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INTRODUCTION

In recent years, much effort has been devoted to investigating the motility of microorganisms, driven, e.g., by flagellae and to the realization of synthetic active matter by means of diffusophoretic [1], thermophoretic [2] and field-driven [3] active particles. These active particles exhibit fascinating collective phenomena not found in passive systems, such as flock formation [3], dynamical clustering and phase separation [4][5][6], and anomalous density fluctuations [7]. While many experiments have focused on self-propelled spherical colloids, e.g. Janus particles, biological microswimmers are often anisotropic [6].

Many artificial swimmers display a persistent random walk dominated by ballistic runs and rotational diffusion, whereas the locomotion of microorganisms allows adjustments in their trajectories [8]. Some synthetic particles with motility akin to that of certain biological agents have been produced, such as an artificial flagellum [9], rod-shaped [10], ellipsoidal [11] and chiral particles [12] which exhibit novel flocking [13], asymmetric particles [14] which feature gravitaxis [15], along with in-situ feedback of model vision cones [16], i.e.

active control [17]. Another form of active particles which break symmetry through their motility are spinners [18], which exhibit rotating crystals [19], novel turbulence [START_REF] Kokot | Proc. Natl. Acad. Sci[END_REF] and exotic phenomena such as odd viscosity [START_REF] Soni | [END_REF].

In active colloidal systems, attention has often focused on assembly of large numbers of particles, i.e. the emergence of macroscopic states or active "phase behavior" [3]. By contrast, assembly of fixed numbers of passive colloids, often through careful control of interactions [22] has led to supracolloidal chemistry with reaction pathways at the colloidal rather than molecular level [23][24][25][26][27], which exhibit some aspects of molecular interactions [28]. However, passive colloids exhibit overdamped dynamics, so collisions as such are very different to those that would occur in atomic and molecular systems [START_REF] Brouard | Tutorials in Molecular Reaction Dynamics[END_REF]. While many active colloidal systems are diffusive at long times, the persistence length of their motion can be many particle diameters, and thus one may enquire as to collisions between active colloids.

Collisions between active colloids may thus present some similarity to collisions between atoms and molecules. In the case of "wet" active matter, when active particles come close together, hydrodynamic coupling can lead to the formation of bound states [START_REF] Fily | [END_REF]31] as observed in the volvox algae [32], which may be analogous to electronically coupled excited bound states in spectroscopy [START_REF] Brouard | Tutorials in Molecular Reaction Dynamics[END_REF].

In experiment, assembly of active clusters has been investigated [33,34], along with self-assembled spinners [START_REF] Kokot | Proc. Natl. Acad. Sci[END_REF]. In simulation, predictions have been made for assembly [35] and demixing [35,36] of small clusters of active colloids [36]. Cluster assembly of active dipolar particles has been shown to exhibit a novel fission phenomenon [37]. Mixtures of anisotropic active particles exhibit even more complex behavior including microphase separation (which can also be seen in some experiments with active monomers [38]), fluidization and three-phase coexistence [39]. Recently, experiments have been conducted which explore the interactions between anisotropic active colloids such as spinning micro-tori [40], chiral clusters [START_REF] Ma | Proc. Nat. Acad. Sci[END_REF], along with rotational states formed via collisions of upright active disks [START_REF] Katuri | [END_REF]. Collective behavior of pear-shaped particles has been investigated [43], driven via the Quincke electro-rotation of particles [3]. Interactions have even been manipulated in systems of dumbbells [START_REF] Schwarz-Linek | Proc. Natl. Acad. Sci[END_REF] and anisotropic "patchy" active colloids [34,[START_REF] Zhang | [END_REF].

Here, we present an experimental study on the motion of active colloidal dimers and trimers formed from Quincke rollers. These display a characteristic behavior distinct from the dynamics of spherical active particles, in particular circular and jumping motion. The dimers share some characteristics with the pear-shaped Quincke rollers investigated previously [43]. However, just as in passive matter, the behavior of anisotropic particles is profoundly influenced by aspect ratio (for example the formation of liquid crystalline phases [46]), our dumbbells have an aspect ratio close to unity, where dimer crystals form in the case of passive systems [47], unlike the finite micellar-like structures formed by pear-shaped particles [48].

Our active colloidal clusters are prepared by taking advantage of attractive interactions between the constituent spheres leading to irreversible binding. Briefly, we use polystyrene beads of diameter σ = 3.1 µm with polydispersity of 5%. The initial suspension is aqueous, and the colloids are electrostatically stabilized. To remove ionic stabilizing layers, the particles are washed and transferred to a liquid of low conductivity. This leads to the formation of clusters of different size. Smaller particles are separated from the bigger ones by using centrifugation, and the final suspension is a mixture of single spheres, dumbbells and trimers (see Methods).

To investigate the active colloidal clusters, we exploit the Quincke roller mechanism.

Particles are confined between two conductive glass slides 30µm apart. A dc electric field E is applied perpendicular to the substrate, leading to the spontaneous symmetry breaking of the charge distribution at the particle-liquid interface. As a result, rotation at a constant rate emerges from an imposed electric torque acting on the particle. For a rigid sphere near to a substrate, the rotation of the particles is coupled with the translation, giving rise to self-propelled rollers, where the speed v is controlled by the electric field E [3]. Quincke rotation occurs above a certain threshold field strength E Q and this is the regime in which we operate.

We focus on active colloidal dumbbells and trimers. A sequence of dynamic transitions is observed for dumbbells from local spinning to disordered and then ordered orbital motion as the activity increases. As a result, dumbbells exhibit an increased trajectory radius and a change of their effective translation and rotational motion. In agreement with the description of a Brownian circle swimmer [49], the self-propulsion direction does not strictly coincide with the dumbbell orientation, resulting in circular trajectories. Rather than the collective behavior of a large (unspecificed0 number of particles, here we focus on single particles, and interactions between two and three particles. When two dumbbells collide, we sometimes observe the formation of an excited state of tetramers which spin quickly. A more complex formation of hexamers formed from a dumbbell colliding with a tetramer is also observed. This excited state turns out to be unstable. We find that the spinning motion of tetramers and hexamers is activity dependent with a coupling between self-propulsion and arrested motion due to steric frustration. We rationalize our observation of the motion and coupling of dumbbells by considering hydrodynamic interactions. Furthermore, while dumbbells and the excited states that result from their collisions roll along the substrate, trimers cannot do so, due to their triangular shape. In this case we observe an interesting combination of in-plane diffusion and out-of-plane "flipping" motion. This corresponds to a jump-diffusion process that evolves the position and orientation of the trimer discontinuously.

DUMBBELLS: SPINNING, DISORDERED AND ORDERED ORBITING

We start by describing the active motion of Quincke dumbbells. These are elongated rigid particles with a transverse (⊥) and a longitudinal ( ) orientation n = (cos θ n, sin θ n), where θ is the angle formed with respect to a reference axis. Figure 1(b) depicts n⊥ and n with respect to the bond connecting the two spheres. In addition, an angle θ v is given for the displacement. For the motion, we apply a range of field strengths

E ∈ {2, 4} V µm -1 . For low values of E, i.e. E < E Q with E Q ≈ 2 V µm, we obtain passive dumbbells. Above E Q , a
spinning behavior (S) is observed with constant rate and without a significant displacement of the centre-of-mass r, as shown in Fig. 1(f). This is distinct from the spinning behavior of pear-shaped rollers found at higher field strengths [43,50]. Here, the onset of the disordered orbital (DO) motion occurs at higher values of the applied field than that at which the spinning occurs, i.e. E dis ≈ 2.5 V µm -1 . Finally, at still higher field strengths, the circular motion becomes localized around a central point, giving rise to ordered orbital (OO) motion (see Fig. 1(f) and Supplementary Movie 1 [51]). Upon decreasing the field strength, we find that the dumbbells exhibit the same dynamic behavior, that is to say that the sequence S, DO, OO is reversible.

We rationalize the dynamical behavior of Quincke Dumbbells as follows. We start by considering the low field strength, spinning behavior, before developing an analysis of the orbital motion. In a system of Quincke monomers, at relatively weak field strengths around the critical field strength E Q where we find the spinning, there is an electrohydrodynamic flow [38,52]. This flow (in plane) is towards the dumbbell, with the solvent escaping out of plane as illustrated schematically in Fig. 1(d,e). In the case of a single dumbbell, angular momentum of the incoming flow then generates a torque, leading to spinning (see the analysis in the Supplementary Information).

At higher field strengths, the friction due to coupling between the dumbbell and the substrate leads to rolling and a large change in the dynamics. The spinning at low field strengths gives way to an orbital motion when combined with the rolling (Fig. 1(g,h)). In our system, there is furthermore Brownian translational and rotational diffusion, which may cause some fluctuation in the successive orbits. At relatively low field strengths, this leads to a disordered orbital state (Fig. 1(g)), but it appears to be insignificant at higher field strengths where we find an ordered orbital state (Fig. 1(h)).

We now analyse the disordered and ordered orbital motion. The dynamics are governed by the self-propulsion velocity v and self-spinning angular velocity ω which are taken to be independent ṙ = vn + ξ ξ ξ;

θ = ω + η, (1) 
where n = (cos θ, sin θ), and

ξ i (t)ξ j (t ) = 2D t δ ij δ(t -t ) and η(t)η(t ) = 2D r δ(t -t ) are
variances for the ξ ξ ξ and η noise terms.

For the disordered and ordered orbital trajectories, we find that the dumbbell displacement occurs with a direction θ v close to the transverse orientation n⊥ , However, such trajectories are a result of the decoupling between the self-propulsion v and the dumbbell orientation n⊥ , as indicated by the arrows and insets in Figs. 1(f)-1(h). Here, the direction of motion, i.e. clockwise (+) or anti-clockwise (-), is not predefined as in chiral particles [14],

and thus, the circular motion is presumably due to torque which arises from the spinning mechanism illustrated in Fig. 1(d,e).

Following Ref. [49], the dynamics of non-interacting circle swimmers in two dimensions are given by the overdamped Langevin equations,

ṙ = βD • [F n + ζ ζ ζ], θ = βD r [T + ζ θ ], (2) 
where β = (k B T ) -1 is the thermal energy, and F n is an effective internal force representing the self-propulsion. 

D = D ⊥ (I -n ⊗ n) + D (n ⊗ n) is
D r = [∆θ ⊥ (t)] 2 /(2t). (3) 
Given the equations of motion (Eqs. 1 and 2), we can construct the mean-squared

displacement MSD = (r(t) -r(0)) 2 , MSD = 2v 2 D r t ω 2 + D 2 r + e -Drt cos(ωt) -1 ω 2 + D 2 r - 2D r ωe -Drt sin(ωt) (ω 2 + D 2 r ) 2 - 2ω 2 (e -Drt cos(ωt) -1) (ω 2 + D 2 r ) 2 +4D t . (4) 
The terms proportional to v 2 measure the contributions of orientational correlation to the mean squared displacement while the translational diffusion of the centre of mass is proportional to D t . The spin is driven by ω and the curvature of the orbital trajectories is due to the interplay between ballistic motion due to v, loss of orientational correlations due to rotational diffusion D r and spinning due to ω. Coupling of drive and slipping leads to a non-monotonic angular velocity -Figure 2(a)

shows the relation of the angular velocity ω = |∆θ|/t with the applied field E. Upon increasing the field strength we observe a non-monotonic response of the angular velocity ω of a decay and then an increase. Opposite, the self-propulsion speed v increases with the field until it reaches steadiness at E > 3 V µm -1 (Fig. 2(d)). Both the increase of v and the decrease of ω have an impact on the orbit radius R = v/|ω|. In Fig. 2(b) we observe a non-monotonic behavior, with a peak in R at E ≈ 3.6 V µm -1 . The spread in the radii of the orbits is presumably related to the polydispersity of the two particles comprising each dumbbell, as we believe their different size contributes to the orbital motion.

We can find the centre of every cycle θ v ∈ {0, 2π}, which corresponds to one revolution.

To do so, we take the centre of the path of the dumbbell around one cycle, which is defined as the point at which direction of motion of the dumbbell is identical to that at the start, or end of the previous cycle. The centre of each cycle is termed r c . Each trajectory lasts around t traj = 3.5s. We take the displacement of the centre of each cycle, considered between the start and end of the trajectory ∆r c = |r c (t traj ) -r c (0)|. ∆r c is shown in Fig. 2(e), which

shows the disordered nature of the orbital motion compared to steady orbits at higher E (Fig. 2(e)). Note that this motion is rather smaller, but not totally negligible on the time-and length-scales of the MSD in Fig. 2(c)).

This behavior contrasts with the rather steady radius in trajectories of asymmetric active particles [14]. There, the angular velocity ω increases linearly with the speed v, while R shows a non-dependent behaviour on the self propulsion. Here on the other hand, the dependence of ω and R on E is opposite to the observations of active spheres in a viscoelastic medium [54]. Thus, our findings suggest that the emerging circular behavior of Quincke dumbbells is due to an effective internal torque and to the field-dependent speed v.

In some respects, the single-dumbbell behavior we observe is similar to that seen in

Ref. [43], who studied the collective behavior of pear-shaped Quincke rollers. In particular, they also see a non-monotonic persistence length as a function of field strength (Fig. 3d,

Ref. [43]) is compatible with the non-monotonic radius of curvature we show in Fig. 2(a inset), though the radii of the orbital motion is very much larger in our case. However, the sequence of states they observed seems opposite to the single-dumbbell behavior here, as they see spinners and vortices as a function of decreasing field strength while we see spinners, disordered and ordered orbital motion as a function of increasing field strength. Given that the particles in Ref. [43] are also Quincke rollers, we presume that the difference in behavior is related to the different shape. In particular, the aspect ratio of the particles in the work of Zhang et al. is much closer to that of a sphere than is the case for the dumbbells we consider here. We return to this point in the conclusion.

DUMBBELL COLLISIONS: HIERARCHY OF "EXCITED STATES"

Having a suspension of dumbbells performing disordered orbital motion, e.g. at E ∈ {2.5, 3.5} V µm -1 , we observe collisions between dumbbells that lead to the formation of tetramers and more complex hexamers. Figure 3(a) shows the sequential formation of these "excited states". First, isolated dumbbells, collide and interact. If the collision is successful in terms of alignment, the result is an excited bound state in the form of spinning tetramer of rhomboidal shape (see Fig. 3(b) and Supplementary Movie 2 in Ref.

[51]). We term this state "excited" due to the increased frequency of rotation (see Fig. 3(h) inset) with respect to unbound dumbbells at the same field strength. By analogy with atomic systems, we term these states of a fixed number of bound particles active colloidal molecules. We argue that this "excited state" is due to the dumbbells colliding and being unable to move past one shows the mean angular displacement ∆θ(t) 2 of a spinning hexamer. E = 3.1V µm.

another following the collision. In other words, the particle geometry enables dynamical selftrapping somewhat reminiscent of motility-induced phase separation [5] which here results in a bound state.

For colliding dumbbells, we measure the angle φ made between the orientations n⊥ ij and velocities v ij prior to collision and tetramer formation. Figure 3(e) shows the distributions of the φ n,v angles. While the displacements exhibit a broader distribution, the successful formation of tetramers is governed by the orientation of the dumbbell trajectories. That is to say, the formation of tetramers is achieved by dumbbells on a collision course, and such that their orientation angle φ → π and the displacements v i + v j = 0. For spherical and pear-shaped rollers, alignment from hydrodynamic interactions leads to the formation of collective phases, e.g. phased-locked trajectories. On the other hand, the motion of the dumbbell rollers described here is dominated by fast rotations that, in the event of a collision, frustrate alignment interactions and orbital trajectories.

We compare successful tetramer formation against other dumbbell collisions, confirming the strong dependence on orientation (see inset in Fig. 3(e)). If unperturbed, tetramers spin at a constant angular velocity ω and without significant displacement of the centre-of-mass ∆r. The rotation results from the torque as the centre of propulsion from each dumbbell is not aligned with the centre of mass of the tetramer (Fig. 3(b)). Otherwise, any significant change in the orientation n⊥ promotes tetramer breaking and reversal to the circular motion of dumbbells. Figure 3(h) depicts the spinning speed ω of tetramers as a function of E. We observe increasing ω with the field as a result of the enhanced self-propulsion v (Fig. 2(d)).

We presume that the mechanism for the coupling is related to hydrodynamic interactions between the rotating dumbbells as indicated in Fig. 3(d). It is possible that parallels may be drawn with predictions for hydrodynamically bound states in other active systems [START_REF] Fily | [END_REF]31] for example the volvox algae in experiments [32]. Note that we only observe the formation of tetramers in the disordered orbital state. We presume that this is because the translational motion of spinning dumbbells is rather slow and so they do not collide; in the ordered orbital state, the dumbbells tend to follow the same trajectory, so their chance for collision is reduced also.

Hexamers: unstable excited states -In a more complex scenario, spinning hexamers form due to the self-trapping of three dumbbells. For this, an additional dumbbell collides with a pre-existing tetramer. A triangular hexamer results from the local rearrangement of dumbbells, as represented in Figs. 3(b) and (c) (see also Supplementary Movie 4). Similar to tetramers, it is likely that the process is governed by the dumbbell orientation n⊥ . In Fig. 3(f) we show an experimental formation sequence of a hexamer, where the orientations ni,j,k for each dumbbell are highlighted. We find a few spinning hexamers using the same values of E as for the tetramers. This is given by the trajectories of individual dumbbells (see Figs. 2(b ande)). The spinning speed shows a linear increase with E, suggesting a stronger coupling of the individual self-propulsion speeds v (Fig. 3(i)). In contrast to tetramers, the breaking of hexamers shows no reversion as any deviation of the individual orientation n leads to the segregation of the constituent dumbbells (Supplementary Movie 3). Thus the hexamers are much shorter-lived than the tetramers. The break-up of the hexamer in Supplementary Movie 3 underlines the complex hydrodynamic couplings in colloidal system under dc fields.

We emphasize that the collision processes here are different to the phoretic and hydrodynamic interactions of Janus particles [1] and our Quincke rollers. The formation of tetramers and hexamers is due to dynamical self-trapping, akin to systems displaying motility-induced phase separation [4]. Therefore, the active pathway of hierarchical states is distinctive from those observed in systems with induced interactions [START_REF] Zhang | [END_REF].

TRIMERS: FLIPPING ON A HONEYCOMB LATTICE

We now proceed to describe the active motion of trimers, which are rigid assemblies of three particles (Fig. 4(a)). Quite unlike monomers or dumbbells, a trimer cannot simply rotate in response to the applied field. Instead, they undergo a flipping motion, where the trimer lies parallel to the substrate and from time to time flips rapidly about one side. Hence we identify a novel class of Quincke flippers. This consists of a jump performed by one vertex over to the opposite side, as represented in Fig. 4

(b) (see Supplementary Movie 5 in [51]).

Such a jump effectively instantaneously rotates the orientation by π about an axis parallel to the triangle side, and displaces the centre-of-mass r by a distance perpendicular to this axis. Assuming non-slip conditions, ≈ 0.7σ. In between flips, there is continuous (possibly diffusive) evolution of position and orientation. In the absence of evidence to the contrary, it seems reasonable to assume that these two types of motion occur independently.

The orientation of the trimer is specified by three Euler angles (ϕ, θ, ψ). The first angle, ϕ, is between the body-fixed and space-fixed x axes; we take the body-fixed x axis to point from the trimer center towards a vertex, see Fig. 4(a). The second angle, θ, is a rotation about the body-fixed x axis. This takes values 0 and π in the unflipped and flipped state, respectively, and, within the instantaneous flip approximation, these are the only values of interest. The third angle ψ may be taken to be zero. Assuming that the dynamics do not depend on the flip state, we may focus on the angle ϕ alone. For a trimer with particle centres in an equilateral geometry, a flip may be represented as ϕ → ϕ + ∆ϕ, r → r + ∆r, where ∆ϕ = ±π/3, π corresponding to the three possible flip directions, and ∆r = [cos(ϕ -∆ϕ), sin(ϕ -∆ϕ)].

(

In the absence of motion between flips, the centre r of each trimer would explore the vertices of a two-dimensional honeycomb lattice. Successive flips may or may not be correlated, regarding the time intervals between flips and/or the choice of successive flip directions.

The simplest model for the motion between flips is that the trimers translate and rotate diffusively, obeying

ṙ = ( ẋ, ẏ) = 2D t (ζ x , ζ y ) and φ = 2D r ζ ϕ , (6) 
where ζ x , ζ y , and ζ ϕ are independent delta-correlated stationary Gaussian processes with zero mean, and D t and D r are the translational and rotational diffusion coefficients. An active (velocity) contribution might be added to these equations, but such a term would imply some breaking of triangular symmetry. Having uncorrelated flips without rotation in between, the angle made by ∆r takes possible values +π/3, -π/3, or π occurring with equal probability. For α (as defined in Fig. 4(d)), the angles for the three previous cases are 2π/3, 2π/3 (again), and 0. This we find to a reasonable approximation at lower field strength, as shown in Fig. 4(c), albeit with a larger peak at α ≈ 2π/3. Upon increasing E, we observe weakening of the bimodal nature of the distribution as the distribution of α shifts to 0, showing an enhanced anisotropic motion, as displayed in Fig. 4(d). In other words upon increasing the field strength, the trimers exhibit a greater tendency to flip forwards and back. Also, the increase of E yields an increasing flip rate, as shown in Fig. 4(e). The increasing correlation of flips might be given by any small asymmetry in the shape, i.e. spheres of different size, that together with the increased field result in linear regions of the trajectory (see inset in Fig. 4(d)).

With the above observations in mind, it is possible to devise a dynamical model of the trimer, based on continuous (possibly diffusive) motion, punctuated by instantaneous flips (possibly incorporating the correlations just discussed), to compare with experiments. This model is discussed further in the Supplementary Information [51]. Here, though, we focus on isolating the continuous motion, and determining whether it is diffusive. Using the facts that the flips are rapid, and produce displacements ∆r and ∆ϕ which approximately satisfy Eqn. (5), it is possible to remove the effects of the flips from the experimentally observed trajectories, leaving just the continuous evolution of r(t) and ϕ(t). We refer to these as filtered trajectories. We emphasize that this is an artificial procedure, only likely to be successful if the two types of motion are sufficiently independent.

Mean-squared displacements of filtered trajectories obtained at different field strengths At first sight, it may seem surprising that the effective diffusion coefficient decreases as a function of field strength, while the activity increases. We believe that this is due to an increased tendency to flip forwards and back, as indicated in Fig. 4(d). This then suppresses the displacement of the centre of mass of the trimer, leading to the reduction in the effective diffusion constant. The filtering we carry out has no impact on this behavior.

E
Reorientation in the plane is analysed by means of time correlation functions of ϕ, again extracted from the filtered trajectories

C m (t) = cos m∆ϕ(t) = exp(-m 2 D r t) (7) 
where ∆ϕ(t) = ϕ(t) -ϕ(0), the change in angle due to non-flip motion only, m is the rank, and the last expression is expected for pure rotational diffusion with coefficient D r [55]. In Fig. 4(g) we show results for m ≤ 6 at one value of E. In the inset of Fig. 4(h), the same data collapses onto a single curve m -2 ln C m (t) vs t, allowing an estimate of D r .

and rotational diffusion seems to satisfactorily describe the motion between flips. We find decay of both D t and D r as we increase E. It is important to recognize that perfect separation of flips and diffusion may be impractical (in reality, there is a distribution of flip distances and directions, and the trimers are not perfectly equilateral triangles). Hence, the measured "diffusion" coefficients may include residual contributions from the flips. If this is the case, then the decrease in D t and D r with increasing E might be connected with the increased importance of the α = 0 peak, i.e. correlated forward and backward flips, at higher E, indicated in Fig. 4(d).

DISCUSSION AND CONCLUSIONS

In summary, we have investigated active motion of dumbbells and trimers powered by Quincke rotation. The orbital motion and the flipping behaviour of these non-spherical particles is markedly different from that observed in rolling colloids. For both cases, the behavior is controlled by the applied electric field. The motion of dumbbells observed experimentally at intermediate activity is in agreement with the theoretical description of a circle swimmer [49].

In the case of single Quincke dumbbells, as a function of increasing field strength, we observe spinners with no translational active motion, followed by states of disordered and then ordered orbital motion. Such motion transforms into the emergence of spinning tetramers and hexamers as dumbbells collide with each other. This corresponds to the formation of excited bound states arising from the hydrodynamic coupling of dumbbells. The persistence length inherent in the motion of Quincke Rollers leads to a dependence on the trajectories of the incoming dumbbells, and in particular on the collision angle φ (Fig. 3(a)). Such a dependence is absent from the overdamped dynamics of passive colloidal systems and indeed the exotic excited sates we find are reminiscent of long-lived complexes formed by collisions between molecules but at the colloidal lengthscale and of course with classical interactions [START_REF] Brouard | Tutorials in Molecular Reaction Dynamics[END_REF]. It is possible that at higher concentrations of dimers, a collective demixing reminiscent of MIPS might be observed, similar to that seen for some other anisotropic colloids [START_REF] Katuri | [END_REF],

although a full understanding would likely need to include the hydrodynamic interactions between dumbbells and the spinning tetramer and hexamer excited states. Finally, we have shown the flip behavior of trimers, which is described by means of a jump-diffusion model.

We have implemented a minimal model, and leave the detailed mechanism for the future.

Under our assumptions the model reproduces the experiments rather accurately.

Our findings contrast with collective behavior in a system of pear-shaped Quincke rollers in Ref. [43], who found a phase of particles also exhibiting orbital motion. However they do not appear to find anything similar to the spinning state the we find at lower field strength.

Furthermore they do not report coupling of pairs of particles, so that system seems not to exhibit behavior similar to the excited bound state of tetramers and hexamers than we observe (Fig. 3). We presume that the reason for this is the geometry of the pear-shaped particles whose aspect ratio is closer to that of a sphere and moreover does not appears to enable locking of colliding particles. Also, for geometric reasons, the hopping of the trimers reported here is not found in the pear-shaped particles. Interestingly, the diskshaped particles in Ref [START_REF] Katuri | [END_REF] seem to be able to transiently form bound states reminiscent of the tetramers that we observe. This is consistent with their relatively large aspect ratio.

However they do not seem to interlock and perhaps as a consequence these states are shorter lived than the tetramers. The role of particle shape in influencing interactions and assembly in Quincke rollers and other active particles is clearly an intriguing topic for the future.

The experiments that are now possible with this system may be beneficial for the investigation of different types of motion as encountered in nature, as well as for the design of non-equilibrium self-assembly routes and to provide a readily observable classical analogue of collisions and excited states in molecules. In particular, our work opens the way to a new kind of active supracolloidal chemistry. Other geometries of cluster in addition to dumbbells and trimers could be explored [23]. Here we have considered the dilute limit with pairwise collisions and interactions. A particularly interesting avenue to explore would be higher concentration, which has been achieved in the case of (passive) colloidal dumbbells [56] and anisotropic active colloids with other geometries [START_REF] Katuri | [END_REF]43], with which predictions from computer simulation might be explored [39]. Inclusion of active control [17] opens even more exciting possibilities.

MATERIALS AND METHODS

Colloidal molecules are prepared as follows. We employ polystyrene beads (Fluoro-Max, Thermo Fischer) of size σ = 3.1µm, and polydispersity 5% as determined by SEM. The initial suspension is aqueous. Colloids are repeatedly washed with a 0.15 M solution of AOT surfactant in hexadecane. In the absence of a steric stabilising layer, colloidal clusters form due to van der Waals attractions. We obtain a mixture of clusters as the aqueous solvent is replaced by the low polar solution. Centrifugation is used to separate small clusters, i.e.

dumbbells and trimers, from the rest of the suspension.

For the experiments, a dilute mixture of clusters is loaded into a sample cell fabricated with conductive ITO-coated glass slides (ITOSOL-12, Solemns). Two slides are separated by a 30µm-thickness spacer made of optical glue and larger beads. An amplified (Trek 606E-6) dc electric field E is applied to the suspension to observe the Quincke electro-rotation of colloids [3]. Image sequences are obtained at 660 fps using bright-field microscopy (Leica DMI 300B) and a digital camera (Basler ACE). The monomers, dumbbells and trimers appears to be colloidally stable on the timescale of the experiment. That is to say, we saw no sign of aggregation, nor any change in the populations of any of the three species. and dashed lines are fittings from Eqn. (7). Inset in h displays the collapsed scaled functions for the same data shown in g. Solid line is a fitting using the mean rotational diffusion coefficient D r extracted from the fits in g. h. Effective rotational diffusion coefficients D r versus the applied electric field strengths.

FIG. 1 .

 1 FIG. 1. Spinning, disordered and ordered orbital motion of dumbbells. a. SEM micrograph of a Quincke dumbbell. Bar represents 5µm. b. Representation of a dumbbell body-frame. Perpendicular ⊥ and longitudinal orientations n with respect to the bond between the two spheres are shown. In addition, the velocity v is given by the displacement of the centre-of-mass r. The angles θ i , corresponding either to the velocity or the orientation, are defined with respect to the reference axis. c. Field-dependent behaviour of dumbbells. Passive dumbbells become active spinners above E Q , and then circular rollers above E dis . d-e. Schematics of incoming electro-hydrodynamic flow field as a result of the field application, whose angular velocity leads to rotation in the horizontal plane (c) and elevated side view (d). Flow fields are obtained with Eqn. 2 in the Supplementary Information. f-h. Representative trajectories of the three states. f. A spinning dumbbell at low E. Solid blue line represents the displacement of the centre-of-mass r, and the dashed line is from the motion of one of the sites as the dumbbell spins. g. Disordered Orbital motion and h. Ordered Orbital motion. Solid lines indicate the displacement of the centre-of-mass, and arrows correspond to the orientation n⊥ . Insets in f,g and h show the time evolution of the angles θ v (dashed lines) and θ n (solid lines).

FIG. 2 .

 2 FIG. 2. Dynamics of dumbbells. a. Angular velocity ω as a function of the field strength E. Two regimes are identified: spin motion (S, shaded region) appears with low values of E, whereas disordered (DO) and ordered (OO) orbital trajectories emerge with increased E. b. Trajectory radius R for the different regimes obtained with E. c. Mean-squared displacements measured at different amplitudes of E. Symbols are from experiments and solid lines are fits to Eqn. 4. d. Selfpropulsion speed of dumbbells versus the field amplitude. e. Mean displacement of the trajectory central point r c . f. Rotational diffusion coefficient D r obtained from fits in Fig. 2(c) using Eqn. 4.

  the dumbbell diffusion tensor, where D ⊥ and D are the transverse and longitudinal translational diffusion coefficients, and I is the unit tensor. The rotational dynamics are given by D r , the rotational diffusion coefficient, and T, the effective torque promoting the circular motion on dumbbells. Finally, Gaussian noise terms ζ ζ ζ and ζ θ for the displacement and the orientation are added respectively. We observe an enhanced translation during disordered and ordered orbital trajectories. On the other hand, the rotational motion is diffusive, and angular diffusion coefficients are obtained as[53] 

For a spinning dumbbell, v 2 DrD

 2 t and ω ≤ D r , the MSD reduces to ∼ 4D t . Equation 4 is recovered for a dumbbell exhibiting disordered orbital motion where v 2 Dr D t and ω ≤ D r . Finally, for the ordered orbital trajectories, MSD ∼ 2v 2 ω 2 [1 -cos(ωt)], with v 2 Dr D t and ω D r . Mean-squared displacements in Fig. 2(c) are fitted to obtain D r from Eqn. 4 using the experimentally measured self-propulsion v and rotational ω velocities of dumbbells. The extracted values of D r are shown in Fig. 2(f).

FIG. 3 .

 3 FIG. 3. Formation of tetramers and hexamers. a. Active dumbbells performing disordered orbital motion may collide with a consequent change in their trajectory. We take the angle φ made between the orientations nij and velocities v ij to characterise the collisions. b. When aligned, two colliding dumbbells form spinning tetramers whose motion results from the dynamical frustration exerted by one dumbbell on the other. c. The formation of hexamers is possible when a third dumbbell collides with a previously formed tetramer. The resulting spinning motion of hexamers is also attributed to the dynamical frustration of single circular trajectories. d.-e. Schematic representation of the Quincke rotation of dumbbells. Hydrodynamic coupling is schematically illustrated with the black arrows. f. Formation sequence of a hexamer. A tetramer is previously formed by two dumbbells. A third dumbbell approaches with its orientation nk pointing towards the tetramer. Upon collision, the dumbbells rearrange to form a triangular shape as indicated by the orientations nijk . g. For dumbbells forming tetramers, the distributions of φ indicate that the process is dominated by the dumbbell orientation rather than the velocity. Inset shows the distribution of the orientation angles φ for successful and unsuccessful formation of tetramers. Bar represents 10µm. h.-i. Spinning angular velocities ω for h. tetramers and i. hexamers as function of E. Inset in h. is the evolution of the orientation angle θ n as the tetramer spins. Inset in i.

Figures 4 (

 4 Figures 4(c) and 4(d) display experimental trajectories of a trimer performing an essentially random walk at different activities. In contrast to active spheres and dumbbells, trimers show reduced displacement ∆r due to the symmetry in jumps. For the range of field strengths applied here, i.e. E ∈ {1.8, 3.4} V µm -1 , we find that the motion of trimers is dominated by flips. To characterize any correlation of the flips we define an angle α made by two successive displacements of the centre-of-mass (see the diagram in Fig.4(d)).

  are shown in the inset of Fig. 4(f). The curves can be fitted by ∆r(t) 2 = 4D t t, and values for the effective diffusion coefficient D t are shown as a function of E in Fig. 4(f).

FIG. 4 .

 4 FIG. 4. Quincke trimers. a. Top: SEM micrograph of a Quincke trimer. Scale bar is 5µm. Bottom: Trimer body-frame. The orientation n of each vertex is given by an angle φ formed with respect to a axis and each vertex position. b. Schematic representation of the flip motion performed by active trimers. Every jump corresponds to a leapfrogging mechanism of one vertex over the opposite side of the trimer, which takes the trimer out of the plane close to the substrate. c. Distribution of flip angles α for a trajectory E ≈ 2 V µm -1 , shown at the inset. d. A trimer trajectory dominated by flips at E ≈ 3.33 V µm -1 (inset) shows a strong distribution of α → 0. e. Flip rate as function of the electric field strength E. f. Effective translational diffusion coefficients D t obtained from filtered trajectories. Inset shows diffusive mean-squared displacements. Arrow indicates increase of E. g. Reorientational time correlation functions for six different ranks m as defined in the main text. Symbols are obtained from experimental trajectories at E ≈ 2 V µm -1 ,
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