − |S|)

amount of power at that instant, without having to consider the history. We
harness this memoryless property for formulating our Markov decision pro-
cess. In general, we consider that players are Markovian, that is, a player aims
to maximize its expected utility from the current time onwards, without con-
sidering the history. A player can modulate its invested power at any time
instant so as to maximize this utility.

Let the strategy of a player i indicating the amount of power that it would

invest at time τ if the system is in state S, be denoted by x
(S,τ)
i . As players

are Markovian, a player has no incentive to change its investment amidst a
state, if no other player changes its investment. Hence, we consider that no

player changes its investment within a state, that is, x
(S,τ)
i = x

(S,τ ′)
i for any

τ, τ ′. Thus, player i’s investment strategy can now be written as a function of

just the state, that is, x
(S)
i . For a state S where j /∈ S, we have x

(S)
j = 0 by

convention. A strategy profile of the players corresponding to a state S is a
tuple comprising each player’s strategy when the system is in state S; let it be

denoted by x(S) = (x
(S)
i )i∈U . As described earlier, a player’s policy indicates

its strategy when the system is in any given state. Let xi = (x
(S)
i )S⊆U denote

the policy of player i. Similar to strategy profile, a policy profile of the players
is a tuple comprising each player’s policy; let us denote it by x = (xi)i∈U . In
addition, let ℓ be the amount of power received by the center apart from that
invested by the players. This could be the center’s own power or that invested
by long-term stakeholders who invest a constant amount of power irrespective
of the system state. Hence, the total amount of power received by the center

in state S is
∑

j∈S x
(S)
j + ℓ.

Now, since the portion of the reward that is allocated to a player at any
given instant is proportional to its share of the total power received by the
center at that instant, the reward allocated to player i per unit time when the

system is in state S, is
x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ. We denote by cost parameter ci, the

cost incurred by player i for investing unit amount of power for unit amount of

time. So, the cost incurred by player i per unit time in state S is cix
(S)
i . Hence,

we have that its profit per unit time in state S is
x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ − cix
(S)
i .
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2.1.4 State Transitions and Sojourn Times

As mentioned earlier, the state transitions in the continuous time Markov chain
underlying our model comprises the arrival and departure of players and the
dispensing of reward by the center, and a transition occurs after time that
is exponentially distributed with the corresponding rate parameter. Figure 1
presents a localized schema of the underlying chain showing the transitions
from and into a state S along with their corresponding rate parameters. In
general, the possible events that can occur in a state S ∈ 2U are as follows:

1. the current segment ends with rate β and the system stays in state S for
the next segment;

2. a player j /∈ S arrives with rate λj , and the system transits to state S∪{j};
3. a player j ∈ S departs with rate µj , and the system transits to state S \{j}.

We can understand a continuous time Markov chain as having two com-
ponents, namely, (a) a parameter corresponding to each state specifying the
distribution of the amount of time that would be spent in that state and (b)
the jump chain describing the state transition probabilities (like in a discrete
time Markov chain). It is clear that if the system is in state S, the amount
of time until the occurrence of any of the above events is the minimum of
the times until any of the above events occurs. Now, the minimum of expo-
nentially distributed random variables, is another exponentially distributed
random variable with rate which is the sum of the rates corresponding to the
original random variables. So, the amount of time until the occurrence of any
of the above events, is exponentially distributed with rate parameter B(S),
where B(S) = β+

∑
j /∈S λj +

∑
j∈S µj . Hence, the sojourn time corresponding

to state S for the current segment (i.e., the expected amount of time spent in
state S until the occurrence of any of the above events) is 1

B(S) .
When any of the above events occurs, the system transits from state S

according to the state transition probabilities. If an event occurs before any
other event, the system transits to the target state corresponding to that event.
It is known that the probability of an event occurring before any other event
is equivalent to the corresponding exponentially distributed random variable
being the minimum, which in turn, is proportional to its rate. Hence, if the
system is in state S, the current segment ends before any arrival or departure
event with probability β

B(S) , a player j /∈ S arrives before any other event

with probability
λj

B(S) , and a player j ∈ S departs before any other event with
probability

µj

B(S) . Thus, the system can make the following transitions from a

state S ∈ 2U :

1. the system advances to the next segment and stays in state S with
probability β

B(S) ;

2. the system transits to state S ∪ {j} with probability
λj

B(S) ;

3. the system transits to state S \ {j} with probability
µj

B(S) .
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2.1.5 Utility Function

As explained earlier, when the system is in state S, the profit made per unit

time by player i is
x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ − cix
(S)
i , and the sojourn time in state S for

the current segment is 1
B(S) . So, the net expected profit made by player i in

state S before the system transits to another state or advances to the next

segment, is

x
(S)
i∑

j∈S x
(S)
j

+ℓ
rβ−cix(S)

i

B(S) .
In economics, the utilities corresponding to future events are commonly

considered to be discounted, that is, the utility corresponding to a future event
is perceived to be lower at the present time as compared to at the time of
its occurrence. In our model, this discounting could be owing to a number of
reasons, one being the uncertainty regarding whether or not there would be a
next segment. We consider that a player i perceives its utility to be discounted
by a factor of δ ∈ [0, 1) for every future segment, where δ = 0 means that the
utility corresponding to only the current segment is valued.

Let R
(S,x)
i denote the expected utility of player i as computed in state

S. We now obtain an expression for R
(S,x)
i using the above description, as

summarized below:

1. the net expected profit made by player i for the current segment in state S

before the system transits to another state, is

x
(S)
i∑

j∈S x
(S)
j

+ℓ
rβ−cix(S)

i

B(S) ;

2. with probability β
B(S) , the system stays in state S while advancing to the

next segment, for which player i’s expected utility is perceived as δR
(S,x)
i ;

3. with probability
λj

B(S) , the system transits to state S ∪ {j} where player i’s

expected utility would be R
(S∪{j},x)
i ;

4. with probability
µj

B(S) , the system transits to state S \ {j} where player i’s

expected utility would be R
(S\{j},x)
i .

Hence, player i’s expected utility when the system is in state S can be
recursively computed as:

R
(S,x)
i :=

x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ − cix
(S)
i

B(S)
+

β

B(S)
·δR(S,x)

i

+
∑
j /∈S

λj

B(S)
·R(S∪{j},x)
i +

∑
j∈S

µj

B(S)
·R(S\{j},x)
i (1)

where B(S) = β +
∑
j /∈S λj +

∑
j∈S µj .

Note that while we formulated our model considering the use case of vol-
unteer computing where the fraction of reward received is proportional to
the invested power, it also applies to other applications such as mining in
blockchain where the probability of winning the reward is proportional to the
invested power. We refer the reader to Appendix A for a more detailed discus-
sion. Furthermore, while we modeled the most general case of heterogeneous
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players, the cases of homogeneous players as well as multi-type players (which
also have not been studied in the literature) are special cases of our model and
analysis.

2.2 A Closed-form Expression for the Expected Utility

We now derive a closed-form expression for a player’s expected utility from
Equation (1) which is recursive. Define an ordering O on sets which presents
a one-to-one mapping from a set S ⊆ U to an integer between 1 and 2|U|, both

inclusive. Let R
(x)
i be the vector whose component O(S) is R

(S,x)
i . We now

present the following convergence result and provide its proof in Appendix B.
The proof is based on harnessing the fact that the transition matrix is strictly
substochastic.

Lemma 1 The recursive equation for R
(x)
i , Equation (1), converges for any policy

profile x.

As the recursive equation for R
(S,x)
i converges, the values of R

(S,x)
i on both

sides of Equation (1) would be the same at convergence. Hence, bringing all

terms containing R
(S,x)
i to one side, we get that player i’s expected utility as

computed in state S is:

R
(S,x)
i =

x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ − cix
(S)
i

D(S)
+
∑
j /∈S

λj

D(S)
·R(S∪{j},x)
i +

∑
j∈S

µj

D(S)
·R(S\{j},x)
i

(2)

where D(S) = (1− δ)β +
∑
j /∈S λj +

∑
j∈S µj .

It is worth pointing out the change in the denominator from B(S) to D(S)

where β is multiplied by a factor of (1− δ).
In order to derive a closed-form expression for the expected utility, define

a matrix W of size 2|U|×2|U|. When referring to element W (O(S),O(S′)), we
use the shorthand W (S, S′) as it does not introduce any ambiguity. Let the
elements of W be:

for j /∈S : W (S, S ∪ {j}) =
λj

D(S)
,

for j∈S : W (S, S \ {j}) =
µj

D(S)
,

and all other elements of W are 0. (3)

Since β > 0 and δ < 1, we have D(S) >
∑

j /∈S λj +
∑

j∈S µj . Hence, the
sum of the elements in each row of W is less than 1. That is, W is strictly
substochastic.

Let Z
(x)
i be the vector whose component O(S) is Z

(S,x)
i , where

Z
(S,x)
i =

(
rβ∑

j∈S x
(S)
j + ℓ

− ci

)
x
(S)
i

D(S)
(4)
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Note that Equation (2) can be written in matrix form as R
(x)
i = WR

(x)
i +

Z
(x)
i , which gives (I −W)R

(x)
i = Z

(x)
i . Since W is strictly substochastic, we

obtain the following result presenting a closed-form expression for the expected
utility.

Proposition 1 R
(x)
i = (I−W)−1Z

(x)
i .

While a general analysis of the concerned stochastic game when considering

arbitrary forms of W and Z
(x)
i may not be tractable, we shall show that the

analysis turns out to be tractable for the proposed model.

3 Analysis of Markov Perfect Equilibrium

It is known that in a finite player game with a finite state space and finite
action spaces, if the horizon is either finite or infinite with the utility function
being continuous at infinity, Markov perfect equilibrium (MPE) is guaranteed
to exist (Maskin and Tirole, 2001). However, our considered game has infinite
action spaces in each state and so, it cannot be inferred whether an MPE exists.
In this section, we analyze MPE for our considered game, thus showing its
existence, and hence discuss its properties. Recall that a player’s MPE policy is
a best response to the other players’ MPE policies. Let the equilibrium utility
of player i as computed in state S (while foreseeing the effects of its actions
on the state transitions and the resulting utilities, as well as the MPE policies

of other players) be denoted by R̂
(S,x)
i . A general approach for determining

an optimal policy in a single-agent MDP is using policy-value iterations to
reach a fixed point. We can determine MPE in a similar way. In particular, for

maximizing R̂
(S,x)
i , we could assume that we have optimized for other states

and use those values to find an optimizing x for maximizing R̂
(S,x)
i . It is worth

noting that for our model, we could determine the fixed point directly since

we have a closed-form expression for vector R
(x)
i in terms of policy profile x

(Proposition 1). Now, from Equation (2), the Bellman equations over states
S ∈ 2U for player i can be written as:

R̂
(S,x)
i =max

x

{ x
(S)
i∑

j∈S x
(S)
j +ℓ

rβ − cix
(S)
i

D(S)
+
∑
j /∈S

λj

D(S)
·R̂(S∪{j},x)
i +

∑
j∈S

µj

D(S)
·R̂(S\{j},x)
i

}

where D(S) = (1− δ)β +
∑
j /∈S λj +

∑
j∈S µj .

We now determine the MPE investment policy of each player, that is, the
investment strategy of each player for each state, in MPE.
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Proposition 2 In MPE, a player i invests x
(S)
i = max

{
ψ(S)

(
1− ciψ

(S)

rβ

)
, 0
}
,

where ψ(S) =
∑
j∈S x

(S)
j + ℓ = rβ

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

2
∑

j∈Ŝ cj
. Here, Ŝ is the max-

imal set of players j ∈ S which collectively satisfy the constraints cj <
rβ
ψ(S) . Set Ŝ

can be constructed iteratively by adding players j from set S \ Ŝ one at a time, in
ascending order of cj , until when adding a new player p to Ŝ violates the constraint

cp<
2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

.

Proof Recall that since W is a strictly substochastic matrix, (I − W)−1 =

limt→∞
∑t−1
η=0(W)η. Since all the elements of W are non-negative, all the elements

of (W)η also are non-negative for any natural number η, and hence all the elements

of (I − W)−1 are non-negative. Also, since R
(x)
i = (I − W)−1Z

(x)
i (Proposition 1)

and since W is independent of x
(S)
i , maximizing the components of Z

(x)
i (namely,

Z
(S,x)
i ) individually with respect to x

(S)
i would essentially maximize all the elements

of R
(x)
i . Recall that

Z
(S,x)
i =

(
β∑

j∈S x
(S)
j + ℓ

r−ci

)
x
(S)
i

D(S)
.

where D(S) = β +
∑
j /∈S λj +

∑
j∈S µj .

It can be shown that Z
(S,x)
i is a concave function w.r.t. x

(S)
i (the second derivative

is −2rℓβ

(
∑

j∈S x
(S)
j +ℓ)3D(S)

). The first order condition
dZ

(S,x)
i

dx
(S)
i

= 0 gives

x
(S)
i =

(∑
j∈S

x
(S)
j + ℓ

)(
1− ci

rβ

(∑
j∈S

x
(S)
j + ℓ

))
.

Let ψ(S)=
∑
j∈S x

(S)
j + ℓ. As x

(S)
i is non-negative, we have

x
(S)
i = max

{
ψ(S)

(
1− ψ(S)

rβ
ci

)
, 0

}
. (5)

Let Ŝ = {j ∈ S : x
(S)
j > 0}. We later show how to determine set Ŝ. Summing the

above over all players in S and then adding ℓ on both sides, we get

∑
j∈S

x
(S)
j + ℓ = ψ(S)

(
|Ŝ| − ψ(S)

rβ

∑
j∈Ŝ

cj

)
+ ℓ.

Substituting
∑
j∈S x

(S)
j + ℓ as ψ(S), we get

1

rβ

∑
j∈Ŝ

cj

(
ψ(S)

)2
− (|Ŝ| − 1)ψ(S) − ℓ = 0.

Note that if Ŝ = ∅ (that is, x
(S)
j = 0, ∀j ∈ S), we have |Ŝ| = 0 and

∑
j∈Ŝ cj = 0,

in which case we obtain the trivial result ψ(S) = ℓ. Hence, consider |Ŝ| > 0 and∑
j∈Ŝ cj > 0. Solving the above equation for positive value of ψ(S), we get
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ψ(S) = rβ
|Ŝ| − 1 +

√
(|Ŝ| − 1)2 + 4ℓ

rβ

∑
j∈Ŝ cj

2
∑
j∈Ŝ cj

.

Substituting this expression for ψ(S) in Equation (5) gives the MPE strategy of
player i in state S.

So, x
(S)
i > 0 iff ci <

2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

. In other words, i ∈ Ŝ iff

ci <
2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

. Now, it is mathematically possible for Ŝ to con-

sist of players with higher cost parameters while excluding players with lower cost
parameters (e.g., consider ℓ → 0, S = {1, 2, 3}, c1 = 1, c2 = 2, c3 = 4; here Ŝ could
be any of {1, 2}, {1, 3}, {2, 3}). However, since we are examining MPE, given such a
set Ŝ, a non-investing player with a lower cost parameter could unilaterally deviate
to invest, which would hence lower the threshold cost parameter, thus compelling a
previously investing player with a higher cost parameter to not invest. Hence, the
constraint implies that if player i invests, then player j with cj < ci also invests.

So, there exists a threshold player î such that any player j with cj > cî would not

invest. Hence, set Ŝ can be constructed iteratively (initiating from an empty set) by
adding players j from set S \ Ŝ one at a time, in ascending order of cj , until the
above constraint is violated for the cost parameter of the newly added player. □

Practical Aspects

We now briefly discuss certain practical aspects of our model and the result.
We consider that a player can modulate its invested power as and when the
system changes its state. As this may not be feasible every time in practice,
the power can be modulated by a pre-configured automated software on the
player’s machine. The player can strategically devise its policy, that is, how
much power to invest when the system is in a given state.

From Proposition 2, it can be seen that a player is not required to have
knowledge about the arrival and departure rates, for determining its MPE

policy. This is owing to the fact that a player’s MPE utility R
(S,x)
i computed in

state S is a linear combination with constant non-negative weights, of Z
(S′,x)
i

over all states S′, which are mutually independent (that is, the value of Z
(S′,x)
i

in a given state S′ does not depend that in another state).
Furthermore, from Proposition 2, it may seem that in order to determine

its MPE policy, a player is required to have knowledge about the system state
and other players’ cost parameters. However, note that if the total power ψ(S)

that is being received by the center is known, player i’s MPE investment x
(S)
i =

max
{
ψ(S)

(
1− ciψ

(S)

rβ

)
, 0
}
does not require knowledge about the system state

and other players’ cost parameters.
With regard to the players having knowledge about the state that the sys-

tem is in or the total power that is being received by the center, the state or
the total power could be made a common knowledge by the center in order to
exhibit its transparency and trustworthiness, so as to attract players to be part
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of its distributed system. A parallel to this can be drawn in the context of cer-
tain blockchain mining pools where a real-time dashboard shows information
about the total power being invested by the pool’s members. Furthermore, we
shall see in Section 4 that in MPE, a player invests more power when there are
less players present in the system. Since this ensures that the center receives
a decent amount of power even when there are less players present in the sys-
tem, the center itself has an ulterior motive for making the state a common
knowledge. Alternatively, players themselves could form a group wherein they
share information about their arrivals and departures. The power invested by
players not belonging to the group could then be thought of as being part of ℓ.

The above justifications are relevant when we aim to determine the precise
and accurate investments in MPE by considering players to be heterogeneous.
The assumption of players’ parameters being a common knowledge can be
bypassed if we consider players to be homogeneous. Similarly, if neither the
system state nor the total power being received by the center is a common
knowledge, a mean field approach could be employed wherein we study a
player’s investment in the ‘average state’. We shall have a more elaborate
discussion on these in the next section.

4 Sensitivity Analysis

We inferred in the previous section that for players to determine their MPE
policies, they are not required to have knowledge about the arrival and depar-
ture rates. However, it can be seen from Equation (2) and Proposition 1 that
the players’ utilities would depend on these rates. Hence, in this section, we
study the effects of these rates, as well as the other system parameters, on the
utilities in MPE.

From Proposition 1, we can see that computing expected utility involves
the computation of (I−W)−1, which in general, is arguably infeasible to obtain
analytically as well as computationally for practical values of |U| since the
number of states would be 2|U|. So, for simplification, consider that the play-
ers are homogeneous; let their common arrival rate, departure rate, and cost
parameter be λ, µ and c, respectively. With this simplification, from the sys-
tem’s perspective, the states corresponding to the players’ sets can be mapped
to their cardinalities. From a particular player i’s perspective, the players’ sets
can be mapped to their cardinalities while also capturing whether they con-
tain player i. Hence, the state space comprises the empty set, the universal
set, and two states each (capturing whether or not the set contains player i)
for all the other |U| − 1 cardinalities. So, the total number of states is 2|U|, as
opposed to 2|U| in the general case.

It can be seen that in the homogeneous case, if the number of players
present in the system is s, the collective constraint on the cost parame-
ters presented in Proposition 2 for players to invest can be written as c <

2sc

s−1+
√

(s−1)2+ 4ℓ
rβsc

. This simplifies to c < rβ
ℓ . If this constraint is not satisfied,
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no player invests, which would not be of interest. Hence, we consider that the
values of parameters r, c, β, ℓ are such that c < rβ

ℓ .
Let us first understand the expected utility of a player i in the absence of

state transitions (i.e., λ = µ = 0) and only the current segment is considered
(i.e., δ = 0). For the state corresponding to the players’ set having cardinal-
ity s and containing player i, let x(s) denote the player’s MPE strategy and
V (s) denote the aforementioned utility when λ = µ = 0 and δ = 0. Using

Equation (2), we can see that V (s) =
x(s)

sx(s)+ℓ
rβ−cx(s)

β (note that V (s) is concep-

tually different from Z
(S,x)
i (Equation (4)) since in the latter, the arrival and

departure rates as well as δ are not 0). Now, from Proposition 2, we have that

x(s) =
rβρ(s)

2sc

(
1− ρ(s)

2s

)
and sx(s) + ℓ =

rβρ(s)

2sc
(6)

where ρ(s) = s− 1 +
√

(s− 1)2 + 4ℓ
rβ sc.

Hence, V (s) = r
(
1− ρ(s)

2s

)2

= r
4s2

(
s+ 1−

√
(s− 1)2 + 4ℓ

rβ sc
)2

. So, the

expected utility of player i in the current segment, when there are s players
present in the system without transiting to another state, is

r

4s2

(
s+ 1−

√
(s− 1)2 +

4ℓ

rβ
sc

)2

= V (s), if player i is present

and 0, if player i is absent

(7)

We now proceed to analyzing the expected utility for the general homoge-
neous case in the presence of state transitions. In what follows, we drop player
i’s specification in the notation since it does not introduce ambiguity in the
homogeneous case.

4.1 Formulation of Different Types of Expected Utilities

Recall that a state captures the number of players present and whether or
not the given player is present in the system. While a player can compute its
expected utility in each state, it may not always be the case that a player
knows the current state. However, the player can always compute the following
types of expected utilities:
(a) R∋ – the conditional expected utility given that it is currently present;

(b) R ̸∋ – the conditional expected utility given that it is currently absent;

(c) ⟨R⟩ – the overall expected utility without having to know whether or not
it is currently present in the system.

We now formulate the aforementioned types of expected utilities. In what

follows, let N = |U|. Let R(s)
∋ and R

(s)
̸∋ denote the expected utilities as com-

puted in the states corresponding to the given player being present and absent,
respectively, when the number of players present in the system is s. We can
hence write Equation (2) for these two types of states, given the number of
players present (s), as:
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For s ∈ {1, . . . , N} : R
(s)
∋ =

βV (s)

D(s)
+

(N − s)λ

D(s)
R

(s+1)
∋ +

(s− 1)µ

D(s)
R

(s−1)
∋ +

µ

D(s)
R

(s−1)
̸∋

(8)

For s ∈ {0, . . . , N−1} : R
(s)
̸∋ =

(N − s− 1)λ

D(s)
R

(s+1)
̸∋ +

λ

D(s)
R

(s+1)
∋ +

sµ

D(s)
R

(s−1)
̸∋

(9)

where D(s) = (1− δ)β+(N − s)λ+ sµ. Note that the second term vanishes in
Equation (8) for s = N , while the last term vanishes in Equation (9) for s = 0.

Let ⟨R(s)⟩ be the expected utility of the given player computed when the
number of players present is s, without having to know whether or not the
player is currently present. Given that the number of players present is s,
without any additional information, the given player would be present with
probability s

N and absent with probability N−s
N . So, we have

⟨R(s)⟩ = s

N
R

(s)
∋ +

N − s

N
R

(s)
̸∋ (10)

Now, in order to derive R∋, R̸∋ and ⟨R⟩, while the given player need not
know the number of players present, it should have the probability distribution
over the number of players present in the system. For deducing this distribu-
tion, we harness the fact that the underlying stochastic arrival and departure
process resembles an Engset’s system (Cohen, 1957) in queueing theory, which
concerns a finite population size as in our model. Given population size N ,
arrival rate λ and departure rate µ, the probability PNλ,µ(s) that the number
of players present in the system is s, is:

PNλ,µ(s) =

(
N

s

)(
λ

λ+ µ

)s(
µ

λ+ µ

)N−s

It is known that the probability of a given player being present, or alternatively
the fraction of time for which a given player is present, is λ

λ+µ . The expected

number of players present is hence λ
λ+µN . The mean duration of a full Engset

cycle is 1
λ + 1

µ .
As earlier, given that the number of players present is s, a given player

would be present with probability s
N and absent with probability N−s

N . So, the
probability that the system consists of s players, with the given player present
is PNλ,µ(s)

s
N , and that with the given player absent is PNλ,µ(s)

N−s
N . Hence, the

overall probability of the given player being present is
∑

s PNλ,µ(s)
s
N , and that

of being absent is
∑

s PNλ,µ(s)
N−s
N . Thus, we have

R∋ =

∑
sR

(s)
∋ PNλ,µ(s)

s
N∑

s PNλ,µ(s)
s
N

(11)

R ̸∋ =

∑
sR

(s)
̸∋ PNλ,µ(s)

N−s
N∑

s PNλ,µ(s)
N−s
N

(12)
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⟨R⟩ =
∑
s

PNλ,µ(s)⟨R
(s)⟩ =

∑
s

R
(s)
∋ PNλ,µ(s)

s

N
+
∑
s

R
(s)
̸∋ PNλ,µ(s)

N − s

N

As the probabilities of the given player being present and absent are also given
by λ

λ+µ and µ
λ+µ , respectively, we can also write

⟨R⟩ = λ

λ+ µ
R∋ +

µ

λ+ µ
R̸∋ (13)

While the above expressions can be evaluated numerically, they are not easy to
analyze or get insights into. With the aim of obtaining simplified expressions
for R∋, R̸∋ and ⟨R⟩, albeit approximate, we present a mean field approach.

4.2 A Mean Field Approach

In our proposed mean field approach, we consider only two states, namely,
S∋ and S̸∋ corresponding to given player being present and absent, respec-
tively. The system is considered to invariably comprise an average number
of players (say n), which is not affected by the arrival or departure of the
given player. Being an Engset’s system, we have that n = λ

λ+µN . From

Equation (7), the expected utility of player i in the current segment when
there are s players present in the system without transiting to another state,
is V (s) if the player is present when the utility is being computed, and 0 oth-
erwise. So, in the mean field approach, the given player’s utility would be

V (n) = r
4n2

(
n+ 1−

√
(n− 1)2 + 4ℓ

rβnc
)2

if computed in state S∋, and 0 if

computed in state S̸∋. Note that since V (s) is defined for s ∈ {1, . . . , N}, the
interpolation V (n) holds valid for n ∈ [1, N ].

For computing the expected utility in state S∋ providing an approximation
to R∋, the events that we need to account for are: (a) the player departing
with rate µ, thus transiting the system to state S̸∋, in which the expected
utility computed would be R̸∋, and (b) the segment terminating with rate β,
in which case the system stays in state S∋ for the next segment where the
expected utility would be perceived as δR∋. While in state S∋ for the current
segment, the net expected profit made per unit time is βV (n) and the sojourn
time is 1

β+µ . So, the net expected profit made in state S∋ before the system

transits to S̸∋ or advances to the next segment, is βV (n)

β+µ . On similar lines, we
can express the expected utility in state S̸∋ providing an approximation to
R̸∋. Thus, we have:

R∋ ≈ βV (n)

β + µ
+

β

β + µ
δR∋ +

µ

β + µ
R̸∋

R ̸∋ ≈ β

β + λ
δR̸∋ +

λ

β + λ
R∋

(14)

where n = λ
λ+µN . Solving the above two equations, we get the following

closed-form expressions:

R∋ ≈ V (n)

1− δ

(
(1− δ)β + λ

(1− δ)β + λ+ µ

)
(15)
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R̸∋ ≈ V (n)

1− δ

(
λ

(1− δ)β + λ+ µ

)
(16)

Also, since we know from Equation (13) that ⟨R⟩ = λ
λ+µR∋+

µ
λ+µ R̸∋, we have:

⟨R⟩ ≈ V (n)

1− δ

(
λ

λ+ µ

)
(17)

Note that the above expression for ⟨R⟩ can also be viewed as n
N V

(n)(1 +
δ + δ2 + . . .). This is consistent with our understanding that the mean field
approach simplifies the system to contain the average number of players n,
where the probability of the given player being present is n

N , thus rendering

an expected utility of n
N V

(n) for a segment. Considering also all the future
segments and the discount factor associated with them, we obtain the afore-
mentioned expression for ⟨R⟩. Further, it can be seen from Equations (15),
(16) and (17) that R̸∋ < ⟨R⟩ < R∋, which is intuitive. As a concluding
remark to the described mean field approach, we highlight that larger values
of n = λ

λ+µN would lead to better approximations, owing to the underlying
assumption that the arrival or departure of the given player does not affect
the number of players present in the system.

4.3 Effects of Parameters on Players’ Utilities

We now study the effects of the arrival and departure rates and other sys-
tem parameters on the aforementioned different types of expected utilities of
a player. In this study, we consider the use case of Bitcoin mining pools which
are a form of volunteer computing systems. For supplementary details, a dis-
cussion on the applicability of our proposed model to mining in blockchain
(e.g., Bitcoin mining) is provided in Appendix A. In this use case, the individ-
ual miners in the mining pool constitute the set of players U , and the amount
of power apart from that invested by this set of players (i.e., this mining pool)
is ℓ. Further, the mining of a block corresponds to a segment. With this in
view, we now present the parameters’ values that we consider in our numerical
study with the help of practical references.

As of 2022, the amount of offered reward for successfully mining a block is
6.25 Bitcoins (Conway, 2022); this approximately translates to $3× 105. The
Bitcoin mining complexity is set with a target of finding new blocks once every
10 minutes on average (Conway, 2022); this translates to 6 blocks hour−1 on
average. Hence, the amount of reward offered for a segment (i.e., mining of a
block) is $3 × 105, and its dispensing rate is 6 hour−1. For electricity costs,
we consider the rate to be $0.12 per kWh (Alves, 2022; Wong and McArdle,
2020). Since the number of individual players (i.e., miners) in a mining pool is
usually in the order of thousands, we consider N = 1000 (Bitpanda, 2021). For
our numerical study, we consider ℓ = 106. Hence, unless specified otherwise, we
consider r = 3 × 105, β = 6, c = 0.12, N = 103, and ℓ = 106. In what follows,
we consider δ = 0, that is, players consider the expected utility corresponding
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Fig. 2 MPE investment of a player as a function of the number of players present in the
system

to only the current segment. The results for other values of δ ∈ (0, 1) are just
scaled versions of the results for δ = 0 and are qualitatively very similar.

We first study how a player’s investment strategy is influenced by the
number of players present in the system. Recall that since the considered
parameters’ values satisfy the constraint c < rβ

ℓ , a player would invest a
positive amount of power if it is present. Figure 2 presents a player’s MPE
investment strategy as a function of the number of players present in the sys-
tem. When s = 0, trivially x(s) = 0 as no player is present. When s = 1, the
player which is present faces no competition from any strategic agent; the only
competition it faces is that due to ℓ which is a constant. However, when s = 2,
it transforms into a game with two strategic agents, which is why the play-
ers are compelled to invest more power until they settle at their equilibrium
investments. In order to understand the nature of the plot for s > 2, recall from

Equation (6) that sx(s) + ℓ = rβρ(s)

2sc , where ρ(s) = s − 1 +
√

(s− 1)2 + 4ℓ
rβ sc.

So, we have x(s) = 1
s

(
rβρ(s)

2sc − ℓ
)
. It can be easily shown that for s > 2, we

have dx(s)

ds < 0, implying that x(s) is a monotone decreasing function of s for
s > 2. This explains the peak at s = 2. Beyond a certain value of s, that is,
s >> 4ℓc

rβ , we have ρ(s) ≈ 2s. So, we have

x(s) ≈ 1

s

(
rβ

c
− ℓ

)
, for s >>

4ℓc

rβ
(18)

In other words, beyond a certain value of s, x(s) is approximately inversely
proportional to s.

An intuition for the above observation is that when more players are
present, their aggregate power can dominate power ℓ even if they do not invest
large amounts of power individually, in which case the reward received by a
player is almost inversely proportional to the number of players present. The
reduced reward per unit amount of power invested is then compensated by
the player by reducing its power invested so as to reduce the cost incurred.
This strategy where players invest more when there are less players present,
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Fig. 3 Total power received by the center as a function of the number of players present
in the system
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Fig. 4 Expected utility of a player as computed when a certain number of players are
present in the system

is beneficial for the center for continuing to receive a decent amount of power
even when less players are present in the system. Figure 3 presents the effect
of the number of players present on the total amount of power received by the
center. The nature of this plot can again be understood from Equation (6). In
particular, it can be seen that as s grows to a large number, the total power
converges to rβ

c (i.e., 1.5 × 107 for the considered parameters’ values). Intu-
itively, as the expected reward being dispensed is bounded, it is natural that
the total power received by the center would also be bounded.

Figure 4 presents how the number of players present affects the different
types of expected utilities of a player, when we consider λ = 1, µ = 4. Owing

to their definitions, the plots for R
(s)
∋ and R

(s)
̸∋ do not have values at s = 0 and

s = N , respectively. A first observation is that for a given value of s, the utility
computed when the player is present is higher than when it is absent; this is
true as the constraint c < rβ

ℓ is satisfied, investing always fetches some reward.

It can be seen that the plots of both R
(s)
∋ and R

(s)
̸∋ decrease monotonically.

If the given player is present, it is clearly advantageous to have less players
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Fig. 5 Effect of arrival and departure rates on a player’s expected utility if the player is
present in the system when the utility is being computed
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Fig. 6 Effect of arrival and departure rates on a player’s expected utility if the player is
absent from the system when the utility is being computed

present so that the player receives a larger share of the reward. If the player is
absent, it is again advantageous to have less players present so that when the
player arrives, it is likely to receive a larger share of the reward. Note that the
number of players present would likely change by the time the player arrives,
but the change around a smaller number of players is beneficial as compared

to that around a larger number. Recall that ⟨R(s)⟩ = s
NR

(s)
∋ + N−s

N R
(s)
̸∋ , which

justifies why its plot drifts away from R
(s)
̸∋ and towards R

(s)
∋ as s increases.

When the utility is computed at s = 0, the reward is not received by any of
the players until a player arrives. We can see that the plot for ⟨R(s)⟩ has a
peak at s = 1; this is where the system has the least competition (the only
competition is due to ℓ) and the player is present with probability s

N . Also,

note that s
N V

(s) can be viewed as a myopic form of ⟨R(s)⟩; it can be shown

that s
N V

(s) peaks at s = 1, which gives an idea for the peak at s = 1 for ⟨R(s)⟩.
Figures 5, 6 and 7 illustrate the effects of arrival and departure rates on R∋,

R̸∋ and ⟨R⟩, respectively. It can be seen that the plot of R∋ with respect to
λ is monotone decreasing like a reverse sigmoid function, while all other plots
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are bell-shaped. If the player is present when the utility is being computed, it
is advantageous if not many players arrive so that the reward is shared among
less players; this explains the monotone decreasing plots in Figure 5(a). On
the other hand, referring to Figure 5(b), as µ increases, it may be beneficial
early on as more players are likely to depart, thus resulting in the reward
being shared among less players. However, beyond a certain value of µ, the
disadvantage due to the increasing probability of the player itself departing
and staying out of the system dominates the advantage of less players being
present, which explains its non-monotonic nature. In Figure 6(a), the player
is absent when the utility is being computed and so, an increase in λ would
increase its probability of arriving and receiving a share of the reward while
staying in the system. However, as λ increases, the number of players present
is also likely to be higher and beyond a certain value, its disadvantage would
dominate the advantage of the increases probability of the given player being
present. In Figure 6(b), for an increase in µ initially, it is likely that when
the given player arrives, the competition would be low, which would aid in
obtaining a higher reward. However, beyond a certain µ, the fraction of time
spent in the system once the player arrives, would be low and dominate the
effect of less competition. On similar lines, the non-monotonicity in Figure 7
can be explained as due to the trade-off between a lower competition owing
to less players being present and a higher probability of the player itself being
absent.

It can be seen that in the bell-shaped plots, the peaks occur when the
average number of players λ

λ+µN is between 1 and 2, typically close to 2. This is
in line with our earlier observation that a player’s overall expected utility is the
highest when the system consists of one player, because if the average number
of players in the system is such, the system consists of one player with high
probability. Note, however, that if the average number of players in the system
is close to 1, the probability of the system being in the state corresponding
to zero players would be high, which would be highly disadvantageous to the
player. Hence, though a player’s overall expected utility is the highest when
the system consists of one player, having a system with only one player on
average is counterproductive.

It is also interesting to see that the plots of R∋ achieve a higher maxima for
lower values of λ and µ (in Figures 5(a) and 5(b) respectively), while the plots
of R̸∋ achieve a higher maxima for higher values of λ and µ (in Figures 6(a)
and 6(b) respectively). This can be explained through the relation between the
mean duration of a full Engset cycle (i.e., 1

λ+
1
µ ) and the expected time for the

segment to terminate (i.e., 1
β ). Note that after a full Engset cycle, each player

arrives and departs once on average and so, the effect of the given player being
present or absent, diminishes. Hence, given the expected time after which the
segment would terminate, if the player is present, it is beneficial if the Engset
cycle takes a larger time portion of the segment, so as to take more advantage
of its initial status of being present. This explains why the maxima of R∋
corresponding to lower values of the parameters are higher, since they result
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Fig. 7 Effect of arrival and departure rates on a player’s expected utility if the player is
agnostic about its presence in the system when the utility is being computed

in a longer Engset cycle. For the exact opposite reason, the maxima of R ̸∋
corresponding to higher values of the parameters are higher, since they result
in a shorter Engset cycle.

In Figure 7, the plots of ⟨R⟩ for different values of λ and µ are just shifted
versions of each other. Diving deeper, it can be observed that the plots only
depend on the ratio λ

µ and not the individual values of λ and µ (which is why

the peaks also are achieved for the same ratio λ
µ ). This is intuitive since if the

player is agnostic about its presence in the system, it is unlike the dynamics
for R∋ and R̸∋ where the values of λ and µ in relation to β could be of
importance. The only critical factor would be the fraction of time that player
would be present during the segment, without knowing whether or not it is

currently present, and this depends only on the ratio (since λ
λ+µ =

λ
µ

λ
µ+1

). This

can also be understood from the mean field expression for ⟨R⟩ (Equation (17))
whose value depends only on the ratio λ

µ , as against those for R∋ and R ̸∋
(Equations (15) and (16)) whose values are influenced by the individual values
of λ and µ and not just their ratio.

We now study the effects of other parameters, namely, r, β and ℓ on the
different types of expected utilities of a player. While studying the effect of a
parameter, we consider the values of the other parameters to be as mentioned
earlier. Further, in order to observe the asymmetry of R∋ and R ̸∋ around ⟨R⟩,
we consider λ ̸= µ, in particular, λ = 1, µ = 4.

Figure 8 illustrates the effect of reward parameter r on the different of
types of expected utilities. The constraint for a player to invest: c < rβ

ℓ , can

be rewritten as r > cℓ
β (i.e., 20000 for the considered parameters’ values). So, a

player invests only when the value of r is higher than this threshold, as can be
seen from the micro view of the plot. In order to explain the effect of r on R∋,
R̸∋ and ⟨R⟩, we refer to their mean field equations, namely, Equations (15),

(16) and (17). Here, V (n) = r
4n2

(
n+ 1−

√
(n− 1)2 + 4ℓ

rβnc
)2

, where n =
λ

λ+µN (i.e., 200 for the considered parameters’ values, which is large enough for

the mean field approach to be a good approximation of the system). In order
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Fig. 8 Effect of r on a player’s expected utility
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Fig. 9 Error in expected utility as a function of r if computed using mean field approach

to see how accurately the mean field expressions approximate the values of the
different types of expected utilities, we present the % errors corresponding to
them in Figure 9 (the error plots for R∋, R̸∋ and ⟨R⟩ almost coincide for the
considered range of r). Owing to the reasonably good approximation, we can
harness the mean field expressions owing to their simplified forms, for getting
insights into our observations. For small values of r, it can be shown that V (n)

and hence R∋, R ̸∋ and ⟨R⟩, are convex in r, which is evident from the micro
view of the plot in Figure 8. For large values of r, we have V (n) ≈ r

n2 , that is,

V (n) is close to linear in r. Hence, R∋, R̸∋ and ⟨R⟩ are also close to linear in
r for large values of r; their slopes can be deduced approximately from their

mean field equations to be 1
n2(1−δ)

(
(1−δ)β+λ

(1−δ)β+λ+µ

)
, 1
n2(1−δ)

(
λ

(1−δ)β+λ+µ

)
and

1
n2(1−δ)

(
λ

λ+µ

)
, respectively (here, δ = 0).

Figure 10 illustrates the effect of parameter β on R∋, R̸∋ and ⟨R⟩. The
constraint for a player to invest can be written as β > cℓ

r (i.e., 0.4 for the
considered parameters’ values), which can be seen from the micro view of
the plot. It can be seen that V (n) increases monotonically with β. So, from
Equations (15) and (17), it is clear that R∋ and ⟨R⟩ also increase monoton-
ically with β, which we also observe in the plot. However, in the case of R ̸∋
(Equation (16)), the increase in V (n) dominates the decrease in λ

(1−δ)β+λ+µ for
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Fig. 10 Effect of β on a player’s expected utility

0.5 1 1.5 2
` #107

0

1

2

3

4

5

E
x
p
ec

te
d

u
ti
li
ty

R3
R63
hRi

Fig. 11 Effect of ℓ on a player’s expected utility

very small values of β, while the domination reverses beyond a certain value
of β, thus explaining its non-monotonicity. As β grows to large values, we can
see that V (n) converges to approximately r

n2 . Hence, as can be deduced from
the mean field equations, for large values of β, R∋, R ̸∋ and ⟨R⟩ converge to

approximately r
n2(1−δ) , 0 and r

n2(1−δ)

(
λ

λ+µ

)
, respectively (i.e., 7.5, 0 and 1.5

for the considered parameters’ values).
Figure 11 presents the effect of the value of ℓ on a player’s expected utility.

From the constraint for a player to invest, the threshold below which the value
of ℓ should be, is rβ

c (i.e., 1.5 × 107 for the considered parameters’ values);

this can be observed from the plot. It can be shown that V (n) is a convex and
decreasing function of ℓ. This, along with the mean field equations, implies
that all the considered types of expected utilities: R∋, R̸∋ and ⟨R⟩, should be
convex and decreasing in ℓ, which is what we see in the plot.

It can be observed from Figures 8, 10 and 11 that the plot corresponding to
⟨R⟩ is closer to R̸∋ than to R∋, and it is easy to see why. From Equation (13),
⟨R⟩ = λ

λ+µR∋ + µ
λ+µ R̸∋. As we consider λ = 1 and µ = 4 for these plots, we

have that ⟨R⟩ gives weightage to R̸∋ that is four times of that given to R∋.
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4.4 Practical Interpretation of Our Results

We now present some practical interpretation of our results sequentially,
in the context of the considered use case of Bitcoin mining pools and the
corresponding set of parameters’ values.

• If the system consists of a certain reasonably large number of players, the
total power received by the center would not change significantly if the
number of players changes to a certain extent; hence the system would be
quite robust. Moreover, the total power would be proportional to the offered
reward, thus giving the center adequate control with regard to the amount
of power it would receive. Furthermore, an increase in the number of players
would facilitate load balancing in terms of power share since the power
invested individually by players would gradually decrease.

• Players’ expected utilities are maximized when their arrival and departure
rates are such that the average number of players present in the system is
between 1 and 2 (typically close to 2). Hence, if players can strategize on their
arrival and departure rates, a mediator could suggest rates to the players
at which they should arrive and depart, and thus make the system socially
optimal for the players (wherein the sum of players’ utilities or alternatively,
the expected utility of each player, is maximized).

• As long as the amount of offered reward per segment is higher than a certain
value, players’ utilities increase almost linearly with it. In this range, for
the considered use case, a player’s overall expected utility would increase
by approximately 0.5 cents ($0.005) for every thousand units of increase in
the offered reward. Hence, the center should take this effect into account
while setting the reward so that players are incentivized enough to provide
their power to the center by receiving a certain utility (especially if there is
a competing center who also seeks power by offering a competitive reward
amount).

• Changing the rate of dispensing reward, if it is beyond a certain value, would
not change the players’ utilities significantly. Hence, if the rate of dispensing
reward is already reasonably high, the center could change it so as to increase
its own utility resulting from any external factors dependent on this rate,
without having to consider the effects on players’ utilities.

• Since ℓ is the amount of (stable) power apart from that invested by the
players, our results showcase how stable firms (albeit non-strategic) could
influence the players’ investment decisions and utilities. Players’ utilities
decrease almost linearly in ℓ over a wide range; in this range, for the consid-
ered use case, a player’s overall expected utility would drop by approximately
15 cents ($0.15) for every million units of increase in ℓ. Moreover, if the cen-
ter could control ℓ, it should be set not so high that players are discouraged
from investing.
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Fig. 12 Effect of the reward parameter r on the total power received by the center when
the number of players present in the system is s

5 A Stackelberg Game for Determining Optimal
Reward from the Center’s Perspective

Till now, we have studied the game from the players’ perspective while consid-
ering that the center is a non-strategic agent. In particular, we assumed that
the reward being offered by the center is not dependent on the other param-
eters (namely, N , β, c, ℓ, λ and µ) and the players’ strategic considerations.
Since the center receives a certain amount of power in exchange of a certain
amount of offered reward, and the received power can be used by the center
for completing some task in order to obtain a certain amount of returns, there
is every reason for the center to be strategic so as to balance the trade-off
between the received power and the offered reward. Hence, we now expand our
setting to incorporate the center also as an agent who can strategize on the
amount of reward it has to offer. Specifically, we consider that the center’s own
returns depend on the total amount of power it receives, and the cost it incurs
depends on the amount of reward it offers. We first observe how the offered
reward influences the total power that is received by the center in a state.

Recall from Equation (6) that when the offered reward is r and the number
of players present is s (where s ∈ {1, . . . , N}), we have that the total power,

say ψ
(s)
r , equals sx(s) + ℓ = rβρ(s)

2sc , where ρ(s) = s − 1 +
√

(s− 1)2 + 4ℓ
rβ sc. It

can be easily shown that
dψ(s)

r

dr > 0 and
d2ψ(s)

r

dr2 < 0. That is, the total power
received by the center in a state is a monotone increasing concave function of

r. Furthermore, for large values of r, it is clear that ψ
(s)
r is close to linear in r.

This is illustrated in Figure 12 for different values of s (the parameters’ values
are same as those considered in Section 4). Note that in the general case where
players could have different cost parameters, it is not clear from Proposition 2
how the total power received by the center in a state would change with a
change in r, since the expressions for determining the set of investing players
in any given state as well as their invested power are convoluted. However, we
show that in MPE, the total power received by the center in any given state is
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a monotone increasing piecewise-concave (and close to piecewise-linear ramp)
function of r. We provide the details in Appendix C.

Now that we have shown the total power ψ
(s)
r when there are s (where

s ∈ {1, . . . , N}) players present, to be a monotone increasing concave function
of r, we proceed to analyze the nature of the expected total power received
by the center as a whole. Let T (r) be the expected total power received by
the center over all possible values of s, if it offers an expected reward of r

per segment. Thus, we have that T (r) =
∑N

s=0 PNλ,µ(s)ψ
(s)
r . Since ψ

(0)
r = ℓ by

convention, we get:

T (r) = PNλ,µ(0)ℓ+
N∑
s=1

PNλ,µ(s)ψ
(s)
r

As ψ
(s)
r is a monotone increasing concave function of r for s ∈ {1, . . . , N},

their weighted sum (with positive weights) added to a constant, T (r), is also
a monotone increasing concave function of r. Since the expected total power
received (per unit time) by the center is T (r) and the expected duration of a
segment is 1

β , the total power received by the center over an entire segment is
T (r)
β , which also is a monotone increasing concave function of r.
We now study a Stackelberg game with the center as the leader and

the computational providers as the followers, wherein the center decides the
amount of reward to offer and the computational providers decide how much
power to invest based on the offered reward. We model the center’s utility as
the difference between some relevant function of the total power received over
a segment, and a function of the offered reward. Let f(·) denote the returns
obtained by the center as a function of the total power received over a segment.
In most practical applications, the returns would follow the law of diminish-
ing returns and so, the returns would be a concave function in the total power
received over a segment. Now, if f(·) is (weakly) concave and non-decreasing,

and we already know that T (r)
β is a monotone increasing concave function of r,

we have that the composition f
(

T (r)
β

)
is also a monotone increasing concave

function of r. That is, the returns obtained by the center would be a concave
function of r. Let g(·) denote the cost incurred by the center as a function of
the offered reward. Thus, we can model the center’s utility for a segment, say
U(r), to be:

U(r) = f

(
T (r)

β

)
− g(r)

It is reasonable to consider the cost incurred due to dispensing the reward to
be a monotone increasing linear or convex function of r. Hence, we have that
the center’s utility for a segment is a concave function of r, and hence can be
maximized using calculus in order to obtain the optimal value of r. Note that
if the future segments are also considered with a discount factor of δ ∈ [0, 1),
the above expression would be multiplied by a factor of 1+ δ+ δ2+ . . . = 1

1−δ ,
which does not affect the optimal r.
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Fig. 13 (a) Effect of the reward parameter r on the center’s expected utility and (b)
absolute error in the center’s expected utility if computed using mean field approach

The above analysis and procedure holds for any form of the utility function
as long as functions f(·) and g(·) satisfy their respective conditions, which are
natural in most real-world applications. In order to conduct a more precise
analysis so as to derive concrete value of optimal r, we consider a specific

form of the utility function. Specifically, we consider g(r) = r and f
(

T (r)
β

)
=

α

(
T (r)

β
T (r)

β + k
β

)
, where k could be viewed as the power invested by the other

agents competing against the center for completing the concerned task (for
which the center is expected to obtain returns; this task could be mining a
block, for instance). That is, we have

U(r) = α

(
T (r)

T (r) + k

)
− r

For a numerical understanding of this utility function, consider N =
1000, β = 6, c = 0.12, ℓ = 106, λ = 1, µ = 4, α = 5 × 105, and k = 5 × 106.
Figure 13(a) illustrates how the center’s expected utility U(r) is influenced by
the value of r (the values of r start from 0.2 × 105 owing to the constraint
for the players to invest: r > cℓ

β ). The plot is a concave function, as expected.
It can be seen that if the value of r is set to be higher than a certain value,
U(r) the expected utility could be negative. The optimal value of the reward
parameter for this utility function with this set of parameters is observed to
be at r = 123564.38.

We can alternatively obtain the optimal r analytically by finding the solu-

tions to dU(r)
dr = 0. For analytical tractability, we consider the mean field

approach to approximate T (r), where we consider the total power in the
‘average state’ instead of the expected total power over all possible states.
Since the average number of players in the Engset’s system is n = λ

λ+µN ,

we consider T (r) ≈ ψ
(n)
r = rβ

2nc

(
n− 1 +

√
(n− 1)2 + 4ℓ

rβnc
)
. As the original

expression is valid for s ∈ {1, . . . , N}, the interpolated mean field expression
holds for s ∈ [1, N ]. Hence, the center’s utility function can be approximated



Annals of Operations Research: S.I. SING 16

32 A Game Theoretic Framework for Distributed Computing

as U(r) ≈ f
(
ψ(n)

r

β

)
− g(r). Considering the specific form of U(r) mentioned

above, we have U(r) ≈ α
(

ψ(n)
r

ψ
(n)
r +k

)
− r. Figure 13(b) presents the absolute

error that would be incurred if this mean field expression is used instead of
the original expression for computing the center’s expected utility (we show
absolute and not relative error because of U(r) taking value 0 and around in
a certain range of r). We can infer that the mean field approach provides the
value of U(r) very accurately. Furthermore, taking the derivative of the mean
field expression of U(r) and equating it to zero, gives the real-valued solution:
r = 123564.56. It is worth highlighting that this value is almost equal to the
actual value of optimal r mentioned earlier (i.e., 123564.38).

6 Conclusion and Future Work

This work studied strategic investments in a typical distributed computing
system, while capturing the arrival and departure of players. On formulating
the utility function and deriving its closed-form expression, we determined
the players’ investments for the different states in Markov perfect equilibrium
(MPE). In MPE, in a given state, only players with cost parameters in a
relatively low range that collectively satisfy a certain constraint in that state,
invest. We inferred that players need not have knowledge about the system
state and other players’ parameters, if the total power that is being received
by the center is communicated to the players as part of the system’s protocol.

Using simulations, we studied the effects of the number of players present
in the system, the arrival and departure rates, and other system parameters.
We first studied how the number of players present in the system affects their
individual investments and the total power received by the center. We observed
that individual investment is the highest when in a minimal game (i.e., with
two players present) and decreases almost inversely proportionally to the num-
ber of players present. While the total power received by the center in a state
increases with the number of players, it converges to an amount proportional
to the offered reward. Hence, if the system consists of a reasonably large num-
ber of players, the total power received by the center does not vary significantly
despite the players’ arrivals and departures, thus resulting in a system that is
robust and reliable.

We then studied the effects of the arrival and departure rates on a player’s
expected utility depending on whether or not the player is present at the
time of computing it. We observed that typically a lower arrival rate and a
higher departure rate, up to a certain extent, are beneficial for a player as the
competition would be kept low with less players among whom reward would be
shared. However, beyond that extent, these rates are detrimental as the player
itself would likely stay absent for a significant amount of time and lose out on
the reward. The dynamics of the system are such that the relation between
the average durations of an Engset cycle and a segment is critical, when a
player computes its utility knowing whether or not it is present in the system.
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However, this relation is immaterial if the player is agnostic about its presence,
since the computed utility would depend only on the ratio between the arrival
and departure rates. A general observation was that a player’s expected utility
is maximized when the average number of players present is between 1 and 2,
and typically close to 2, since this leads to the system being in the condition
of least competition (i.e., consisting of only one player) with high probability.

We also studied how a player’s utility is influenced by the system param-
eters (namely, r, β and ℓ). Each of these parameters follows a thresholding
criterion, which determines whether a player invests and obtains a positive
utility. Broadly, we observed that the different types of utilities increase almost
linearly with r, converge to constant values with respect to β, and decrease
as a convex function in ℓ. We presented insights for these observations using
a mean field approach, which provided simplified and analytically explainable
expressions as well as highly accurate approximations.

We concluded by studying a Stackelberg game where the center determines
the reward to be offered, which influences the total power invested by the
players, which in turn influences the center’s own utility. We showed that the
expected total power received by the center is a monotone increasing concave
function of the reward parameter. We hence formulated the center’s utility
function and showed it to be concave under practically reasonable assumptions.
Using the mean field approach, we were able to analytically find the optimal
reward parameter with very high accuracy.

We believe that our model enables us to lay a game theoretic foundation
for analyzing strategic investments in distributed computing and take a first
step towards solving a challenging problem, which leaves ample scope for it
to be developed further. In order to develop a more sophisticated stochastic
model, one could obtain real-world data concerning the arrivals and departures
of players. From the perspective of mechanism design, it would be interest-
ing to design incentives so as to elicit the true cost parameters of the players.
Alternatively, one could devise a method for deducing these latent variables,
namely, cost parameters, from the observed players’ actions and game situa-
tions. It would be interesting to analyze the game under bounded rationality.
Another promising possibility is to incorporate state-learning in our model.
Among other future directions, one is to study the game by accounting for
possibility of players forming coalitions.
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Appendix A Other Applications of the
Proposed Model

We now briefly discuss the applicability of our proposed model and the utility
function given by Equation (1), to distributed computing applications apart
from volunteer computing, such as mining in blockchain. Mining relies on a
proof-of-work procedure (Nakamoto, 2008) wherein players (termed miners)
collect data that is to be encapsulated in a block and repeatedly compute
hashes on potential solutions from a very large search space. A player is said
to have mined a block and is rewarded a monetary amount, say r, if the player
is the first to find one of the solutions that generates a hash value satisfying
certain constraints. The algorithms employed for finding such a solution are
typically based on randomized search over an exponentially large search space.
The time required to find a solution in such a large search space is independent
of the search space explored thus far, resulting in the search being practically
memoryless. Now, if a continuous random variable has the memoryless prop-
erty over the set of reals, it is necessarily exponentially distributed. Hence, the
time required to find a solution and hence mine a given block is exponentially
distributed, whose rate parameter can be considered to be β (i.e., the expected
time is 1

β ). In Bitcoin mining, the expected time to mine a block is set at 10
minutes.

Now, consider that a player i invests computational power of x
(S)
i to mine

when the system is in state S, and let ℓ be the amount of power that is
invested by large mining firms over a large period of time (i.e., irrespective
of the system state). It is known that if the number of solutions is ξ, the
distance of the probability of a player finding a solution before others, from
being proportional to the player’s invested power, is Õ(1/ξ) (Zeng and Zuo,
2019). As ξ is typically large in mining, the probability of a player being the
first to mine a block at any given time is proportional to its invested power at
that time. Hence, the probability of player i being the first to mine the block

in state S and winning the reward of r, is
x
(S)
i∑

j∈S x
(S)
j +ℓ

.

The possible events that can occur in state S are similar to what we dis-
cussed for volunteer computing, namely, the current block getting mined (in
place of current segment ending) with rate β, a player j /∈ S arriving with

https://www.eia.gov/todayinenergy/detail.php?id=46276
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rate λj , and a player j ∈ S departing with rate µj . In the event of the block

getting mined, player i receives a reward of
x
(S)
i∑

j∈S x
(S)
j +ℓ

r in expectation, and

the system stays in the same state S for the next block for which i’s expected

utility is perceived as δR
(S,x)
i . Since the sojourn time in state S for the current

block is 1
B(S) = (β +

∑
j /∈S λj +

∑
j∈S µj)

−1, the corresponding expected cost

incurred is
cix

(S)
i

B(S) . Hence, player i’s expected utility as computed in state S is:

R
(S,x)
i :=

β

B(S)
·

 x
(S)
i∑

j∈S x
(S)
j + ℓ

r + δR
(S,x)
i

−
cix

(S)
i

B(S)

+
∑
j /∈S

λj

B(S)
·R(S∪{j},x)
i +

∑
j∈S

µj

B(S)
·R(S\{j},x)
i

It is worth highlighting that the mathematical form of R
(S,x)
i is the same as

Equation (1) and so, our analysis and results will hold also for such other
applications.

Apart from the above application of block mining at individual level, our
model can be applied to mining pools as well, especially those which offer pay-
per-share payouts. In general, since most applications involving distributed
computing share the same underlying concepts, our model is applicable to a
wide variety of applications.

Appendix B Convergence of Expected Utility

Let M be the state transition matrix, among the states corresponding to the
set of strategic players present in the system. In what follows, instead of writing
M(O(S),O(S′)), we simply write M(S, S′) since it does not introduce any
ambiguity. So, the elements of M are:

M(S, S) =
δβ

B(S)
,

for j /∈S :M(S, S ∪ {j}) =
λj

B(S)
,

for j∈S :M(S, S \ {j}) =
µj

B(S)
,

and all other elements of M are 0.

Here, B(S) = β+
∑

j /∈S λj+
∑

j∈S µj . Since β > 0, we have B(S) >
∑

j /∈S λj+∑
j∈S µj . Hence,M is strictly substochastic (sum of the elements in each of its

rows is less than 1).

Let F
(x)
i be the vector whose component O(S) is F

(S,x)
i , where

F
(S,x)
i =

(
rβ∑

j∈S x
(S)
j + ℓ

− ci

)
x
(S)
i

B(S)

We now provide a proof of Lemma 1, which states that the recursive

equation for R
(x)
i , Equation (1), converges for any policy profile x.
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Proof Let R
(x)
i⟨t⟩ = (R

(1,x)
i⟨t⟩ , . . . , R

(2|U|,x)
i⟨t⟩ )T , where t is the iteration number and (·)T

stands for matrix transpose. The iteration for the value of R
(x)
i⟨t⟩ starts at t = 0; we

examine if it converges when t→ ∞. Now, the expression for the expected utility in
all states can be written in matrix form and then solving the recursion, as

R
(x)
i⟨t⟩ = MR

(x)
i⟨t−1⟩ + F

(x)
i = (M)tR

(x)
i⟨0⟩ +

(
t−1∑
η=0

(M)η
)
F
(x)
i .

Now, since M is strictly substochastic, its spectral radius is less than 1. So when

t → ∞, we have limt→∞(M)t = 0. Since R
(x)
i⟨0⟩ is a finite constant, we have

limt→∞(M)tR
(x)
i⟨0⟩ = 0. Further, limt→∞

∑t−1
η=0(M)η = (I − M)−1 (Hubbard and

Hubbard, 2015). This implicitly means that (I−M) is invertible. Hence,

lim
t→∞

R
(x)
i⟨t⟩ = lim

t→∞
(M)tR

(x)
i⟨0⟩ +

( ∞∑
η=0

(M)η
)
F
(x)
i

= 0+ (I−M)−1F
(x)
i .

□

Note also that Proposition 1 can be proved alternatively along the same

line as the above proof of Lemma 1, by having W in place of M and Z
(x)
i in

place of F
(x)
i .

Appendix C Effect of Offered Reward on
Total Power Received by the
Center in a State

Here, we discuss the general case where players could have different cost param-
eters. Note from Proposition 2 that since the set of investing players in any
given state could change with r, it is not even clear whether the total power
received by the center in a state would increase monotonically with r. In par-
ticular, we need to inspect whether the total power received by the center
could decrease when the set of investing players expands owing to the increased
reward. We show the following result.

Proposition 3 If players invest as per Proposition 2, the total power received by the
center in any given state is a monotone increasing continuous function of the reward
parameter.

Proof Recall that in a state S, ψ(S) = rβ
|Ŝ|−1+

√
(|Ŝ|−1)2+ 4ℓ

rβ

∑
j∈Ŝ cj

2
∑

j∈Ŝ cj
, where Ŝ ⊆ S

is the set of investing players. It is clear that for a given set of investors Ŝ, ψ(S)

increases monotonically with r. As r varies, set Ŝ may change, thus changing the
values of |Ŝ| as well as

∑
j∈Ŝ cj . In order to show a monotonic increase of ψ(S) with
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r despite any changes in set Ŝ, we need to show that at any value of r where players
get added to Ŝ, the value of ψ(S) does not decrease (i.e., either increases or stays the
same). Without loss of generality, consider that only one player gets added at any
such value of r. In what follows, we show continuity at values of r where the set of
investing players changes.

Consider a value of r such that the set of investing players is Ŝ \ {i} when the
reward parameter is infinitesimally lower than r, while it is Ŝ (i.e., player i gets added
to the set of investing players) when the reward parameter is infinitesimally higher

than r. At this value of r, let ψ(S) be the limit of ψ(S) from the left and ψ
(S)

be its

limit from the right. We will now show that ψ(S) = ψ
(S)

.
Since player i barely satisfies the cost constraint at this value of r, we have (the

following equality is in limit): ci =
2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

. So, the limit of ψ(S)

from the right is

ψ
(S)

= rβ
|Ŝ| − 1 +

√
(|Ŝ| − 1)2 + 4ℓ

rβ

∑
j∈Ŝ cj

2
∑
j∈Ŝ cj

=
rβ

ci
. (C1)

Now, ci =
2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

is equivalent to

r =
ℓ

β
· c2i∑

j∈Ŝ\{i} cj − ci(|Ŝ| − 2)
. (C2)

This gives us an expression for r at which the set of investing players expands from
Ŝ \ {i} to Ŝ.

Now, the limit of ψ(S) from the left is ψ(S) = rβ
|Ŝ|−2+

√
(|Ŝ|−2)2+ 4ℓ

rβ

∑
j∈Ŝ\{i} cj

2
∑

j∈Ŝ\{i} cj
.

Let ψ(S) = rβy, where y =
|Ŝ|−2+

√
(|Ŝ|−2)2+ 4ℓ

rβ

∑
j∈Ŝ\{i} cj

2
∑

j∈Ŝ\{i} cj
. This, in conjunction

with Equation (C2), gives

y2
∑

j∈Ŝ\{i}

cj − y(|Ŝ| − 2) =

(
1

ci

)2 ∑
j∈Ŝ\{i}

cj −
1

ci
(|Ŝ| − 2).

It can be easily seen that the above equation is satisfied when the value of y is 1
ci
,

and since y has a unique value from its definition, we must have y = 1
ci
. Hence, from

the above and Equation (C1), we have ψ(S) = rβy = rβ
ci

= ψ
(S)

. This completes the
proof. □

Figure C1 presents representative plots showing the effect of the reward
parameter r on the total power received by the center in a given state S. We
consider the following values for the purpose of visualization (the plots for any
other values follow similar behavior): β = 6, ℓ = 106, |S| = 5, and {ci}i∈S =
{0.40, 0.45, 0.50, 0.55, 0.60}. We vary the value of r from 0 up to 106 with a
resolution of 103. As r increases, the set of investing players expands (which
is intuitive and also can be seen from the proof of Proposition 3). In the plots,
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Fig. C1 Effect of the reward parameter r on the total power received by the center in a
state

the points at which a previously non-investing player turns into an investing
player are marked by red dots. It can be seen that with an increase in r, the
total power increases similar to a piecewise-linear ramp function.

Recall that in a state S, the investing players i ∈ Ŝ collectively satisfy:

ci <
2
∑

j∈Ŝ cj

|Ŝ|−1+
√

(|Ŝ|−1)2+ 4ℓ
rβ

∑
j∈Ŝ cj

. For low values of r, the threshold is too low

for the players’ cost parameters to satisfy; hence no strategic players invest
and the total power equals ℓ (this is the base of the ramp function). For
values of r which attract investments, the term 4ℓ

rβ

∑
j∈Ŝ cj is of a similar

order as |Ŝ| or lower (this can be seen from the critical value of r derived in
Equation (C2), which consequently results in 4ℓ

rβ

∑
j∈Ŝ cj being upper bounded

by 4|Ŝ|). From Proposition 2, the total power received by the center in state

S is ψ(S) = rβ
|Ŝ|−1+

√
(|Ŝ|−1)2+ 4ℓ

rβ

∑
j∈Ŝ cj

2
∑

j∈Ŝ cj
. It can be seen that within any range

of r wherein Ŝ does not change, ψ(S) increases as a concave function of r.
It can also be seen that in general, ψ(S) is not differentiable with respect
to r at the breakpoints where set Ŝ changes. Thus, ψ(S) increases in r as
a piecewise-concave function. Moreover, due to the suppressed nature of the
term 4ℓ

rβ

∑
j∈Ŝ cj in ψ

(S) for values of r which attract investments, the increase

in ψ(S) with r is close to being linear within any range of r wherein Ŝ does
not change. Hence, the increase in ψ(S) with respect to r would be typically
close to a piecewise-linear ramp function.
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