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A B S T R A C T   

Exposure to phthalates and synthetic phenols is ubiquitous. Some of them are suspected to impact child respi
ratory health, although evidence still remains insufficient. This study investigated the associations between 
prenatal exposure to phthalates and phenols, individually and as a mixture, and child respiratory health assessed 
by objective lung function measures since 2 months of age. Among 479 mother-child pairs from the SEPAGES 
cohort, 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites were measured in 2 pools including 
each 21 urine samples collected at the 2nd and 3rd pregnancy trimesters. Lung function was measured at 2 
months using tidal breathing flow-volume loops and nitrogen multiple-breath washout, and at 3 years using 
oscillometry. Asthma, wheezing, bronchitis and bronchiolitis were assessed by repeated questionnaires. A 
cluster-based analysis was applied to identify exposure patterns to phenols and phthalates. Adjusted associations 
between clusters as well as each individual exposure biomarker and child respiratory health were estimated by 
regression models. We identified four prenatal exposure patterns: 1) low concentrations of all biomarkers 
(reference, n = 106), 2) low phenols–moderate phthalates (n = 162), 3) high concentrations of all biomarkers 
except bisphenol S (n = 109), 4) high parabens–moderate other phenols–low phthalates (n = 102). At 2 months, 
cluster 2 infants had lower functional residual capacity and tidal volume and higher ratio of time to peak tidal 
expiratory flow to expiratory time (tPTEF/tE) and cluster 3 had lower lung clearance index and higher tPTEF/tE. 
Clusters were not associated with respiratory health at 3 years but in the single-pollutant models, parabens were 
associated with increased area of the reactance curve, bronchitis (methyl, ethyl parabens) and bronchiolitis 
(propyl paraben). Our results suggested that prenatal exposure to mixtures of phthalates reduced lung volume in 
early life. Single exposure analyses suggested associations of parabens with impaired lung function and increased 
risk of respiratory diseases.   

1. Introduction 

Although lungs develop until early adulthood, the most important 
structural developments occur in early-life, including fetal life. Changes 
in lung development in this sensitive window of time can lead to lifelong 
respiratory morbidity (Stocks et al., 2013). This has raised the 

motivation to identify modifiable factors influencing early lung devel
opment, and has led to increased epidemiological evidence for impact of 
prenatal exposure to environmental factors on child lung development 
and respiratory diseases later in life (Johnson et al., 2021; Stocks et al., 
2013). 

Early-life exposure to endocrine disruptors, such as phthalates and 
synthetic phenols, is among the emergent possible risk factors of child 
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health, including respiratory health (Miller and Marty, 2010; Vernet 
et al., 2017). Exposure to synthetic phenols and phthalates is ubiquitous 
through food processing and packaging (bisphenol A or S, 
benzophenone-3, parabens, phthalates), personal care products (para
bens, triclosan, benzophenones, some phthalates), pharmaceutical 
products (phthalates), and a large range of other consumer products 
(such as paints, varnishes, furniture and PVC plastics (phthalates)). 
Epidemiological studies have shown that phthalate metabolites and 
phenols are detected in almost all pregnant women in Europe and U.S 
(Dereumeaux et al., 2016; Haug et al., 2018; Mortensen et al., 2014; 
Philippat and Calafat, 2021; Rolland et al., 2020). 

Several epidemiological studies investigated the associations be
tween these compounds, mainly phthalates and bisphenol A and respi
ratory and allergic diseases in children (Casas and Gascon, 2020). 
However, the evidence remains insufficient because of limited result 
consistency. For example, although the majority of studies that 
addressed the role of prenatal bisphenol A exposure on respiratory 
health in children showed positive associations (Spanier et al., 2012), 
some identified positive associations in boys (Buckley et al., 2018; 
Vernet et al., 2017) or in girls (Zhou et al., 2017) only. One other study 
showed inverse associations (Donohue et al., 2013) while three did not 
observe any association (Agier et al., 2019; Berger et al., 2019; Gascon 
et al., 2015). Limited power and exposure misclassification may partly 
explain the discrepancy in results. Regarding the latter issue, most 
studies conducted so far relied on a single (Buckley et al., 2018; Dono
hue et al., 2013; Ku et al., 2015; Vernet et al., 2017; Whyatt et al., 2014; 
Zhou et al., 2017) or few urine samples (Agier et al., 2019; Berger et al., 
2020, 2019; Gascon et al., 2015; Spanier et al., 2014, 2012). Because of 
the high within-subject variability of phenol and phthalate urinary 
concentrations in pregnant women (Casas et al., 2018; C. Vernet et al., 
2018), a small number of urine samples imperfectly reflects the average 
exposure throughout the pregnancy. Depending on the chemicals, this 
exposure misclassification leads to moderate-to-high underestimation of 
exposure-health associations (Perrier et al., 2016; Céline Vernet et al., 
2018). Regarding respiratory health assessment, few studies used 
objective measurements of lung function, and all were performed in 
children aged 5 years or older when spirometry becomes feasible (Agier 
et al., 2019; Berger et al., 2019; Spanier et al., 2014; Vernet et al., 2017). 
Finally, while in daily life populations are simultaneously exposed to a 
wide range of chemicals, most of the previous studies investigated the 
effect of each compound alone. Only one study addressed mixture effect 
(Berger et al., 2020). In the CHAMACOS cohort, a cluster-based analysis 
identified seven prenatal exposure patterns to phthalates and phenols. 
However, none was associated with child respiratory health (Berger 
et al., 2020). Further analyses are needed to explore the effect of 
chemical mixtures on respiratory health. 

The goal of this study was to assess the associations between prenatal 
exposure to synthetic phenols and phthalates, considering mixture of 
chemicals, and child respiratory health assessed based on objective lung 
function measures as early as 2 months of age and up to 3 years. 

2. Materials and methods 

2.1. Study population 

The study is based on the data from the SEPAGES cohort 
(2014–2017, Grenoble, France) (Lyon-Caen et al., 2019). Briefly, 484 
pregnant women were included before the 19th gestational week and 
followed during pregnancy, and their child were subsequently 
followed-up. In the present study, the association analyses were con
ducted in 457 children with both prenatal urinary biomarkers of expo
sure to synthetic phenols and phthalates and either lung function test at 
2 months or 3 years or history of respiratory diseases (Fig. 1). 

The study was approved by the Comité de Protection des Personnes 
(CPP Sud-Est) and the Commission Nationale de l’Informatique et des 
Libertés (CNIL). Volunteers had signed a consent before their inclusion 
in this study. 

2.2. Prenatal exposure to synthetic phenols and phthalate 

At two time points of the pregnancy (2nd trimester: median of 18 
gestational weeks, and 3rd trimester: median of 34 gestational weeks), 
women were asked to collect three urine samples per day, during a 
week. For each participant and each week of urine collection (2nd and 
3rd trimester of pregnancy), equal volume pools of the repeated urine 
samples during the week were made (Philippat and Calafat, 2021; 
Vernet et al., 2019). 

For each individual, an aliquot of these pools was sent on dry ice with 
a temperature sensor to the Norwegian Institute of Public Health 
(NIPH), where measurements of 12 synthetic phenols (5 bisphenols; 
triclosan; triclocarban; benzophenone-3; 4 parabens), 13 phthalate 
metabolites and 2 metabolites of a non-phthalate plasticizer (di(iso
nonyl)cyclohexane-1,2-dicarboxylate, DINCH) concentrations were 
done (Supplementary Table S1). Phthalate and DINCH metabolites were 
analysed and quantified using high performance liquid chromatography 
coupled to mass spectrometry (HPLC-MS-MS) (Sabaredzovic et al., 
2015), while for phenols we used ultra-high-performance liquid chro
matography coupled to mass spectrometry (UPLC-MS-MS) (Sakhi et al., 
2018). For both methods, procedural blanks, in-house quality controls 
and standard reference material (SRM 3673) from National Institute of 
Standards and Technology (NIST) were analysed along with the sam
ples. The accuracy ranged from 70% to 126%, and the precision given as 

Abbreviations 

AOS Airway Oscillometry 
AX Area under the reactance curve 
BPA Bisphenol A 
BPS Bisphenol S 
BP3 Benzophenone-3 
BUPA Butyl paraben 
DEHP Di(2-ethylhexyl) phthalate 
DINCH Di(isononyl)cyclohexane-1,2-dicarboxylate 
DiNP Diisononyl phthalate 
ETPA Ethyl paraben 
FRC Functional residual capacity 
ISAAC International Study of Asthma and Allergies in Childhood 
LCI Lung clearance index 
LOD Limit of detection 

LOQ Limit of quantification 
MBzP Mono-benzyl phthalate 
MEP Monoethyl phthalate 
MEPA Methyl paraben 
MiBP Mono-isobutyl phthalate 
MnBP Mono-n-butyl phthalate 
N2MBW Nitrogen multiple-breath washout 
OH-MPHP Mono-6-hydroxy-propylheptyl phthalate 
R7 Resistance at 7 Hz 
R7-19 Resistance between 7 and 19 Hz 
TBFVL: Tidal breathing flow-volume loops 
TCS Triclosan 
tPTEF/tE Ratio of time to peak tidal expiratory flow to expiratory 

time 
Vt Tidal volume 
X7 Reactance at 7 Hz  
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relative standard deviation was below 26% for phenols, phthalates and 
DINCH metabolites. The free and conjugated forms of phenol bio
markers were preliminarily measured in samples from 50 women. Since 
these preliminary measurements did not suggest external contamination 
(Rolland et al., 2020), for the remaining participating women, we relied 
on the total form (free + conjugated). 

Bisphenols AF, B, F and triclocarban were detected in less than 5% of 
the pooled samples and were not considered in our analysis. In addition, 
we created a molar sum of metabolites from the same parent compound 
(ΣDEHP (Di(2-ethylhexyl) phthalate), ΣDiNP (Diisononyl phthalate) 
and ΣDINCH) (Supplementary Table S1). In total, 16 exposures were 
included in the study with 8 synthetic phenols (methyl, ethyl, propyl, 
butyl parabens; bisphenol A and S; triclosan; benzophenone-3), 5 
phthalate metabolites (MEP, MnBP, MiBP, MBzP, OH-MPHP), 3 molar 
sums (ΣDEHP, ΣDINCH, ΣDiNP). 

Bisphenol S and butyl paraben, two biomarker concentrations with 
more than 30% of their values below the LOD (Limit of Detection), were 
binarized as detected, not detected. Others were singly imputed using 
the compound’s probability distribution (Helsel, 2012). 

Then, synthetic phenols and phthalates were standardized on 
analytical batch, transport time between participant’s house and bio
bank and defrosting time during the pooling procedure using a 2-step 
standardization method based on regression residuals, when needed (i. 
e., when the conditions listed above were associated (p-val <0.2) with 
the studied biomarker (Guilbert et al., 2021; Mortamais et al., 2012)). 
The conditions for which each biomarker concentrations were stan
dardized for are listed in Supplementary Table S2. 

For continuous exposures, we computed the mean of naturally log 
transformed concentrations measured in urine sample pools collected in 
the 1st and 2nd collection week. For categorical exposures, we used a 
binary variable (not detected at any trimester vs. detected at least one 
trimester). 

2.3. Respiratory health assessment 

At the 2-month visit (median: 6.9 weeks), infants performed a lung 
function test during natural sleep, in supine position and with the head 
midline as recommended by the ATS/ERS (American Thorax Society/ 
European Respiratory Society) guidelines (Bates et al., 2000), see also 
detail in Supplemental Material. Tidal breathing flow-volume loops 
(TBFVL) were recorded and three measurements of nitrogen 
multiple-breath washout (N2MBW) were performed. The 2 TBFVL pa
rameters retained in the present analysis, tidal volume (VT) and the ratio 
of the time to peak tidal expiratory flow (tPTEF) to expiratory time (tE), 
was estimated on the first 30 to 50 regular breaths. tPTEF/tE ratio is ex
pected to decrease with airflow obstruction. The N2MBW technique 
measures lung volumes and ventilation heterogeneity. Using the Exha
lyzer© device and Spiroware© software (Ecomedics), infants inhaled 
pure oxygen (O2) and the concentration of exhaled N2 was monitored. 
The estimated parameters were: 1) functional residual capacity (FRC), 
and; 2) lung clearance index (LCI), defined as the number of respirations 
needed to achieve a concentration of N2 below 2.5% (Supplementary 
Table S3). LCI increases with peripheral ventilation inhomogeneity due 
to airway obstruction. Because the use of pure oxygen may induce a 
transient decrease in tidal volume that can affect FRC and LCI measures 
(Gustafsson et al., 2017), FRC and LCI values were corrected for the 
degree of hypoventilation using a 2-step standardization method based 
on regression residuals (Mortamais et al., 2012). A total of 865 valid 
N2MBW tests were retained, with a median [Q1; Q3] of 3 [2; 3] tests per 
child. For each child, both LCI and FRC corrected values were averaged. 

At the age of 3 years (median: 3.1 yrs), the impedance of the respi
ratory system was assessed based on oscillometry using a commercial 
device (TremoFlo, Thorasys Systems Montreal, Quebec, Canada) 
complying with current European standards (Beydon et al., 2007; King 
et al., 2020). Pressure waves with frequencies varying from 7 to 41 Hz 
are applied during tidal breaths and lung impedance is calculated from 
the changes in flow and pressure. Three to five acceptable measurements 

Fig. 1. Flowchart of the study population. 
Abbreviations: AOS: Airway Oscillometry, SEPAGES: Suivi de l’Exposition à la Pollution Atmosphérique durant le Grossesse et Effet sur le Santé 
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(excluding leakage, swallowing, glottis closure, vocalization or 
obstruction of the mouthpiece by the tongue) were obtained and aver
aged. The parameters included in this study are raw values of resistance 
and reactance at a frequency of 7 Hz (R7 and X7), the area of the reac
tance curve (AX) and the frequency-dependence of resistance, defined 
by the resistance difference between 7 and 19 Hz (R7-19). R7 is a 
parameter that reflects large airway resistance, while AX and R7-19 
better characterize the peripheral airways. R7-19 also evaluates the 
heterogeneous obstruction of the distal airway. Increased R7, R7-19 and 
AX, and decreased X7 are indicators of a reduced lung function (Sup
plementary Table S3). Among the 320 children who performed oscill
ometry measurements, 281 children produced technically acceptable 
and reproducible measurements, i.e. at least 3 measurements with a 
coefficient of variation <15% for R7. For each child, the mean value of 
the valid measurements was calculated for each parameter and used for 
the analyses. 

Parents of the children replied to a respiratory questionnaire at 2 
months, 1 year, 2 years and 3 years, based on the ISAAC (International 
Study questionnaire of Asthma and Allergies in Childhood) question
naire and administrated by an interviewer. Ever wheezing, bronchitis 
over the first 3-years of life and bronchiolitis over the 2 years of life were 
defined by a positive response to the questions: “In the last 12 months 
(or since birth for the 2 month-questionnaire), has your child had 
wheezing in the chest (respectively bronchitis, bronchiolitis)?“. Doctor 
diagnosed asthma was defined by a positive answer to: “In the last 12 
months (or since birth for the 2 month-questionnaire), has your child 
had asthma” and to: “Was the asthma diagnosis confirmed by a medical 
doctor?” in at least one questionnaire. 

2.4. Statistical analyses 

2.4.1. Identification of prenatal exposure patterns through cluster analysis 
We applied a cluster-based statistical model, the Variable Selection 

for Model-Based Clustering of Mixed-Type Data method (package Var
SelLCM, R) to identify prenatal exposure patterns based on biomarker 
concentrations. This (unsupervised) model uses mixture clustering 
model to create clusters of individuals independently of health outcomes 
(Marbac and Sedki, 2017). Models with a different number of clusters 
were successively conducted and compared in terms of statistical per
formance (including stability, discriminative power, distribution within 
classes and posterior probability), ease of interpretation (a priori 
meaningful clusters) and clusters size to select the most appropriate 
model. Cluster were presented in a radar chart, showing the percentage 
of children with a prenatal biomarker’s concentration above the whole 
population median concentration for continuous compounds and 
detected concentration for categorical compounds. “Low”, “moderate” 
and “high” exposure concentrations were defined as <49%, between 
49% and 59% and >59% of women with concentration level above the 
whole population median concentration, respectively. 

2.4.2. Association studies between prenatal exposures and respiratory 
health 

For comparison with previous studies relying on uni-pollutant 
models, linear (for lung function parameters measured at 2 months 
and 3 years) and logistic regression models (for binary respiratory dis
eases/symptoms) adjusted on potential confounders were performed to 
assess the associations first between cluster-based prenatal exposure 
patterns to synthetic phenols and phthalates and respiratory health and 
secondly between prenatal exposure to each chemical separately 
(Exposome Wide Association Study (ExWAS) approach) and respiratory 
health. 

Based on the literature, we built a DAG (Directed Acyclic Graph, 
DAgitty program) from which we selected the adjustment factors 
included in the main models: maternal body mass index (BMI) before 
pregnancy (continuous), maternal age (continuous), highest parental 
educational level (maximum number of study years after the high-school 

degree between the parents in two categories: more or less than 5 years), 
parental history of rhinitis, parity, season of urine sampling, passive 
smoking (in utero (maternal active smoking), and until the assessment of 
child respiratory function), breastfeeding at 2 months (yes / no), child’s 
sex, weight and height (continuous) at the clinical visit. To avoid losing 
individuals due to missing data in confounders, multiple imputations (m 
= 20 datasets) were done with Multivariate Imputation by Chained 
Equations (package mice, R). 

We investigated a potential modifying effect of the child’s sex in the 
association between prenatal exposure patterns and respiratory health 
by integrating an interaction term between exposure patterns and 
child’s sex in the regression models. Analysis stratified for child sex were 
run if the p-value for interaction was ≤ 0.20. A sensitivity analysis to 
address the robustness of the results to the uncertainty in the cluster 
assignment was conducted by excluding mother-child pairs whose 
highest posterior probability in cluster membership was below 0.70 (n 
= 61). A second sensitivity analysis was performed to assess the effect of 
the extreme values of the outcome on the associations between respi
ratory health data and clusters. For each outcome, 1% of their maximum 
values and 1% of their minimum values were removed from the 
analyses. 

For all analyses, associations with p-values less than 0.05 were 
considered statistically significant and those with p-values between 0.05 
and 0.1 were considered as suggestive associations. Because the main 
association analysis was based on the cluster-based exposure patterns 
and because the ExWAS analysis was considered as a support for inter
preting the results from the main analysis, we did not correct for mul
tiple hypotheses testing. 

All statistical analyses were conducted with the version 4.0.5 of R. 

3. Results 

3.1. Population characteristics 

Women included in the analysis (mean (sd) age at conception = 32.5 
(3.9) years) were highly educated (70% with Master’s or higher degree) 
(Table 1). Among children (46% girls, mean (sd) birth weight = 3.3 kg 
(0.4)), 85% were breastfed for at least 2 months and 14% were exposed 
to tobacco smoke in early-life (in-utero exposure and/or passive smok
ing in the first 2 months). Regarding respiratory health in the first 3 
years of life, 14%, 38% and 21% had ever had asthma, bronchiolitis and 
bronchitis, respectively. 

Correlation between lung function parameters varied from − 0.23 
between LCI and tPTEF/tE to 0.59 between VT and LCI at 2 months and 
from − 0.72 between AX and X7 to 0.75 between R7 and AX at 3 years 
(Supplementary Table S3). 

3.2. Identification of prenatal exposure patterns using cluster analysis 

The pairwise correlations between biomarkers did not show strong 
correlations (all Spearman’s coefficients of correlation were below 0.6) 
(Supplementary Fig. S1). Among phthalate metabolites, the highest 
median concentration was observed for MEP and among synthetic 
phenols it was observed for methyl paraben (Supplementary Table S4). 
The cluster analysis identified 4 clusters characterized by specific pre
natal exposure patterns: 1) low concentration of phthalate metabolites 
and phenols (N = 106), 2) low concentration of phenols and moderate 
concentration of phthalate metabolites (N = 162), 3) high concentration 
of all biomarkers except bisphenol S (N = 109), 4) high concentration of 
parabens, moderate concentration of other phenols and low concentra
tion of phthalate metabolites (N = 102) (Fig. 2). The overall mean 
posterior probability was high (mean (min-max) 0.90 (0.41–1.00)) and 
was similar across the 4 clusters (mean for cluster 1, 2, 3 and 4 were 
0.90, 0.88, 0.93 and 0.91, respectively). 
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3.3. Associations between prenatal exposure patterns and child 
respiratory health: the mixture effects 

Compared to children belonging to cluster 1 (low phenols - low 
phthalates), children belonging to cluster 2 (low phenols - moderate 
phthalates) had lower FRC (β = − 5.72 [− 10.50; − 0.95]), lower VT (β =
− 2.67 [− 4.56; − 0.78]), higher tPTEF/tE (β = 3.41 [0.34; 6.48]) and a 

suggestive association was observed with a lower LCI (β = − 0.25 
[− 0.54; 0.04]) at 2 months, while they did not differ for oscillometry 
parameters and symptoms assessed at 3 years (Fig. 3 with re-scaled lung 
function parameters, i.e. divided by their standard deviation, Supple
mentary Table S5 with raw lung-function parameters). Children 
belonging to cluster 3 (high concentrations of all biomarkers except 
bisphenol S) had lower LCI (β = − 0.35 [− 0.68; − 0.02]) and higher 
tPTEF/tE (β = 4.18 [0.71; 7.64]) at 2 months, while no difference was 
observed for oscillometry parameters and symptoms at 3 years. Children 
belonging to cluster 4 (high paraben-moderate phenols and low phtha
lates) did not differ from those belonging to cluster 1 for any of the 
respiratory health parameters (all p-values above 0.12). 

3.4. Associations between each exposure biomarker and child respiratory 
health: the ExWAS approach (Fig. 4 and Supplementary Tables S6, S7, 
S8) 

In the single-pollutant models, among phthalate metabolites, 
increased urinary concentration of MiBP was associated with lower LCI 
(β = − 0.27, 95% CI: (− 0.46; − 0.09) for an increase by 1 unit in ln 
(MiBP)) and lower VT (β = − 1.67 mL, 95% CI: (− 2.85; − 0.48)). It also 
tended to be associated with lower FRC (β = − 2.83 mL, 95% CI: (− 5.87; 
0.21)) and higher tPTEF/tE (β = 1.71%, 95% CI: (− 0.22; 3.65)) at 2 
months. MnBP was associated with lower LCI (β = − 0.27, 95% CI: 
(− 0.47; − 0.07)) and there was trend for lower FRC (β = − 3.04 mL, 95% 
CI: (− 6.34; 0.27)). MBzP was associated with lower FRC (β = − 3.69 mL, 
95% CI: (− 6.34; − 1.04)). No association with any oscillometry param
eters and respiratory function at 3 years was observed for these phtha
late metabolites. ΣDINCH was associated with higher tPTEF/tE at 2 
months (β = 1.64%, 95% CI: (0.24; 3.03)) and higher risk of wheeze over 
the first 3 years of life (OR = 1.32, 95% CI: (1.01; 1.72)). The other 
phthalate metabolites were not associated with respiratory health 
parameters. 

Among synthetic phenols, all parabens tended to be positively 
associated with increased AX (p-values ranged from 0.05 for ethyl par
aben to 0.12 for methyl paraben). Ethyl and methyl parabens were also 
associated with a higher risk of bronchitis (OR = 1.18, 95% CI: (0.98; 
1.41) and 1.19, 95% CI: (1.01; 1.40) for ethyl and methyl paraben, 
respectively) while propyl paraben was associated with increased risk of 
bronchiolitis at 3 years (OR: 1.09, 95% CI: (1.00; 1.18)). Several asso
ciations were observed with bisphenol S. Infants with detected prenatal 
bisphenol S concentrations had higher risk of asthma (OR = 1.89, 95% 
CI: (1.05; 3.38)) and bronchiolitis (OR = 1.56, 95% CI: (1.01; 2.38)) at 3 
years and higher FRC (β = 4.71 mL, 95% CI: (1.24; 8.18)) and VT (β =
1.43 mL, 95% CI: (0.04; 2.82)) at 2 months. This compound also tended 
to be negatively associated with R7-19 (β = − 0.22 cmH2O.s/L, 95% CI: 
(− 0.44; 0.01)) at 3 years. We did not observe association for the other 
synthetic phenols. 

3.5. Sensitivity analyses 

A single interaction test between the prenatal exposure patterns and 
child’s sex was observed at p value < 0.20 (for cluster 3 and bronchio
litis, p = 0.14), not providing strong evidence for a modification of as
sociation by sex. The sensitivity analyses excluding women whose 
highest posterior probability in cluster membership was below 0.7 
(Supplementary Table S9) or children with extreme outcome values 
(Supplementary Table S10) showed similar results to the main analysis. 

4. Discussion 

This study is one of the first to address the associations between 
prenatal exposure to synthetic phenols, phthalates and one non- 
phthalate plasticizer, considered as a mixture (through exposure pat
terns assessed by cluster analysis), and objective lung function param
eters measured as early as 2 months of age. The main results indicated 

Table 1 
Characteristics of included mother-child pairs from SEPAGES cohort population 
(N = 457).  

Characteristics N (%) Mean (SD) 

Maternal characteristics 
Maternal BMI before pregnancy (kg/m2) 453 22.4 (3.8) 
Maternal age at conception (years) 457 32.5 (3.9) 
Parity 

Nulliparous 207 (45.3)  
Multiparous 250 (54.7)  

Season of sampling 
January–March 131 (28.8)  
April–June 134 (29.5)  
July–September 105 (23.1)  
October–December 85 (18.7)  

Child characteristics 
Child sex 

Boys 246 (53.8)  
Girls 211 (46.2)  

Gestational age at delivery (days) 457 278.3 (10.1) 
Child weight at birth (kg) 457 3.3 (0.4) 

Parents’ highest educational level 
< master degree 136 (29.8)  
≥ master degree 321 (70.2)  

Breastfeeding duration 
<2 months 67 (14.9)  
≥2 months 383 (85.1)  

Parental history of rhinitis 
No 157 (36.7)  
Yes 271 (63.3)  

Data at the 2-month visit 
Child height at 2 months (cm) 430 56.4 (2.2) 
Child weight at 2 months (kg) 431 4.8 (0.6) 

Tobacco smoking exposure up to 2 months 
No 388 (85.5)  
Yes 66 (14.5)  

LCI 350 7.6 (1.1) 
FRC (ml) 350 104.9 (18.1) 
VT (ml) 325 34.2 (7.1) 
tPTEF/tE (%) 325 35.2 (9.9) 

Data at the 3-year visit 
Child height at 3 years (cm) 306 95.5 (3.7) 
Child weight at 3 years (kg) 306 14.7 (1.6) 

Tobacco smoking exposure up to 3 years 
No 327 (71.9)  
Yes 128 (28.1)  

R7 (cmH2O.s/L) 306 11.9 (2.3) 
R7-19 (cmH2O.s/L) 306 1.3 (1.0) 
X7 (cmH2O.s/L) 306 − 4.2 (1.2) 
AX (cmH2O/L) 306 73.6 (35.3) 

Child asthma ever 
No 363 (85.8)  
Yes 60 (14.2)  

Child wheeze ever 
No 280 (66.0)  
Yes 144 (34.0)  

Child bronchiolitis up to the 2nd year of life 
No 262 (61.9)  
Yes 161 (38.1)  

Child bronchitis ever 
No 332 (78.5)  
Yes 91 (21.5)  

Abbreviations: AX: area under the reactance curve, BMI: Body Mass Index, FRC: 
Functional Residual Capacity, LCI: Lung Clearance Index, R7: Resistance at 7 Hz, 
R7-19: Resistance between 7 and 19 Hz, tPTEF/tE: ratio of time to peak tidal 
expiratory flow to expiratory time, VT : tidal volume, X7: Reactance at 7 Hz.  
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that, compared to children with low exposure to the mixture, those with 
moderate concentrations of phthalate metabolites and low concentra
tion of synthetic phenols had lower FRC and VT, indicating lower lung 
volumes. However, the exposure pattern characterized by a high con
centration of all of the biomarkers except bisphenol S was associated 
with higher tPTEF/tE and lower LCI at 2 months which was unexpected 
since tPTEF/tE should be decreased and LCI increased with airway 
obstruction. The ExWAS results, somewhat converged with those of the 
cluster analysis, and also showed suggestive associations between par
abens and lung health at 3 years. 

To the best of our knowledge, only two previous studies assessed 
mixture effects of a large number (>10) of biomarkers (Adgent et al., 
2020; Berger et al., 2020). On 319 mother-child pairs from the CHA
MACOS study, Berger et al. identified 7 clusters of prenatal exposure (vs. 
4 in our analysis) and none was associated with asthma or FEV1 (Forced 
Expiratory Volume in 1 s) measured at age 7 years (Berger et al., 2020). 
However, sample size in each cluster was relatively low (between 26 and 
68 mother child-pairs depending on the clusters), potentially limiting 
power of their analysis. Using a different statistical approach, the 
weighted quantile sum regression, Adgent et al. identified, in 1481 
mother-child pairs, a phthalate index associated with increased risk of 
asthma and wheeze at age 4–6 years in boys only, with MEP weighted 
highest in the association (Adgent et al., 2020). Our findings do not 
converge with these results, with no indication of association between 
cluster-based exposure patterns characterized by moderate or high 
phthalate biomarkers and asthma and wheezing and no indication of 
sex-specific effect in these associations. Comparison of our results to 

those from previous studies is not straightforward because this is the first 
study assessing lung function as early as at 2 months of age, while the 
previous studies assessed lung function by spirometry in children 5 years 
or older (Abellan et al., 2022; Agier et al., 2019; Berger et al., 2020, 
2019; 2018; Spanier et al., 2014; Vernet et al., 2017). Differences in 
exposure timing (3rd trimester vs. a 2nd and 3rd trimesters) in number 
of urinary samples considered (single vs. up-to 42 samples) and in bio
markers jointly considered through clusters (phthalates vs. phenols and 
phthalates) might explain results discrepancies. Differences in exposure 
levels between cohorts could lead to different results as well. Overall, 
concentrations measured in the SEPAGES cohort were lower or of 
similar range (e.g., bisphenol A, ΣDEHP, MnBP, MiBP) than those of 
previous studies (Supplementary Fig. S2). 

4.1. Phthalates and child respiratory health 

Both our cluster and ExWAS analysis suggested associations between 
phthalates and lower lung volumes at 2 months. Indeed, our results 
showed associations between the exposure pattern characterized by a 
mixture of moderate phthalate metabolite concentrations and low syn
thetic phenol concentrations and lower FRC and VT, both indicating 
lower lung volumes at two months. The lack of association with lung 
function parameters at 3 years suggests that effects of prenatal exposure 
to endocrine disruptors on child respiratory health might be easier to 
evidence soon after birth, possibly because lung function at 3 years is 
also influenced by postnatal exposures. Children prenatally exposed to 
both high phthalates and phenols (cluster 3) also showed a trend for 

Fig. 2. Radar chart displaying the prenatal 
biomarker of exposure patterns identified by cluster 
analysis. 
The clustering analysis was performed on ln- 
transformed concentrations. For each cluster, the 
radar chart shows the percentage of children with a 
prenatal biomarker’s concentration above the whole 
population median concentration for continuous 
compounds and detected concentration for categori
cal compounds. “Low”, “moderate” and “high” expo
sure concentrations were defined as <49%, between 
49% and 59% and >59% of women with concentra
tion level above the whole population median con
centration, respectively. 
There were 4 clusters: 1) low concentration of all 
exposures (black, N = 106), 2) low concentration of 
phenols and moderate concentration of phthalates 
(purple, N = 162), 3) high concentration of all ex
posures except bisphenol S (orange, N = 109), 4) high 
concentration of parabens, moderate concentration of 
phenols and low concentration of phthalates (red, N 
= 102). 
Abbreviations: BPA: Bisphenol A, BPS: Bisphenol S, 
BUPA: Butyl paraben, BP3: Benzophenone-3, DEHP: 
Di(2-ethylhexyl) phthalate, DINCH: Di(isononyl) 
cyclohexane-1,2-dicarboxylate, DiNP: Diisononyl 
phthalate, ETPA: Ethyl paraben, MEPA: Methyl par
aben, MBzP: Mono-benzyl phthalate, MEP: Mono
ethyl phthalate, MiBP: Mono-isobutyl phthalate, 
MnBP: Mono-n-butyl phthalate, OH-MPHP: Mono-6- 
hydroxy-propylheptyl phthalate, PRPA: Propyl para
ben, TCS: Triclosan   
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lower lung volume parameters at 2 months, although associations were 
not statistically significant. Results do not indicate stronger association 
with cluster 3 as compared to cluster 2 as we could have expected. We do 
not have an explanation for this observation, but lower sample size can 
be part of it (33% less individuals in cluster 3 than in cluster 2). In 
addition, the fact that clusters were defined on exposure patterns and 
not on similarities in biological effects of the different compounds may 
limit our ability to identify the additive and dose-response effects of 
multiple compounds involved in same biological pathways. 

In the ExWAS approach, in accordance with the mixture-effect 
analysis, increased prenatal exposure to MnBP, MiBP and MBzP was 
associated with lower lung volume parameters (FRC and VT) at 2 
months, but not with lung function parameters at 3 years, nor with 
respiratory diseases/symptoms. Prenatal exposure to MBzP was associ
ated with wheezing and asthma in several previous studies, including in 
0.5–7 years old children in INMA cohort (Gascon et al., 2015), in 8 year 
old boys in the Taiwan Maternal Infant Cohort Study (Ku et al., 2015), in 
9 year-old children from the REPRO_PL cohort in Poland (Podlecka 
et al., 2020), in 5–11 year old children in CCCEH US cohort (Whyatt 
et al., 2014), although other studies did not evidence any association 
(Adgent et al., 2020; Agier et al., 2019; Buckley et al., 2018; Vernet 
et al., 2017). 

Unexpectedly, both the mixture and single-pollutant analyses also 

suggested “protective” effects of phthalates on two other lung function 
parameters measured at 2 months, the LCI and tPTEF/tE, both markers of 
airflow obstruction. LCI is recognized as more reliable and sensitive to 
airway obstruction than tPTEF/tE, the latter being possibly influenced by 
central control of ventilation. Taking into account the respiratory rate in 
the analysis (a determinant of these two lung function parameters) did 
not change the results (data not shown). We do not have any clear 
explanation, but potential missing confounders (e.g., nutrition) might 
partly explain these unexpected results. 

4.2. Phenols and child respiratory health 

In our study population, prenatal exposure to the parabens tended to 
be associated with health parameters assessed at 3 years (e.g., AX, 
increased risk of bronchitis or bronchiolitis), while no association was 
observed in neonates. The positive association with AX at 3 years, was 
also suggested in the cluster analysis (p-value of 0.12 for the association 
with cluster 4 characterized by high paraben concentrations). Although 
there are limits in extrapolating findings from experimental studies in 
murine models to humans, it is interesting to note that the lower asso
ciation in the cluster analysis compared to the single exposure analysis 
for parabens, is in agreement with a study considering an experimental 
mouse model (Junge et al., 2022). Indeed, Junge and co-authors 

Fig. 3. Unadjusted and adjusted-associations between prenatal exposure patterns to phenols and phthalate metabolites and (a) child lung function at 2 months, (b) 
child lung function at 3 years, (c) child respiratory outcomes in the first 3 years of life. 
Cluster 2 “low phenols-moderate phthalates” (n = 162), cluster 3 “high phenols-high phthalates (except bisphenol S)” (n = 109) and cluster 4 “high parabens- 
moderate phenols-low phthalates” (n = 102) were compared to cluster 1 “low phenols-low phthalates” (reference group, n = 106). Each continuous outcome 
(figure (a) and (b)) was re-scaled (divided by its standard deviation) to allow direct comparison of the beta estimates. See Supplemental Material, Table S5 for 
associations with raw lung function parameters. Beta values and their 95%CI for figure (a) and (b) were estimated by linear regression models, and OR and their 95% 
CI for figure (c) were estimated by logistic regression models. 
Abbreviations: AX: area under the reactance curve, FRC: Functional Residual Capacity, LCI: Lung Clearance Index, R7: Resistance at 7 Hz, R7-19: Resistance between 7 
and 19 Hz, tPTEF/tE: ratio of time to peak tidal expiratory flow to expiratory time, Vt: tidal volume, X7: Reactance at 7 Hz 
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identified an asthma-promoting effect of prenatal exposure to ethyl 
paraben in the female offspring but no effect of exposure to a mixture of 
ethyl paraben and butyl paraben, indicating that co-exposure can 
counterbalance the biological effect of each paraben. Several studies 
previously looked at the associations between exposure to parabens and 
child respiratory health assessed using questionnaires and FEV1 mea
surements. Two reported decreased FEV1 with increased exposure to 
ethyl paraben, however, one found this association with prenatal 
exposure (Vernet et al., 2017) while for the other study, the association 
was only observed with postnatal exposure (Agier et al., 2019). This 
paraben was not associated with asthma in children in a recent study 
(Junge et al., 2022) or was not assessed in the three other studies (Berger 
et al., 2020, 2018; Lee-Sarwar et al., 2018). Two studies also reported an 
association between propyl paraben and asthma but the sign of the as
sociation diverged (Berger et al., 2020; Vernet et al., 2017). Regarding 
methyl paraben, Vernet et al. reported a reduced rates of bronchioli
tis/bronchitis in association with prenatal exposure to methyl paraben 
in boys while an increased risk for bronchitis was observed in our study. 
Although most of the previous epidemiological studies reported associ
ations with at least one paraben, the respiratory health parameter 
affected, the sign of the associations and the timing of exposure (pre vs. 
post natal) often differed, preventing us to draw strong conclusions 
(Berger et al., 2020, 2018; Junge et al., 2022; Lee-Sarwar et al., 2018). 
Nevertheless, studies indicating that the antimicrobial properties of 
parabens could affect gut and respiratory tract microbiome diversity, 
which could in turn increase the risk of developing asthma and allergic 
diseases, provide support for a possible effect of parabens on respiratory 
health. 

The other synthetic phenol for which we detected associations was 
bisphenol S. Bisphenol S was associated with increased risk of asthma 
and bronchiolitis symptoms at 3 years, while the associations observed 

between this compound and the other parameters tended to be protec
tive (decreased R7-19 at 3 years suggesting decreased peripheral airways 
resistance, increased FRC and VT at 2 months suggesting higher lung 
volume). The only study looking at the associations between prenatal 
exposure to bisphenol S and child respiratory health assessed the risk of 
wheezing, asthma and FEV1 and reported a protective association with 
wheezing risk among 1 to 11 year-old children (Abellan et al., 2022). As 
in our study, the rate of detection for this compound was relatively low 
(49% > LOD). Further analyses on recent populations, for which fre
quency of detection is likely to be higher for this compound that has 
replaced bisphenol A in some products, are needed. Authors also re
ported sex specific association for bisphenol A that was associated with 
increased risk of wheezing and asthma in girls (Abellan et al., 2022). 
However, the lack of statistical interaction between sex and bisphenol A 
in our study did not support a sex-specific effect. 

4.3. Strengths and limitations 

We relied on objective measures of lung function in children, as early 
as 2-months of age and at 3 years, using validated techniques (TBFVL, 
muliple-breath, Airwaves oscillometry) that remain poorly used in 
population-based cohort studies. In addition, this study is one of the first 
to estimate the combined effect of multiple exposures on child respira
tory health through the identification of exposure patterns by cluster 
analysis. Using unsupervised cluster-based approach, meaning that ex
posures were combined given co-exposures in the study population, 
independently of the respiratory health and without any a priori 
knowledge on their effects on child health, the consistency of associa
tions between exposure profiles and various respiratory health can be 
addressed. Moreover, this approach has the advantage to drastically 
reduce the number of tests, which is desired to diminish the false 

Fig. 4. Adjusted associations between each prenatal exposure biomarker and (a) child lung function at 2 months, (b) child lung function at 3 years, (c) child res
piratory outcomes in the first 3 years of life. 
Beta values and their 95%CI were estimated by linear regression models and OR and their 95%CI were estimated by logistic regression models. Each continuous 
outcome was re-scaled (divided by its standard deviation) to allow direct comparison of the beta estimates. See Supplemental Material, Table S6, S7, S8 for asso
ciations with raw lung function parameters. 
*Represents categorical exposures coding with 2 categories: 1) not detected, 2) detected at least one trimester. 
Abbreviations: AX: area under the reactance curve, DEHP: Di(2-ethylhexyl) phthalate, DINCH: Di(isononyl)cyclohexane-1, 2-dicarboxylate, DiNP: Diisononyl 
phthalate, FRC: functional residual capacity, LCI: lung clearance index, MBzP: Mono-benzyl phthalate, MEP: Monoethyl phthalate, MiBP: Mono-isobutyl phthalate, 
MnBP: Mono-n-butyl phthalate, OH-MPHP: Mono-6-hydroxy-propylheptyl phthalate, R7: resistance at 7 Hz, R7-19: resistance between 7 and 19 Hz, tPTEF/tE: ratio of 
time to peak tidal expiratory flow to expiratory time, VT: tidal volume, X7: reactance at 7 Hz 
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discovery rate. 
Our study also has limitations to consider. The sample size of our 

study, with 281–442 mother-child pairs according to the health outcome 
considered, is among the smallest compared to previous studies that 
were based on 171 (Ku et al., 2015) to more than 1033 mother-child 
pairs (Agier et al., 2019). This has a direct impact in our ability to 
detect statistically significant associations. Nevertheless, the statistical 
power is not only driven by the sample size, and has to be discussed in 
light of additional parameters, including the accuracy in the exposure 
assessment. It has been demonstrated that, for a given sample size, 
increasing the number of samples collected per participant to assess 
biomarkers with strong temporal variability resulted in increased ac
curacy of exposure assessment and in improved power (Perrier et al., 
2016; Vernet et al., 2019). While 1 urine sample was used in almost all 
previous publications, except for few studies that used 2 or 3 samples 
(Berger et al., 2020, 2019; Spanier et al., 2014, 2012), our study relied 
on 2 pools of 21 urine samples each collected during pregnancy. 

Regarding the respiratory health assessment, although LCI and FRC 
values were a posteriori statistically corrected to the degree of hypo
ventilation due to the use of pure oxygen in the N2MBW technique 
(because it is not allowed to use SF6 in France), we acknowledge that a 
measurement error in these parameters due to hypoventilation might 
have decreased our ability to detect associations. Because 2 different 
techniques of lung function measurement were used at 2 months and 3 
years of age, the effect of prenatal exposure on lung function growth 
could not be assessed. The mixtures of exposures were defined by the 
biomarker concentrations and do not account for toxicological knowl
edges, the latter being too limited to allow us to a priori define cluster of 
exposure. Mothers included in the SEPAGES cohort are highly educated, 
which can be seen as a limit in terms of generalization of our results but 
it is also a strength by analyzing a homogenous population, thus limiting 
risk for confounding bias. 

5. Conclusion 

In conclusion, besides some unexpected and null associations, our 
study was suggestive of associations between prenatal exposure to 
several phthalates and low lung volumes at 2 months and between 
parabens and markers of chest stiffness and bronchitis at 3 years. 
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