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Abstract 

 Visible light photopolymerization is facing numerous challenges with regards to the 

necessity to develop energy-efficient photoinitiating systems that can be activated under low 

light intensity. Combined with the recent requirement to drastically simplify the composition 

of the photocurable resins, the development of monocomponent photoinitiating systems has 

been the focus of intense research efforts. In this field, Type I photoinitiators and more 

precisely oxime esters that can generate radicals by homolytic cleavage of a N-O bond 

constitute candidates of choice. Among oxime esters, phenothiazine has been rapidly 

identified as an excellent chromophore due to its inherent absorption in the visible range, 

facilitating the design of visible light oxime esters. In this review, on overview of the different 

phenothiazine-based oxime esters reported to date is provided. 
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 1. Introduction 

 During the past decades, photopolymerization has been the focus of intense research 

efforts, photopolymerization being technically a more environmentally friendly 

polymerization approach than the traditional thermal polymerization done in solution.[1–5] 

This is particularly true if sunlight or daylight can be used to initiate the polymerization 

processes.[6–15] Advantages of photopolymerization compared to the thermal polymerization 

are numerous. For instance, an excellent spatial and temporal control can be obtained and this 

property can be cited as ones of the most interesting features of photopolymerization. 

Photopolymerization can be carried out using the monomer as the solvent, limiting thus the 

release of volatile organic compounds (VOCs).[16] To end, the polymerization process can be 

ended within a few seconds so that photopolymerization found applications in a wide range 

of fields such as dentistry and 3D/4D printing.[5,17–30] Recently, UV photoinitiating systems 

have been discarded in favor of visible light photoinitiating systems due to safety issues raised 
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by the use of UV light but also due to an improved light penetration in the visible range (See 

Figure 1).[31]  

 
Figure 1. Light penetration determined for a polystyrene latex (average diameter around 112 

nm). Reprinted with permission from Ref.[31] 

In order to generate a photoinitiating system, two distinct approaches can be used. The 

first one is based on the elaboration of multicomponent photoinitiating systems, typically two 

and three-component systems. In this case, the chromophore acts as a Type II photoinitiator 

and can generate initiating species by mean of a photoinduced electron transfer with an 

electrodeficient onium salt or react with a hydrogen donor (See Scheme 1). If efficient two and 

three-component photoinitiating systems have been reported over the years, one drawback of 

this approach relies in the complexity of the mixture to prepare but also in the potential toxicity 

and migratability of the different additives within the polymers.[27,32] 

 

Scheme 1. Comparison between Type I and Type II photoinitiators for radical generation. 

This point is of crucial importance for applications such as food packaging or for 

bioapplications.[33–36] To overcome the problem of migration, different crosslinkable 

photoinitiators have been designed and synthesized. Besides, compared to the parent 

structure, chemical engineering has to be carried out in order to introduce these crosslinkable 

groups, what can furnish costly compounds.[37–41] With aim at simplifying the composition 

of the photocurable resin, another strategy consists in using monocomponent systems. A few 

Type II monocomponent systems have been reported in the literature but examples remain 



scarce.[42–46] Notably, a series of monocomponent systems based on modified iodonium salts 

have been proposed by Ortyl and coworkers.[47–51] Another strategy consists in developing 

Type I photoinitiators i.e. structures that can homolytically cleave and generate radicals. 

Interest of these structures relies in the fact that the resulting initiating radicals are directly 

connected to the polymer network, addressing the migratability issue. Over the years, 

different structures have been examined such as trichloromethyl-S-triazine glyoxylates, 

benzoin derivatives, α-aminoalkylacetophenones, phosphine oxides, o-acyl-α-oximino 

ketones, benzylketals, hexaaryl biimidazoles (HABIs), hydroxyacetophenones, acyloximino 

esters, α-haloacetophenones, and oxime esters.[52–54] Among these structures, oxime esters 

are without contest the most accessible structures. Indeed, the oxime ester group can be 

introduced in two steps on the selected chromophore, by reaction of the aldehyde or the ketone 

group with hydroxylamine hydrochloride in the presence of a base (generally sodium acetate). 

Subsequent to the generation of the oxime group, esterification can be performed in one step 

using a base (generally triethylamine) and the appropriate acid chloride (See Scheme 2). 

Especially, these photocleavable structures can be prepared from cheap reagents 

(hydroxylamine hydrochloride, sodium acetate, triethylamine) so that these structures are of 

interest for industrial applications.  

 

Scheme 2. Synthetic routes to oxime esters starting from an aldehyde or a ketone. 

Parallel to this, one of the appealing features of oxime esters relies in the 

decarboxylation reaction that can occur subsequent to photocleavage.[55–57] Indeed, after 

excitation with light, the oxime ester is promoted in its excited state, inducing the homolytic 

cleavage of the N-O bond and iminyl and acyloxy/aryloxy radicals are formed. 

Acyloxy/aryloxy radicals can decarboxylate subsequent to fragmentation, releasing alkyl/aryl 

radicals that cannot recombine anymore with iminyl radicals and CO2. Considering that iminyl 

and alkyl/aryl radicals can’t recombine anymore, no competition between initiation of the 

polymerization process and radical recombination can occur, optimizing the initiation step 

(See Scheme 3). Additionally, release of CO2 within the resin during photopolymerization can 

be beneficial for the monomer conversion, saturating the resin with CO2 and thus avoiding 

oxygen diffusion during the polymerization process. Indeed, free radical polymerization 

(FRP) is highly sensitive to oxygen inhibition.[58–61] If oxime esters such as 2-

((benzoyloxy)imino)-1-(4-(phenylthio)phenyl)octan-1-one (OXE-01), 1-(((1-(9-ethyl-6-(2-

methylbenzoyl)-9H-carbazol-3-yl)ethylidene)amino)oxy)ethan-1-one (OXE-02), 1-((((11-(2-

ethylhexyl)-5-(2,4,6-trimethylbenzoyl)-11H-benzo[a]carbazol-8-yl)(2-(1,1,2,2,3,3,4,4-

octafluorobutoxy)phenyl) methylene)amino)oxy)ethan-1-one (OXE-03), 1-(((3-cyclopentyl-1-

(9-ethyl-6-(2-methyl-benzoyl)-9H-carbazol-3-yl)propylidene)amino)oxy)ethan-1-one (PBG-

304) and 1-(((1-(6-(4-((2,2-dimethyl-1,3-dioxolan-4-yl)oxy)-2-methylbenzoyl)-9-ethyl-9H-

carbazol-3-yl)ethylidene) amino)oxy)ethan-1-one (N1919) are commercially available, (See 

Scheme 3) these structures lack of absorption in the visible range so that the design of oxime 



esters activable in the visible range have been investigated by different research groups.[53] In 

order to get a sufficient absorption in the visible range, chromophores different from those 

used in benchmark photoinitiators have to be used or structurally modified in order to 

improve their absorptions in the visible range. Thus, anthraquinone,[62] coumarins,[55,63–66] 

carbazole,[67–75] carbazole-fused coumarins,[14,76,77] pyrene,[78] anthracene,[78] 

naphthalene,[79] triphenylamine,[80–84] thioxanthone,[85] phenylthioether thiophene,[86,87] 

bis-chalcones,[88] fluorophenyl derivatives,[89]  stilbene derivatives,[90] thiophene 

derivatives,[91] naphthoquinones,[92] naphthalimides[93] and chalcones[94] have notably 

been examined as chromophores for the design of oxime esters. Among potential structures, 

phenothiazine has recently been used for the design of Type II and Type I photoinitiators. By 

automated machine learning, phenothiazine has notably been suggested as one of the best 

chromophores to use for the design of oxime esters.[95] Prior to the investigation of 

phenothiazines as Type I photoinitiators, various Type II photoinitiating systems based on 

phenothiazine have been proposed. Notably, a wide range of push-pull dyes based on 

phenothiazine as the electron-donating group were examined in 2019 by Lalevée and 

coworkers,[96–100] but also by Wang and coworkers.[101–103] Various chalcones and 

curcuminoids comprising the phenothiazine scaffold were also proposed by Wang and 

coworkers[104,105] or Qu and coworkers.[106] 

 

Scheme 3. Chemical structures of commercially available oxime esters and the mechanism of 

photoinduced fragmentation of oxime esters.  

 Interest for phenothiazine as the chromophore for the design of visible light 

photoinitiators relies in the fact that contrarily to carbazole that naturally absorb in the UV 

range, phenothiazine absorbs, even unsubstituted, in the visible range, facilitating the design 

of visible light photoinitiators.[107–109] Additionally, chemistry of phenothiazine is well-

described in the literature,[110] and the first report mentioning the synthesis of phenothiazine 

was reported as soon as 1883 by Bernthsen and coworkers.[111,112] Phenothiazine also 

exhibits antimicrobial activities, what can be of crucial interest for the design of antibacterial 

coatings.[113–118] Numerous drugs have also been prepared with the phenothiazine scaffold 



as exemplified with thioridazine, chlorpromazine, fluphenazine, perphenazine, 

prochlorperazine and others biologically active products.[119] Similarly to carbazole, 

phenothiazine is also an excellent electron-donating group and this group was extensively 

used for the design of chromophore for solar cells,[120–127], light-emitting materials for 

electroluminescent devices,[128–132] semiconductors for organic field effect transistors 

(OFETs)[133–138]  or fluorescent probes.[139–142] Based on these strong knowledges 

concerning phenothiazine chemistry, a wide range of phenothiazine-based oxime esters were 

designed and synthesized starting from 2017.[143] Phenothiazine is also easy to oxidize, in a 

potential window adapted for different additives commonly used in photocurable resins so 

that multicomponent photoinitiating systems can be designed with phenothiazine-based 

photoinitiators.[144–146] In this review, an overview of the different phenothiazine-based 

oxime esters is given. 

 2. Phenothiazine-based oxime esters 

2.1. Derivatives of extended structures 

 The first report mentioning the design of oxime esters comprising phenothiazine units 

were developed in 2017 by Wang and coworkers (See Figure 2).[143] In this work, a specific 

effort was devoted to elongate the π-conjugation of the chromophore so that a significant 

absorption in the visible range could be obtained. In this aim, an ethynyl spacer was 

introduced between the phenothiazine group and the different end groups (phenyl, carbazole, 

triphenylamine). Photoinitiating abilities of Ph-PTZ-OXE, CZ-PTZ-OXE and TPA-PTZ-OXE 

were compared to that of the commercially available PBG-304 and 2-((benzoyloxy)imino)-4-

cyclopentyl-1-(4-(phenylthio)phenyl)butan-1-one (PBG-305). 

 

Figure 2. Chemical structures of phenothiazine-based oxime esters. 

As anticipated, the design of these chromophores of extended conjugation furnished 

dyes absorbing up to 500 nm, with absorption maxima located at 378, 383 and 382 nm for Ph-



PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE in THF respectively. Compared to the reference 

compounds (337 and 329 nm for PBG-304 and PBG-305), a redshift by ca 50 nm could be 

obtained for the phenothiazine derivatives (See Figure 3 and Table 1). Noticeably, almost 

similar absorption maxima could be determined for the different dyes, irrespective of the end-

groups. Based on their respective absorptions, polymerization tests could be carried out at 405 

and 455 nm and tripropylene glycol diacrylate (TPGDA) was selected as the difunctional 

monomer. 

 

Figure 3. UV-visible absorption spectra of Ph-PTZ-OXE, CZ-PTZ-OXE, TPA-PTZ-OXE, PBG-

304 and PBG-305 in THF. Reproduced with permission of Ref. [143] 

Table 1. UV-visible absorption properties of the different OXE in THF. 

OXE λmax (nm) ε (M-1.cm-1) ε405nm (M-1.cm-1) ε455nm (M-1.cm-1) 

PBG-304 337 16 900 - - 

PBG-305 329 19 100 - - 

Ph-PTZ-OXE 378 15 100 11 900 1 300 

TPA-PTZ-OXE 383 22 600 17 200 1 900 

CZ-PTZ-OXE 382 18 200 14 700 1 700 

 

 Polymerization tests done at 405 nm using 1 wt% of photoinitiator revealed the 

phenothiazine derivatives to give monomer conversions comparable to that of PBG-304 and 

PBG-305. Notably, TPGDA conversions of 88, 96 and 94% were respectively determined for 

Ph-PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE after 48 s of irradiation at 405 nm (I = 60 

mW/cm²). In the case of PBG-304 and PBG-305, conversions of 90 and 96% could be obtained 

in the same conditions (See Figure 4a). At 455 nm, a different situation was found since all 

phenothiazine-based oxime esters could maintain a high monomer conversion due to their 

excellent light absorption properties at this wavelength. Thus, conversions of 62, 71 and 68% 

were obtained with Ph-PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE whereas no monomer 

conversion could be detected with PBG-304 and PBG-305. These values are higher than that 

obtained with reference systems such as camphorquinone (CQ)/triethanolamine (TEA) and 

CQ. In these cases, conversions of 51 and 10% were respectively obtained after 100 s of 

irradiation (See Figure 4b). Noticeably, a good correlation between molar extinction coefficient 



at 455 nm and monomer conversion could be established and the best results were obtained 

with TPA-PTZ-OXE. 

 

Figure 4. TPGDA conversions determined at 405 nm (a) and 455 nm (b) using 1 wt% of 

photoinitiator. Reproduced with permission of Ref. [143] 

  Due to the high molar extinction coefficient some photoinitiators can exhibit, 

concentration of photoinitiator introduced in the resin is an important parameter to consider 

as a high concentration of dyes can increase the absorbance and thus reduce the light 

penetration. This phenomenon is known as inner filter effect. By reducing the concentration 

of TPA-PTZ-OXE from 2 wt% to 0.3 wt%, the TPGDA conversion could increase from 80% up 

to 95% upon irradiation at 405 nm. The same holds true at 455 nm and an optimum 

concentration of 0.5 wt% was determined in this case (See Figure 5). 

      

Figure 5. TPGDA conversions obtained with TPA-PTZ-OXE at different photoinitiator 

concentrations upon excitation at 405 nm (a) and at 455 nm (b). Reprinted with permission of 

Ma et al.[143] 

 Oxime esters are unimolecular photoinitiators, but their monomer conversions can 

sometimes be improved when combined with an iodonium salt. In this case, the concomitant 

sensitization of the onium salt and the photoinduced cleavage of the oxime ester group can be 

a)                                                                                        b)



beneficial in terms of monomer conversion by enabling to produce more initiating radicals. 

This point was examined with bis(4-methylphenyl)iodonium hexafluorophosphate (ION) as 

the cationic initiator. By using the two-component dye/ION (0.2%/2% w/w) system, a slightly 

reduced conversion could be determined at 405 nm whereas a significant enhancement of the 

monomer conversion could be determined at 455 nm. Using Ph-PTZ-OXE, an improvement of 

the TPGDA conversion by ca 20% was determined at 455 nm, higher than that obtained with 

TPA-PTZ-OXE when used as the photosensitizer for ION (15%) (See Figure 6). 

 

 

Figure 6. Photopolymerization profiles of TPGDA using the two-component OXE/ION 

(0.2%/2% w/w) at 405 nm (a) and 455 nm (b). Reprinted with permission of Ma et al.[143] 

 By fluorescence quenching and steady-state photolysis experiments, as well as electron 

spin resonance (ESR), a full picture of the photochemical mechanism of sensitization of the 

iodonium salt could be established and the different reactions are presented in Scheme 3, 

equations (r1) and (r2). Thus, once the dye is excited, a photoinduced electron transfer from 

the chromophore towards the electrodeficient iodonium salt can occur, reducing the iodonium 

salt (See r1 and r2). Due to the instability of the radical, a decomposition can occur, producing 

the initiating aryl radicals (see r3). Finally, thermal stability of the different OXE was examined 

by thermogravimetric analysis (TGA). Interestingly, a thermal stability higher than 120°C 

could be determined under nitrogen flow for the different dyes, ensuring a good stability of 

these photoinitiators upon storage.  

 

Dye → *Dye    (h) (r1) 

*Dye + Ar2I+ → Dye●+ + Ar2I● (r2) 

Ar2I● → Ar● + ArI (r3) 

 

Scheme 3. Photochemical reactions involved in the FRP of TPGDA. 

 

(a)                                                                                 (b)



In 2019, the same authors examined a similar strategy to design long-wavelength 

photoinitiators. In this case, phenothiazine was used as the end-group in OXE2.[73] A 

comparison was established with OXE1 bearing a triphenylamine end-group (See Figure 7).  

  

 

Figure 7. Chemical structures of OXE1 and OXE2, and different additives. 

 From the absorption viewpoint, the major contribution of the phenothiazine core in the 

overall absorption of the dyes in the visible range could be evidenced. Indeed, in the case of 

Ph-PTZ-OXE, TPA-PTZ-OXE and CZ-PTZ-OXE, phenothiazine was included in all dyes, 

contributing to the absorption of the three dyes. In the case of OXE1 and OXE2, introduction 

of phenothiazine as the end-group in OXE2 enabled to redshift the absorption compared to 

OXE1. Indeed, if the absorption of OXE1 extends up to 450 nm, this latter was determined as 

extending up to 600 nm for OXE2. Absorption maxima peaking at 350 and 357 nm were found 

in THF for OXE1 and OXE2. Due to the redshifted absorption of OXE2 compared to that of 

OXE1, a four-fold enhancement of the molar extinction coefficient of OXE2 was determined at 

405 nm compared to OXE1 (See Table 2). 

 

Figure 8. UV-visible absorption spectra of OXE1, OXE2 and different co-initiators in THF. 

Reproduced with permission of Ref.[73] 



Table 2. Optical characteristics of OXE1 and OXE2 in THF. 

OXE λmax (nm) ε (M-1.cm-1) ε405nm (M-1.cm-1) 

OXE1 350 46 900 11 000 

OXE2 357 29 300 44 100 

  

Photolysis experiments of OXE1 and OXE2 alone and in the presence of ONI done in 

solution revealed the photolysis rate to be faster for the two-component systems, evidencing 

the occurrence of a photoinduced electron transfer from the dye towards the iodonium salt. 

Examination of the photolysis rate of the three-component system comprising additives such 

as triphenylamine (TPP), N-vinylcarbazole (NVK) or ethyl dimethylaminobenzoate (EDB) 

revealed the photolysis rate to be slower than observed for the two-component systems, 

attributable to interactions between the additives and the photolysis products. This trend of 

reactivity was confirmed during the polymerization experiments. Thus, investigation of the 

FRP of TPGDA at 405 nm revealed the polymerization rates as well as the monomer conversion 

to be higher for the two-component systems than for the oxime esters used as monocomponent 

systems (See Table 3 and Figure 9). By using a third component, an improvement of the 

monomer conversion could be detected, the best conversion being obtained for the three-

component dye/TPP/ION system. The higher reactivity of the three-component dye/TPP/ION 

system compared to the dye/EDB/ION system can be assigned to the ability of phosphines to 

convert the unreactive peroxyl radicals as alkoxy radicals, enabling to overcome oxygen 

inhibition.[59] The higher monomer conversion obtained with the three-component systems 

is also the result of parallel pathways, OXE being capable to react in oxidative and reductive 

pathways, as shown in the Figure 10. As demonstrated during the steady state photolysis 

experiments, OXE1 and OXE2 can first react with the iodonium salt, as previously detailed in 

equations r1-r3 (See Scheme 3). Parallel to this oxidative pathway, OXE1 and OXE2 can also 

react with EDB, generating EDB(-H)● as an initiating species. EDB can also reduce the oxidized 

dye (dye●+), enabling to regenerate the chromophore in its initial redox state and thus 

contributing to light absorption. 

 

Figure 9. Monomer conversion obtained during the FRP of TPGDA at 405 nm using OXE1 (a) 

and OXE2 (b). Reproduced with permission of Ref.[73] 

 



Table 3 TPGDA and E51 conversions in laminate (for TPGDA) and under air upon (for E51) 

upon irradiation at 405 nm using OXE (1 wt%), OXE/additives (1%/1% w/w), OXE/ION 

(0.2%/1.0%) and OXE/ION/additives (0.2%/1%/1% w/w/w) 

Double bond conversions (%) Epoxy conversions (%) 

Photoinitiating systems 10 s 20 s 30 s  120s 

OXE1 66 79 81 OXE1/ION 77 

OXE1/EDB 82 82 83 OXE1/ION/NVK 75 

OXE1/TPP 70 81 82 OXE2/NVK 64 

OXE1/EDB/ION 87 89 89 OXE2 /ION/NVK 73 

OXE1/TPP/ION 91 91 91   

OXE1/ION 80 85 85   

 

 
Figure 10. The oxidative and reductive pathways contributing to generate radicals with the 

three-component dye/EDB/ONI system. 

 

Considering that OXE1 and OXE2 are efficient photoinitiators for FRP, the cationic 

polymerization (CP) of E51 was examined using NVK as an additive. Indeed, as shown in the 

Scheme 4, NVK can add on the phenyl radicals, producing the more reactive Ph-NVK● 

radicals. These radicals can react with the iodonium salt, producing Ph-NVK+ cations. These 

radicals can also react with the oxidized dye, regenerating it in its initial redox state, as shown 

in the Figure 11. 

 

Ph● + NVK → Ph-NVK●                                                                                            (r4) 

Ph-NVK● + Ph2I+ → Ph-NVK+ + Ph● + Ph-I                                                             (r5) 

Scheme 4. Mechanism involved in the free radical promoted cationic polymerization (FRPCP) 

of epoxides. 
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Figure 11. Mechanism of FRPCP. 

 As shown in the Figure 12, the monomer conversion could be increased by using the 

three-component system compared to the two-component ones, especially when OXE was 

used as the photosensitizer. In this case, the conversion increased from 64% for the two-

component system up to 72% with the three-component OXE2/ONI/NVK (0.2%/1%/1% 

w/w/w) system. Conversely, in the case of OXE1, conversions of 77 and 75% were respectively 

determined for the two and the three-component systems at 405 nm after 200 s of irradiation. 

 

Figure 12. E51 conversions determined in the presence of OXE/ION(0.2%/1%w/w) and 

OXE/ION/NVK(0.2%/1%/1% w/w/w) systems upon irradiation at 405 nm with a laser diode 

(I = 120 mW/cm²) under air. Reproduced with permission of Ref.[73] 

 In 2023, a triphenylamine derivative end-capped with phenothiazines i.e. TPA-PT was 

proposed as a visible light photoinitiator by Lalevée and coworkers.[82] Here again, in order 

to determine the real contribution of phenothiazine on the photoinitiating ability, analogues 

were prepared with carbazole and diphenylamine as the end-groups (See Figure 13). 
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Figure 13. Chemical structure of TPA-DP, TPA-Cz, TPA-PT and different monomers. 

Absorption spectra of the different triphenylamine-based oxime esters were broad, 

extending between 300 and 435 nm. In the case of TPA-DP, due to its polyaromatic structure, 

a significant increase of the molar extinction coefficient could be detected and an absorption 

extending up to 460 nm could be determined. Noticeably, absorption maxima located at 342, 

340 and 356 nm were determined in dichloromethane for TPA-DP, TPA-Cz and TPA-PT 

respectively and the most redshifted absorption was measured for TPA-PT and the parent 

structure TPA-1M (See Figure 14). 

 

Figure 14. UV-visible absorption spectra of different triphenylamine-based oxime esters 

recorded in dichloromethane. Reproduced with permission of Ref.[82] 

Due to the introduction of peripheral aromatic groups (carbazole, diphenylamine, 

phenothiazine), all oxime esters showed logically molar extinction coefficients higher than that 

of the parent TPA-1M. By thermogravimetric analysis (TGA), decomposition temperatures of 

200, 176 and 157°C were respectively determined for TPA-DP, TPA-Cz and TPA-PT. 

Noticeably, by increasing the weight ratio of the oxime group in the structure of the dyes, a 

decrease of the decomposition temperature was clearly observed. Considering their 



absorptions, the three oxime esters were thus ideal candidates for polymerization experiments 

done under UV light (250-450 nm) but also with LEDs emitting at 365 and 405 nm. Photolysis 

experiments done at 365 and 405 nm revealed the photolysis rates of TPA-Cz and TPA-PT to 

be faster than that of TPA-DP. This was assigned to the presence of a rotatable group in TPA-

DP adversely affecting its photoreactivity whereas TPA-DP exhibited the highest molar 

extinction coefficient of the series.[95] FRP experiments done with a UV lamp (I = 180 mW/cm²) 

and trimethylolpropane triacrylate (TMPTA) as the monomer confirmed the trend of reactivity 

determined during the photolysis experiments. Thus, conversions of 48, 47, 42 and 17% were 

determined for TPA-PT, TPA-Cz, TPA-1M and TPA-DP. When polymerized at 365 and 405 

nm (I = 50 mW/cm²), TMPTA conversions of 35, 34, 21 and 3% were determined for TPA-Cz, 

TP-1M, TPA-PT and TPA-DP at 365 nm, and 48, 43, 47 and 4% respectively at 405 nm after 5 

min. of irradiation. Overall, TPA-Cz and TPA-PT could outperform the other oxime esters at 

405 nm, which is the wavelength under use in 3D printing. Interestingly, by shifting the 

irradiation wavelength from 365 nm to 405 nm, a two-fold enhancement of the monomer 

conversion was detected for TPA-PT. Interestingly, occurrence of a decarboxylation reaction 

was demonstrated by FTIR with the different oxime esters by the detection of the CO2 peak at 

2337 cm-1 during photopolymerization. 

Hybrid polymerization using two-component systems with bis(4-tert-butylphenyl) 

iodonium hexafluorophosphate (Iod) was also examined for the FRP of a tetrafunctional 

monomer, namely (oxybis(methylene))bis(2-ethylpropane-2,1,3-triyl) tetraacrylate (TA) and 

the CP of (3,4-epoxycyclohexane)methyl-3,4-epoxycyclohexylcarboxylate (EPOX). Noticeably, 

a slight enhancement of the TA conversion was determined with the two-component system 

compared to the conversion obtained with the oxime ester alone (See Figure 15). 

 

Figure 15. Photopolymerization profiles of TA using TPA-1M, TPA-Cz and TPA-PT upon 

irradiation at 405 nm with a LED using PI/Iod (2%/1% w/w) or PI (2 wt%). Reproduced with 

permission of Ref.[82] 

 Excellent monomer conversions were also determined during the CP of EPOX and 

conversions of 54% and 47% were respectively obtained with the two-component TPA-CZ/Iod 

and TPA-PT/Iod systems upon irradiation at 405 nm for 800 s. These excellent monomer 

conversions were assigned to the oxidation of the oxime esters, generating the corresponding 

radical cations according to the mechanism depicted in the Scheme 5 (see equations r6 and r7). 

 



OXE (h) → OXE*        (r6)              

OXE* + Ar2I+ → OXE●+ + Ar2I●      (r7) 

Scheme 5. Photochemical mechanism involved in the CP of EPOX. 

 If oxime esters are well-reported to be photochemical initiators, recently, their ability 

to initiate a thermal polymerization was also demonstrated, making these structures versatile 

initiators by their dual photochemical and thermal initiating ability. Thus, using TA as the 

monomer, an exothermic peak corresponding to the polymerization temperature could be 

detected at 168 °C for TP-1M, 172 °C for TPA-CZ, 177 °C for TPA-PT, 130 °C for TP-1M, 128 

°C for TPA-CZ and 137 °C for TPA-PT. The highest monomer conversion was determined with 

TPA-1M (53%), greatly higher than that obtained with TPA-Cz (47%) and TPA-PT (34%). Even 

if the monomer conversions remain moderate with this series of oxime esters, the proof of 

concept concerning the dual initiating ability was established. 

2.2. Small molecule-based oxime esters 

 The first report mentioning the use of phenothiazine-based oxime ester was reported 

in 2017 by Wang and coworkers with the use of extended structures [143] and numerous works 

used the same strategy subsequent to this pioneering work. In 2023, Lalevée and coworkers 

examined the photoinitiating ability of simpler structures, namely, of structures only 

comprising phenothiazine as the chromophore. With aim at establishing the real initiating 

abilities of PTZ2 and PTZ3, comparisons were first established with PTZ1 which is only an 

oxime and not an oxime ester (See Figure 16).[147] But comparisons were also established with 

oxime esters differing by the group introduced on the oxime ester side (See Hex-1-Hex-10). 

The heavy atom effect was also examined,[148–150] a series of oxime esters being prepared 

with bromophenothiazine (See 1A-13A). As mentioned in the introduction section, 

phenothiazine naturally absorbs in the visible, even unsubstituted. This point was confirmed 

by examining the UV-visible absorption spectra of PTZ1-PTZ3 in acetonitrile. As shown in the 

Figure 17 and Table 4, a broad absorption could be detected in the visible range extending up 

to 500 nm. Compared to Ph-PTZ-OXE, CZ-PTZ-OXE and TPA-PTZ-OXE previously reported 

and that also absorb up to 500 nm, the major contribution of the phenothiazine group can be 

clearly evidenced. 

 

Table 4. Light absorption properties of PTZ1-PTZ3 at the absorption maxima and at 405 nm. 

PIs 𝝀max (nm) εmax(M-1 cm-1) 

 

ε405 (M-1 cm-1) 

PTZ1 325 6050 665 

PTZ2 345 5880 1480 

PTZ3 355 6600 2600 



 

Figure 16. Chemical structures of PTZ1-PTZ3. 

 

Figure 17. UV-visible absorption spectra of PTZ1-PTZ3 in acetonitrile. Reproduced with 

permission of Ref. [147] 



Compared to PTZ1 that absorbs at 325 nm, an electron-withdrawing effect could be 

evidenced for the oxime ester moiety since a redshift of the absorption by ca 20 nm could be 

determined for PTZ2 and PTZ3 compared to PTZ1. Examination of their photoinitiating 

abilities in laminate and in thin films during the FRP of the tetrafunctional acrylate monomer 

TA and by using 1 wt% photoinitiator revealed PTZ2 and PTZ3 to furnish high monomer 

conversions contrarily to PTZ1 which is not an oxime ester but an oxime (See Figure 18). 

Especially, PTZ3 could furnish a monomer conversion comparable to that of the reference 

diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) (83% conversion for TPO vs. 81% for 

TPZ3). 

 

Figure 18. TA conversions determined in laminate (thickness = 25 μm) upon irradiation at 

405 nm with a LED using 1 wt% photoinitiators. Reproduced with permission of Ref. [147] 

 Interestingly, in this work, photoinitiating ability of a wide range of radicals (primary, 

secondary, tertiary radicals, aliphatic and aryl radicals) could be examined since oxime esters 

esterified with aromatic and aliphatic groups were designed and synthesized. Noticeably, in 

this work, the remarkable photoinitiating ability of PTZ3 capable to generate a methyl radical 

was undoubtedly the most reactive one (81% conversion). As shown in the Figure 19, Hex-1-

Hex10 could only furnish monomer conversions lower than that of PTZ3. The best TA 

conversion was obtained with Hex-10, peaking at 76% after 150 s of irradiation at 405 nm. By 

introduction of a bromine atom in 1A-13A, an improvement of the monomer conversion could 

be determined, as shown in the Figure 20. Notably, in the 1A-13A series, five oxime esters 

could furnish TA conversions ranging between 70 and 80% vs. only two oxime esters in the 

Hex-1-Hex-13 series. Once again, in the 1A-13A series, 2A bearing an acetyl group on the 

oxime ester group could furnish the best conversion of the series. The higher reactivity of all 

oxime esters bearing alkyl groups over those bearing aromatic groups was also evidenced. 

Thus, 3A, 5A, 7A and 8A capable to release alkyl radicals proved to be the most reactive oxime 

esters (See Figure 20). 
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Figure 19. Photopolymerization profiles of Hex-1-Hex-10 in laminate upon irradiation at 405 

nm using 0.5 wt% photoinitiators. Reproduced with permission of Ref. [147] 

 

Figure 20. Photopolymerization profiles of in laminate upon irradiation at 405 nm using 0.5 

wt% of 1A-13A. Reproduced with permission of Ref. [147] 

 Here again, thermal initiating abilities of oxime esters was demonstrated and examined 

with the most reactive structures, namely PTZ2 and PTZ3. As shown in the Table 5, onset 

temperature at 125 and 135°C were determined for PTZ3 and PTZ2 by DSC measurements. 

These values are adapted for industrial applications, the onset polymerization temperature 

being 100°C above room temperature. These values are lower than that determined for TP-1M, 

TPA-CZ, TPA-PT, TP-1M, TPA-CZ and TPA-PT previously discussed.[82]  

Table 5. Maximal, onset polymerization temperatures and TA conversions obtained using 

PTZ1, PTZ2, and PTZ3 (1 wt%) as thermal initiators under nitrogen. 

PIs TOnset (°C) Tmax(°C) Conversion (%) 

PTZ1 206 241 37 

PTZ2 135 169 34 

PTZ3 125 171 36 
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 When tested as photosensitizers for Iod, a favorable improvement of the monomer 

conversion was determined for the two-component dye/Iod (1%/1% w/w) systems. Thus, in 

the case of PTZ2, the TA conversion increased from 71% (alone 1 wt%) up to 82% for the two-

component system. The most significant improvement was obtained with PTZ1, the monomer 

conversion increasing from 14 to 68%. These two-component systems were also used for 

promoting the CP of EPOX and a conversion of 83% could be obtained with the two-

component PTZ2/Iod system (See Table 6). This value is greatly higher than that obtained with 

the previous triphenylamine derivatives since EPOX conversions of 54% and 47% were 

respectively obtained with the two-component TPA-CZ/Iod and TPA-PT/Iod systems upon 

irradiation at 405 nm for 800 s.[82] A conversion of only 69% was obtained with the PTZ3/Iod 

combination and this is directly related to the lower photochemical reactivity of PTZ3 in two 

component systems, slower photolysis rates being detected for this system compared to the 

PTZ2/Iod combination. 

 

Table 6. EPOX conversions obtained with the two component PI/Iod (1%/1% w/w) systems 

and Iod alone (1 wt%) after 800 s of irradiation with a LED at 405 nm. 

 
Thin samples (25 μm) in laminate @405 nm 

PTZ1/Iod 81% 

PTZ2/Iod 83% 

PTZ3/Iod 69% 

Iod 38% 

 

 Finally, by the possibility to initiate FRP and CP processes with the two-component 

systems, interpenetrated polymer networks could be generated by the concomitant 

polymerization of TA and EPOX. 

 In 2023, a simpler strategy than the design of oxime esters of elongated structures 

(strategy used by the group of Wang and coworkers) was proposed by Lalevée and coworkers, 

consisting in substituting the phenothiazine core by a nitro group (See Figure 21). Due to its 

strong electron-withdrawing ability and the good electron-donating ability of phenothiazine, 

a redshift of the absorption maxima could be obtained for compounds OXE-A-OXE-N.[151] 

The strategy was pertinent since an absorption extending up to 475 nm could be determined 

in acetonitrile, with an absorption maxima at ca. 371 nm (See Table 7 and Figure 22). 

Considering that nitration of phenothiazine can be easily done, this strategy is less expensive 

than the Sonogashira approach developed by Wang and coworkers. Additionally, the higher 

reactivity of coumarins [63,152] or carbazole[69] after nitration has been reported in different 

works, supporting the nitration approach in the case of phenothiazine.   

 



 

Figure 21. Chemical structures of OXE A-N. 

 

Table 7. Absorption characteristics of OXE A-M in acetonitrile and TMPTA conversions 

determined during the FRP of TMPTA at 405 nm using 1 wt% photoinitiator. 

Compounds A B C D E F G 

λmax (nm) 371 370 370 370 371 371 371 

ɛmax (104 L/(mol·cm)) 1.65 1.2 1.55 1.5 1.7 1.4 1.3 

TMPTA conversion (%) 65 62 59 65 62 48 50 

Compounds H I J K L M N 

λmax (nm) 372 372 372 372 373 372 376 

ɛmax (104 L/(mol·cm)) 2.0 1.4 1.2 1.4 1.3 1.1 2.2 

TMPTA conversion (%) 54 46 40 49 53 48 26 

 

 
Figure 22. UV-Visible absorption spectra of the different OXEs in acetonitrile (1×10-4 

mol/L). Reproduced with permission of Ref. [151] 

 The high reactivity of phenothiazine bearing alkyl groups on the oxime ester side was 

confirmed during the FRP of TMPTA. Upon irradiation at 405 nm, the best conversions were 

obtained with OXE-A and OXE-D, the conversion peaking at 65% after 300 s of irradiation. 

These values are slightly lower than that obtained with TPO (69% conversion). In the case of 



aryl-substituted oxime esters, lower conversions were obtained, these values ranging between 

46% for OXE-I and 54% for OXE-H (See Figure 23). 

 

Figure 23. Photopolymerization profiles of TMPTA in laminate using PIs (1 × 10−5 mol/g) and 

TPO (1 × 10−5 mol/g) upon irradiation at 405 nm: ① TPO  ② OXE-A  ③ OXE-B  ④ OXE-C  ⑤ 

OXE-D  ⑥ OXE-E  ⑦ OXE-F  ⑧ OXE-G  ⑨ OXE-H  ⑩ OXE-I  ⑪  OXE-J  ⑫  OXE-K  ⑬   

OXE-L  ⑭  OXE-M  ⑮  OXE-N. Reproduced with permission of Ref. [151] 

OXE-A also proved to be a remarkable thermal initiator since the TMPTA conversion 

could be initiated at 130°C i.e. at a temperature comparable to that measured with the 

benchmark oxime esters OXE-01 and OXE-02. This dual thermal/photochemical initiating 

ability was advantageously used for the polymerization of composites comprising carbon 

fibers (50% TMPTA/50% carbon fiber w/w). Due to their black color, light penetration in 

carbon fiber composites remains limited to the surface, limiting the photopolymerization to a 

thin surface layer. By thermal curing at 150°C for 15 min, samples of 2 mm thick could be fully 

polymerized (See Figure 24).   

 

Figure 24. Pictures of carbon fiber composites produced with OXE-A used as a dual photo 

and thermal initiator. Reproduced with permission of Ref. [151] 

 Using OXE-A as the photoinitiator and TMPTA as the monomer, three-dimensional 

patterns exhibiting an excellent spatial resolution could be produced, as shown in the Figure 

25. 



 

Figure 25. 3D patterns examined by numerical optical microscopy: (a) top surface morphology 

and (b) 3D overall appearance of the color pattern. Reproduced with permission of Ref. [151] 

2.3. Difunctionalized phenothiazine-based oxime esters 

 In the previous examples, all structures were only substituted with one oxime ester 

functional group. With aim at improving the radical generation and thus the polymerization 

efficiency, phenothiazines substituted with two oxime ester groups were designed and 

synthesized. In this field, the first report was published in 2022 by Lee and coworkers who 

designed a series of 123 oxime esters by automated machine learning.[95] Among the 123 

oxime esters examined, a disubstituted oxime ester was examined, namely SPTO-41B (See 

Figure 26). Using an automated machine learning algorithm, identification of the structures 

exhibiting the best structure-performance relationship could be possible. Several parameters 

enabling to improve the photosensitivity of oxime esters were identified. Notably, with aim at 

designing high-performance oxime esters, the following should be incorporated : 1) a 

carbazole, a fluorene or a phenothiazine chromophore, 2) a phenyl sulfide group, 3) a nitro 

group or an alkyl chain attached to the core. From the machine learning-assisted design rules, 

three structures potentially exhibiting high performance could be proposed (PRED-1-PRED-

3), and notably a phenothiazine-based structure i.e. PRED-3. Examination of their 

photoinitiating abilities once synthesized revealed these three structures to furnish high 

monomer conversions.  

 

Figure 26. Chemical structure of SPTO-41B. 

 In 2023, a series of disubstituted oxime esters was proposed by Lalevée and coworkers, 

the two series differing by the substitution.[153] Thus, twelve symmetrically and 



asymmetrically substituted oxime esters were designed and synthesized, as shown in the 

Table 8. 

Table 8. Chemical structures of oxime esters with double functionalities. 

R 

  
H OXE-A0 OXE-B0 

 
OXE-A1 OXE-B1 

 
OXE-A2 OXE-B2 

 
OXE-A3 OXE-B3 

 

/ OXE-B4 

 

/ OXE-B5 

 

/ OXE-B6 

 
/ OXE-B7 

 

/ OXE-B8 

 

/ OXE-B9 

 

 From the absorption viewpoint, similar absorption maxima were determined for the 

two series of dyes. Thus, an absorption maximum peaking at ca 370 nm and an absorption 

extending up to 475 nm was found in acetonitrile (See Figure 27 and Table 9). However, major 

differences were found in terms of solubility. Indeed, OXE-B3, OXE-B5, OXE-B6, OXE-B8 and 

OXE-B9 only showed a poor solubility in acetonitrile, what was confirmed in TMPTA. As a 

consequence of this, no polymerization tests could be carried out with these five oxime esters. 

Solubility of photoinitiators in resins is an important parameter to consider in addition to the 

light absorption properties as it governs their reactivity in resins. 



 

Figure 27. UV-visible absorption spectra of oxime ester derivatives in acetonitrile. Reproduced 

with permission of Ref. [153]. 

 

Table 9. Light absorption properties of oxime esters bearing double functionalities.  

OXE λmax (nm) εmax (M-1 cm-1) ε405nm (M-1 cm-1) 

OXE-A0 360 8700 4500 

OXE-A1 375 13100 9800 

OXE-A2 369 12800 8700 

OXE-A3 370 11100 7600 

OXE-B0 362 13100 5800 

OXE-B1 363 16700 8800 

OXE-B2 370 21200 14500 

OXE-B3 370 * * 

OXE-B4 370 19700 13200 

OXE-B5 369 * * 

OXE-B6 368 * * 

OXE-B7 370 12800 8600 

OXE-B8 369 * * 

OXE-B9 364 * * 

*: Due to the low solubility in acetonitrile, εmax and ε405nm were not investigated. 

 Photoinitiating ability of the different oxime esters were investigated at similar molar 

concentrations (10-5 mol/g) in thin films. Among the different dyes, OXE-A1, OXE-B2 and OXE-

B4 furnished monomer conversions higher than the reference compound TPO (80, 74 and 66% 

respectively vs. 65% for TPO) (See Table 10). Interestingly, OXE-B1 furnished a lower 

conversion than OXE-A1 (55% vs. 80% for OXE-A1) and this lower photoinitiating ability can 

be assigned to a higher distance between the photocleavable group and the chromophore in 

OXE-B1. This point was confirmed during the steady state photolysis experiments evidencing 

a slower kinetic of photocleavage and decarboxylation than OXE-A1. This point is of interest 

as it constitutes the first study evidencing the impact of the distance between the chromophore 

and the photocleavable group on the photoinitiating ability. Comparisons with the TMPTA 



conversions obtained with the monosubstituted PTZ2 and PTZ3 previously studied revealed 

an enhancement of the monomer conversion in the case of OXE-A1 (80% conversion vs. 81% 

for PTZ3 and 72% for PTZ2). Considering that the photoinitiator concentration was twice 

higher for PTZ2 and PTZ3 during the FRP of TMPTA (2. 10-5 mol/g), it therefore evidences the 

higher reactivity of photoinitiators bearing two oxime ester functionalities. 

 

Table 10. TMPTA conversions obtained with the different oxime esters at similar molar 

concentration (10-5 mol/g) in thin films. 

Compound OXE-A0 OXE-A1 OXE-A2 OXE-A3 TPO 

Conversion (%) 11 80 64 62 65 

Compound OXE-B0 OXE-B1 OXE-B2 OXE-B3 OXE-B4 

Conversion (%) 9 55 74 55 66 

Compound OXE-B5 OXE-B6 OXE-B7 OXE-B8 OXE-B9 

Conversion (%) 58 42 48 56 39 

 

Monitoring of the decarboxylation reaction by FTIR during the polymerization 

experiments revealed that no decarboxylation occurred with OXE-B5, OXE-B6 and OXE-B9 i.e. 

for all oxime esters bearing an aromatic group. Conversely, appearance of a CO2 peak at 2337 

cm-1 was detected during the polymerization experiments of all alkyl-substituted oxime esters. 

It was thus concluded that the higher reactivity of the alkyl-substituted oxime esters was 

related to the ability of the alkyloxy radicals to decarboxylate and produce the more reactive 

alkyl radicals. Conversely, in the case of the aryloxy radicals, no decarboxylation could be 

detected, furnishing radicals less reactive than the alkyl radicals. Overall, a lower monomer 

conversion can be obtained with these structures.   

Conclusion 

 During the last six years, not less than 58 phenothiazine-based oxime esters have been 

reported in the literature. As evidenced by the recent approach of automated machine learning 

that enabled to screen a wide range of structures and to identify the best scaffold for the design 

of oxime esters, phenothiazine is undoubtedly one of the best scaffolds for the design of oxime 

esters. From these different studies, several important trends favorable to polymerization 

performance have been identified. Thus, presence of a nitro group on the phenothiazine core 

enables to improve the monomer conversion. Oxime esters with alkyl substituents on the 

oxime side are also more favorable candidates for photopolymerization than the aryl-

substituted ones due to the occurrence of a decarboxylation reaction during polymerization 

enabling to generate alkyl radicals. Interestingly, impact of the distance between the 

chromophore and the photocleavable group has been examined for the first time with 

phenothiazines and this point has to be considered in the future for the design of new 

photoinitiators. If high-performance oxime esters have been designed with the phenothiazine 

scaffold, photobleaching and photopolymerization in water have not been examined yet. 

Considering the performance reported in these different works, these two points 



(photobleaching and polymerization in water) will certainly be examined in the future with 

phenothiazines. 
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