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Non-local tensor sparse coding for multi-image
super-resolution in magnetic resonance imaging

C. Prévost, Member, IEEE, F. Odille

Abstract—This paper introduces a non-local tensor sparse
coding approach for multi-image super-resolution in magnetic
resonance imaging. This approach is composed of four steps: (i)
non-local clustering of the similar subtensors, (ii) tensor sparse
dictionary learning, (iii) tensor sparse coding and (iv) subten-
sor regularization. Using the Tucker decomposition, the image
reconstruction problem is transformed into learning of sparse
dictionaries along the three modes and core tensor sparse coding
for each cluster, viewed as tensor. With the proposed approach,
reconstruction is achieved with only two low-resolution images,
which is a major advantage compared to other multi-frame
reconstruction techniques. Flexible conditions for exact recovery
are provided. This is also a major advantage of the proposed
approach, that will facilitate the clinical implementation of our
algorithm, allowing physicians to obtain images very quickly
after acquisition, with both practical (convergence analysis) and
theoretical guarantees (theorems). The experiments on a set of
real quality test phantom and brain datasets show the competitive
performance of the proposed approach with a significant gain of
time compared to other state-of-the-art methods.

Index Terms—magnetic resonance imaging, super-resolution,
multi-modality fusion, inverse methods, compressive sensing

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a versatile medical
imaging modality, providing excellent contrast between soft
tissues. However, it suffers from a relatively slow acquisition
time (on the order of minutes). This limitation prevents the
acquisition of 3D high-resolution images. To circumvent this
drawback, super-resolution techniques have been proposed [1],
[2]. They consist in recovering a 3D high-resolution image
from one or several low-resolution observations.

In [3], [4], it has been proposed to recover the high-
resolution image from a single observation using deep learn-
ing. Single-image super-resolution falls out of the scope of this
paper. Instead, multi-frame super-resolution MRI consists of
acquiring several complementary observations of the organ of
interest, e.g. three orthogonal scans [5]. Each observation has
high in-plane resolutions (1 mm or less) in the plane directions,
and low resolution in the slice direction (typically 3 to 10 mm).

It was first proposed to solve the super-resolution problem
by regularized inversion, including Tikhonov regularization
[6], total variation [7] or Beltrami energy regularizers [8].
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Constraints on the rank of the matricized images [9] and patch-
based regularization methods [10] were also considered, in
the context of super-resolution but also recosntruction from
undersampled data in MRI, with applications in MR finger-
printing [11], functional MRI [12] or dynamic reconstruction
[13]. However, matrix low-rank methods possessed a high
computational burden, and failed at preserving the natural
tensor format of the observations. Furthermore, no theoretical
guarantees for exact reconstruction of the high-resolution
images were provided.

Tensor-based reconstruction methods were recently used
[14]–[16] for the reconstruction of medical images, see [17]
and references therein for considered applications. Tensor
methods generally offer theoretical guarantees for exact image
recovery under mild conditions.

In a previous work of the authors [18], a novel tensor-based
approach for multi-frame super-resolution MRI was proposed.
It was based on a coupled low-rank tensor Tucker approxima-
tion of three observations in image space. An algorithm with
low computational cost, named isometRic Image Reconstruc-
tion by COupled Tensor Tucker Approximation (RICOTTA),
was introduced. It was assorted with exact reconstruction of
the high-resolution 3D image for a variety of multilinear
ranks. This work had several limitations. First, the possible
range of usable multilinear ranks was restricted, as it led to
inversion of a possibly ill-posed matrix in RICOTTA. As a
consequence, there existed a tradeoff in the resolutions of the
reconstructed image in the plane and slice directions. Second,
the computation time of RICOTTA was still very high for large
datasets.

A recent work [19] also used the Tucker decomposition. The
problem at hand, single-image super-resolution, was different
from the multi-image task considered in this paper. The opti-
mization problem also used a non-local low-rank assumption,
but under the form of a penalty term in the cost function.
Furthermore, no recovery guarantees were provided.

This paper introduces a non-local tensor sparse coding
approach for multi-image super-resolution MRI. This approach
is composed of four steps: (i) non-local clustering of the
similar subtensors, (ii) tensor sparse dictionary learning, (iii)
tensor sparse coding and (iv) subtensor regularization. Using
the Tucker decomposition, the image reconstruction problem is
transformed into learning of sparse dictionaries along the three
modes and core tensor sparse coding for each subtensor. Fi-
nally, Beltrami regularization on the reconstructed subtensors
promotes feature preservation and avoid staircasing artifacts.

Differently from [10], the proposed algorithm allows one
to leverage the need for three observations. Reconstruction
from only two low-resolution images leads to a significant
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gain of processing time. New conditions for exact recovery of
the high-resolution image of interest are provided, with high
flexibility offered by the tensor framework. Such conditions
were not offered by the matrix framework in [10].

Outline of the manuscript – A preliminary of this work
[18], [20] appears in EUSIPCO 2022, presenting the global
Tucker-based approach. This paper is organized as follows.
Section II introduces the notation, define the Tucker tensor
decomposition operations and recalls the model for multi-
image super-resolution MRI. Section III recalls the global
Tucker-based approach and the RICOTTA algorithm proposed
in [18]. Section IV presents the proposed new non-local tensor
sparse coding approach and its advantages. Section V contains
theorems for exact recovery of the image using our approach.
Section VI describes the simulation setup and Section VII
presents the experiments on a real quality test phantom and
brain datasets.

II. BACKGROUND AND NOTATION

A. Basic notation

The following notation is used [21]: lowercase paq or up-
percase pAq plain font for scalars, boldface lowercase paq for
vectors, uppercase boldface pAq for matrices, and calligraphic
pAq for tensors. Vectors are, by convention, one-column
matrices. The elements of vectors, matrices and tensors are
accessed as ai, Ai,j and Ai1,...,iN , respectively. R stands for
the real line.

For a matrix A, AT denotes its transpose and A: its Moore-
Penrose pseudoinverse. The notation IM is used for the MˆM
identity matrix and 0LˆK for the L ˆ K matrix of zeroes.
The symbol b stands for the Kronecker product of matrices
(in order to distinguish it from the tensor product b), and d
stands for the Khatri-Rao product.

The operator vect¨u denotes the standard column-major
vectorization of a tensor or a matrix. Operator ‚p denotes con-
traction on the p-th index of a tensor. When contracted with a
matrix, summation is always performed on the second index of
the matrix, e.g., rA ‚1 Msi,j,k “

ř

` A`,j,kMi,`. For a tensor
Y P RIˆJˆK , its unfoldings along each mode are denoted by
Yp1q P RJKˆI , Yp2q P RIKˆJ and Yp3q P RIJˆK .

B. Tensor multilinear decomposition

This subsection introduces the tensor decomposition that we
will use to build our model. The multilinear decomposition
factorizes a tensor into a core tensor multiplied along each
mode by factor matrices with ranks pR1, R2, R3q. For a tensor
X P RIˆJˆK , one can express its multilinear decomposition
as

X “ G ‚
1
U ‚

2
V ‚

3
W “

ÿ

pqr

Gp,q,r Ui,pVj,qWk,r, (1)

where G P RR1ˆR2ˆR3 is called the core tensor of the
decomposition. The matrices U P RIˆR1 , V P RJˆR2 and
W P RKˆR3 are the factors along each mode. The multilinear
decomposition can be compactly written as

X “ rrG; U,V,Wss. (2)

The following equalities hold for tensor unfolding and
vectorization:

Xp1q “ pWbVqGp1qUT,

vectX u “ pWbVbUq vectGu.

If pR1, R2, R3q are the smallest possible, i.e.,

R1 “ ranktXp1qu, R2 “ ranktXp2qu, R3 “ ranktXp3qu, (3)

then Equation (2) is called Tucker decomposition of X and
the triple pR1, R2, R3q is called the multilinear rank.

C. Multi-image super-resolution MRI observation model

Three low-resolution 3D images (LRI) are observed : Y1 P

Rx1ˆyˆs, Y2 P Rxˆy2ˆs and Y3 P Rxˆyˆs3 , respectively.
They represent the same object, hence they can be viewed as
degraded versions of a high-resolution image X P Rxˆyˆs. In
the MRI framework, usually x “ y “ s and X is called
a high-resolution isotropic image (HRII). The scalars s, s3
denote the number of frontal slices, while x, x1 and y, y2 stand
for the spatial resolution of each slice (resp. horizontally and
vertically). Each observation is downsampled in one direction,
thus x1 ! x, y2 ! y and s3 ! s. The ratio of degraded to
high-resolution dimensions depend on the machine settings
and acquisition sequence. The multi-image super-resolution
MRI problem consists in recovering the HRII X from the
LRI Y1, Y2 and Y3.

The following degradation model [18] is adopted:
$

’

&

’

%

Y1 “ X ‚1 D1 ` E1,

Y2 “ X ‚2 D2 ` E2,

Y3 “ X ‚3 D3 ` E3.

(4)

The degradation matrices Di (i “ 1, 2, 3) are downsampling
and reweighing matrices such as D1 P Rx1ˆx, D2 P Ry2ˆy

and D3 P Rs3ˆs. The tensors Ei (i “ 1, 2, 3) represent
isotropic white Gaussian noise.

III. TUCKER-BASED IMAGE FUSION

In [18] it was proposed to model the HRII data cube as a
tensor with low multilinear rank using the Tucker decompo-
sition. Given pR1, R2, R3q the multilinear rank of the HRII
X , X “ rrG; U,V,Wss was its Tucker decomposition (TD),
where U P RxˆR1 , V P RyˆR2 and W P RsˆR3 were the
factor matrices and G P RR1ˆR2ˆR3 was the core tensor.

The image reconstruction problem was expressed as the
following optimization problem:

minimize
pU, pV,xW,xG

fTDppU, pV,xW, pGq, (5)

where fTDppU, pV,xW, pGq “

3
ř

i“1

λi}Yi ´ rrG; pU, pV,xWss ‚i Di}
2
F ` µRprrG; pU, pV,xWssq. (6)

The scalars λi (i “ 1, 2, 3) were balance parameters control-
ling the weights of the LRIs in the cost function. The operator
Rp¨q was a Tikhonov regularizer [22] on the reconstructed
HRII, with a weight controlled by the scalar µ.
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Algorithm 1: RICOTTA
input : Y1, Y2, Y3, Di pi “ 1, 2, 3q; R1, R2, R3

output: Reconstructed HRII pX
1 pUÐ tSVDR1

´”

Y
p1q
2 Y

p1q
3

ı¯

2 pVÐ tSVDR2

´”

Y
p2q
1 Y

p2q
3

ı¯

3 xWÐ tSVDR3

´”

Y
p3q
1 Y

p3q
2

ı¯

4 pG Ð argmin
G

fTDppU, pV,xW, pGq

5 pX “ rrpG; pU, pV,xWss

A closed-form algorithm was proposed as a sub-optimal so-
lution for (5). This approach, called RICOTTA, is summarized
in Algorithm 1. Steps 1–3 of RICOTTA estimated the factors
U, V, W by computing the truncated SVD (tSVD) of the
unfolding with rank R1 (resp. R2, R3) . Step 4 of RICOTTA
consisted in solving a least-squares problem through normal
equations viewed as a generalized Sylvester equation. See Ap-
pendix A for more details. The total computational complexity
of RICOTTA was
‚ OppR1 `R2 `R3qxysq flops for Steps 1–3;
‚ OpminpR3

3`pR1R2q
3;R3

1`pR2R3q
3qq flops for Step 4.

Using RICOTTA led to a tradeoff in the resolutions of the
reconstructed image in the plane and slice directions. Indeed,
choosing high ranks led to inversion of a possibly ill-posed
matrix in Step 4 of RICOTTA [18]. Therefore, in the following
section, a new approach, using non-local decompositions, is
introduced.

IV. NON-LOCAL TENSOR SPARSE CODING

The four steps of the approach described in this section are
summarized in Figure 1.

A. Exploiting non-local similarities

Non-local self-similarity is a useful prior for reconstruction
of medical images, since the observations often depict similar
structures and usually have strong in-slice correlation [10]. In
other words, for a given given MRI subtensor, some similar
subtensors can be found within the whole image.

The LRI Y3 P Rxˆyˆs3 contains high-resolution in-plane
information. Let it be partitioned into Mx ˆ My square
overlapping cubes of size pˆ pˆ s, where

Mx “

Z

x´ p

p´ o
` 1

^

, My “

Z

y ´ p

p´ o
` 1

^

, (7)

and o is the overlap. The similar subtensors of Y3 are grouped
into K clusters using K-means++ [23]. Each cluster contains
at most nk cubes, k “ t1, . . . ,Ku and can be viewed as a
fourth-order tensor.

Each cluster is reshaped into a third-order tensor Pk
Y3
P

Rp2
ˆs3ˆnk , k “ t1, . . . ,Ku such that

´

Pk
Y3

¯

:,:,j
“

´

Yk,j
3

¯p3q

@ j “ t1, . . . , nku. (8)

Each slice of Pk
Y3

is the matricization of a subtensor of Y3,
denoted Yk,j

3 .
Based on the learned cluster structure, clusters with the

same spatial structure are built from Y1 and Y2. A pixel in
Y1 (resp. Y2) corresponds to a dxˆ 1 (resp. 1ˆ dy) patch in
Y3, where dx “ x

x1
(resp. dy “ y

y2
).

For instance, if any pixel in a dx ˆ 1 patch of Y3 belongs
to the k-th cluster, the corresponding pixel in in Y1 is also
added to k-th cluster, and likewise for the pixels of Y2. The
pixels in Y may belong to different clusters, therefore the
pixels in Y1 and Y2 may also belong to several clusters
in parallel. Similarly to Equation (8), the third-order tensors
Pk

Y1
P RpˆsˆNk and Pk

Y2
P RpˆsˆNk are constructed from

the cluster structure obtained from Y1 and Y2, where Nk is
the number of pixels belonging to the k-th cluster.

B. Tensor dictionary learning

Since the subtensors in a same cluster are similar to each
other, we assume that they admit a sparse representation.
The dictionary learning step is described for the k-th cluster
without loss of generality, and the procedure for other clusters
is likewise.

Let Pk
X P Rp2

ˆsˆnk denote the third-order tensor con-
structed from the k-th cluster of X . Let us assume that Pk

X
admits a Tucker decomposition of the form

Pk
X “ rrGk; Uk,Vk,Wkss, (9)

where the factor matrices Uk P Rp2
ˆRk

1 , Vk P RsˆRk
2 , Wk P

RnkˆRk
3 are the dictionaries in the three modes with Rk

1 (resp.
Rk

2 , Rk
3 ) atoms. The core tensor Gk

P RRk
1ˆRk

2ˆRk
3 encodes

the interactions between the columns of the dictionaries.
Following the model (4), the tensors constructed from Y3

can be written as

Pk
Y3
“ rrGk; Uk, rVk,Wkss, (10)

where rVk “ D3V
k P Rs3ˆRk

2 is the dictionary containing
the degraded information in the slice dimension. From Equa-
tion (10), Pk

Y3
contains the same high-resolution information

in the plane and cluster dimensions as in Pk
X . Therefore the

dictionaries Uk and Wk can be extracted from Pk
Y3

.
Unfolding Pk

Y3
in Equation (10) along the first mode yields

`

Pk
Y3

˘p1q
“ Ak

Y3

`

Uk
˘

T, (11)

where Ak
Y3
“

´

Wk b rVk
¯

`

Gk
˘

p1q. In Equation (11), the

rows of
`

Pk
Y3

˘p3q
can be written as a linear combination of

rows of Uk. However, estimation of Uk is severely ill-posed,
because Ak

Y3
is non-unique.

To regularize this problem, a sparsity-inducing prior is used.
As a by-product, it promotes the sparsity of the core tensor Gk.
Hence estimation of Uk can be viewed as sparse dictionary
learning as follows:

min
Ak

Y3
,Uk

}
`

Pk
Y3

˘p1q
´Ak

Y3

`

Uk
˘

T}2F , (12)

s. t. }Ak
Y3
p`, :q}0 ď εu for 1 ď ` ď s3nk, (13)
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Fig. 1. Pipeline of the proposed approach.

where } ¨ }F and } ¨ }0 respectively denote the Frobenius norm
and the `0 norm, and εu is the maximum possible number
of non-zero elements in the `-th row of Ak

Y3
. To solve the

problem (12) under constraints (13), the dictionary-updates-
cycles K-SVD (DUC-KSVD) [24] approach is employed.

Estimation of Wk can also be performed from Pk
Y3

by
unfolding Equation (10) along the third mode, and solved
using DUC-KSVD.

The subtensors constructed from Y1 and Y2 are written as

Pk
Y1
“ rrGk; rUk

1 ,V
k,ĂWk

1 ss, Pk
Y2
“ rrGk; rUk

2 ,V
k,ĂWk

2 ss (14)

where the matrices ĂWk
1 P RNKˆRk

3 and ĂWk
2 P RNKˆRk

3

encode the learned cluster structure applied to Y1 and Y2. The
matrices rUk

1 P RpˆRk
1 and rUk

2 P RpˆRk
3 contain the degraded

in-plane information in the subtensors of Y1 and Y2.
Conversely, Pk

Y1
and Pk

Y2
contain the same high-resolution

in-slice information, encoded in the matrix Vk P RsˆRk
2 .

As a result, since the two observations have similar noise
contaminations, estimation of Vk can be performed from
only one observation Y1 or Y2 (in the case where the two
observations have different resolutions, the observation with
the highest in-plane resolution should be preferred). In the
rest of this subsection, the dictionary learning process for Vk

is described using only Pk
Y1

, and estimation from Pk
Y2

can
be performed in a similar fashion.

Since subtensors of Y1 can be related to several clusters
simultaneously, the relationship between rUk

1 and Uk is highly
complex. Therefore, in this paper, the coupling relationships
between those matrices is ignored, resulting in a versatile,
semi-blind approach. From Equation (14),

`

Pk
Y1

˘p2q
“ Ck

Y1

`

Vk
˘

T, (15)

where Ck
Y1
“

´

ĂWk
1 b rUk

1

¯

`

Gk
˘

p2q.
Sparsity-constrained dictionary-learning is used to estimate

the Wk dictionaries:

min
Ck

Y1
,Vk

}
`

Pk
Y1

˘p2q
´Ck

Y1

`

Vk
˘

T}2F , (16)

s. t. }Ck
Y1
p`, :q}0 ď εv, for 1 ď ` ď pNk, (17)

where εv is the maximum sparsity. The problem (16) under
constraints (17) is also solved using DUC-KSVD.

C. Tensor sparse coding
Once the dictionaries Uk,Vk,Wk have been retrieved for

the k-th cluster, the core tensor Gk must be estimated. Since
the estimated dictionaries are sparse, we assume that they are
redundant enough to represent the subtensors of the HRII,
which induces sparsity of the core tensor Gk. Estimation of the
core tensor can be performed by solving the following sparse
optimization problem:

min
Gk

}Pk
Y3
´ rrGk; Uk,D3V

k,Wkss}2F , (18)

s. t. }Gk
}0 ď εg, (19)

where εg is the maximum admissible sparsity.
The above problem can be reformulated by vectorizing

(18) by exploiting the relationship between vectorization and
Kronecker product, yielding the equivalent problem

min
Gk

} vectrrPk
Y3

; UkT,VkTDT
3 ,W

kTssu

´

´

IRk
3

bVkTDT
3D3V

k b IRk
1

¯

gk}2F , (20)

where gk is the standard vectorization of the core tensor.
Since problem (20) under constraints (19) is NP-hard [25],

we solve it by using the greedy Matching Pursuit Lasso (MPL)
[26]. This method is based on quadratically constrained linear
programing, which greatly reduces the computation cost of the
sparse coding problem over large dictionaries.

D. Subtensor reconstruction
Once the dictionaries Uk,Vk,Wk and the core tensor Gk

have been estimated, the corresponding subtensor of X can
be reconstructed by solving the following Beltrami-regularized
problem:

Pk
X “ argmin

I

ż

a

1` β2|∇I|2

`
ρ

2

ż

}I ´ rrGk; Uk,Vk,Wkss}2F , (21)
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where β, ρ ą 0 are balance parameters. In practice, Equa-
tion (21) is solved using a primal-dual projected gradients
optimization algorithm, described in details in [27].

Then, the subtensors of the HRII are returned to their
location by straight averaging. The proposed algorithm is
summarized in Algorithm (2).

Algorithm 2: Proposed algorithm
input : Observations Yi, degradation matrix D3; parameters

p,K, pRk
1 , R

k
2 , R

k
3q, εu, εv, εw, εg .

output: A non-local low-rank approximation pX of X .
1 for k “ 1, . . . ,K do
2 Estimate Uk,Vk,Wk by solving Problems (12) to (17)
3 Estimate Gk by solving (20) under constraints (19)
4 end
5 Reconstruct subtensors of pX using Equation (21)

Complexity – Steps 2 to 4 in Algorithm 2 are dominated
by the cost of the SVD in the DUC-KSVD algorithms. The
cost of the tensor sparse coding step is dominated by that of
the worst case analysis in the MPL algorithm. Therefore, the
total cost for Algorithm 2 per cluster is
‚ O

`

Rk
1p

4s3nk
˘

for Step 2;
‚ O

`

Rk
2p

2s3n
2
k

˘

for Step 3;
‚ O

`

Rk
3p

2s2nk
˘

for Step 4;
‚ Op

ś

j

Rk
j p

2s3nkq for Step 5.

Convergence – By [26, Theorems 2 and 3], MPL linearly
converges to an optimal solution of Problem (20)–(19). Under
the condition that the sparse coding stage can be performed
exactly, KSVD is also guaranteed to converge to a local
minimum for estimation of the dictionaries [24].

Reconstruction from only two observations – Estimation
of Vk can be performed from either Pk

Y1
or Pk

Y2
similarly

without loss of performance. In other words, only two LRI are
required to solve the reconstruction problem.

Semi-blind reconstruction – Since the relationship be-
tween rUk

1 (resp. rUk
2) is highly complex, we chose not to

model it when solving for the dictionaries. In practice, it
means that the proposed approach only requires knowledge
of the degradation matrix D3 in model (4), therefore it can be
referred to as semi-blind.

Remark – For p ď x and Mx,My ą 1, if each cluster of
Y3 is reshaped into a matrix Pk

Y3
P Rp2s3ˆnk , i.e.,

`

Pk
Y3

˘

:,j
“ vectY k,j

3 u @ j “ t1, . . . , nku, (22)

then solving the reconstruction problem becomes matrix-
based. It can then be solved using the method proposed in
[10], that also considers sparse coding but uses an Augmented
Lagrangian formulation with high computational burden.

V. RECOVERY OF THE HIGH-RESOLUTION ISOTROPIC
IMAGE

This section provides conditions for exact reconstruction of
the HRII tensor. Although the Tucker decomposition is not
unique, the proposed approach still recovers the subtensors of
the HRII uniquely.

A. Deterministic exact recovery

The following theorems address exact recovery of the k-th
subtensor of X , and the proof for the other subtensors can be
obtained analogously.

Theorem V.1. Let Pk
X admit a Tucker decomposition as

in Equation (9) where Uk P Rp2
ˆRk

1 ,Vk P RsˆRk
2 ,Wk P

RnkˆRk
3 have full column rank. We also assume that Ei “ 0

(i “ 1, 2, 3) in (4). If

rankt
`

Pk
Y3

˘p1q
u “ Rk

1 , rankt
`

Pk
Y1

˘p2q
u “ Rk

2 , rankt
`

Pk
Y3

˘p3q
u “ Rk

3 , (23)

then there exists only one pPk
X with multilinear ranks at most

pRk
1 , R

k
2 , R

k
3q that satisties (10)–(14).

Proof. First, by Equation (23), the rank of the unfoldings do
not drop after degradation, hence

pUk “ UkQU , pVk “ VkQV , xWk “WkQW ,

where QU ,QV ,QW are some rotation matrices.
Then, let us note that problem (20) can be solved through

normal equations of the form
`

XTX
˘

gk “ XTz,

where the matrix on the left-hand side is

XTX “ IRk
3

b pVkTDT
3D3

pVk b IRk
1

and the vector on the right-hand side is

XTz “ vectrrPk
Y3

; pUkT, pVkTDT
3 ,

xWkTssu.

Therefore the reconstructed subtensor of X can be written as

vect pPk
X u “

´

xWk b pVk b pUk
¯

`

XTX
˘´1

XTz,

and does not depend on the rotation matrices QU , QV , QW .
Hence the reconstructed tensor pPk

X is unique.

Corollary V.2. If the conditions of Theorem V.1 hold, then
Algorithm 2 recovers the K subtensors of X of the form

pPk
X “ rrGk; pUk, pVk,xWkss @k P t1, . . . ,Ku.

Indeed, according to [26, Theorem 5], the MLP method is
guaranteed to recover the sparse signal gk when solving (20)
under constraints (19) in the noiseless case.

B. Generic recovery conditions

From the deterministic results, the following generic condi-
tions can be established, i.e., they hold for any generic tensor.

Theorem V.3. Assume that D1 P Rx1ˆx, D2 P Ry2ˆy ,
and D3 P Rs3ˆs are fixed full row-rank matrices. Let Pk

X
admit a Tucker decomposition as in Equation (9), where G P
RRk

1ˆRk
2ˆRk

3 , Rk
1 ď x, Rk

2 ď y, Rk
3 ď s, and Uk P Rp2

ˆRk
1 ,

Vk P RsˆRk
2 , Wk P RnkˆRk

3 are random tensor and matrices,
distributed according to an absolutely continuous probability
distribution. We also assume that Ei “ 0 (i “ 1, 2, 3) in (4).

If

Rk
1 ď p2 and Rk

2 ď s3 and Rk
3 ď nk, (24)
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then with probability 1 there exists only one Pk
X with multi-

linear ranks at most pRk
1 , R

k
2 , R

k
3q such that satisfies (4).

Proof. First, the conditions on Rk
1 and Rk

3 fall from the proof
for Theorem V.1 and are offered by the semi-blind estimation
strategy that we proposed.

Second, let us explain the condition on Rk
2 . Without loss of

generality, D3 can be replaced with D3 “ rIs3 0s. Indeed,
there exists a non-singular matrix T such that D3T “

rIs3 0s. If we take rVk “ T´1Vk then D3V
k “ D3

rVk.
A nonsingular transformation preserves absolute continuity
of the distribution; hence Vk has an absolutely continuous
distribution if and only if rVk has one.

Therefore under the assumption on the distribution of Vk,
the following hold with probability 1:

Rk
3 ď s3 ñ ranktVk

1:s3,:u “ Rk
3 .

Remark V.4. In the special case where the observations are
not partitioned (i.e., p “ x “ y and Mx “ My “ 1 and
K “ 1), then the conditions (24) in Theorem V.3 become

Rk
1 ď x and Rk

2 ď y and Rk
3 ď s3. (25)

VI. METHODS

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. The code was implemented
in MATLAB. For tensor operations we used TensorLab 3.0
[28]. The code is available online at https://cprevost4.github.
io/RICOTTA Software/.

A. Experiments setup

Image reconstruction is usually performed from LRIs with
arbitrary orientations (i.e., with non-strictly orthogonal views).
In this setting, solving the reconstruction problem requires an
accurate knowledge of patient position and modality configura-
tion to avoid any alignment errors. Compared to the previously
published work, here a preprocessing step was applied in
order to cast the acquired data and observation model into
the separable form given in Equation (4). This consisted
of a resampling, as in the native image space, degradation
occurs in the slice direction. Generally, MRI scans may not be
strictly orthogonal, so a rigid transformation (3D rotation and
translation) was applied to the 3D images. This information
was extracted from the native images’ DICOM file headers as
recorded by the imaging system.

Algorithm 2 was compared to several baseline algorithms.
Two geometrical super-resolution (SR) algorithms were con-
sidered, with Tikhonov (SRT ) and Beltrami (SRB) regulariza-
tion [8]. The performance of RICOTTA [18], that uses a global
tensor low-rank approximation to reconstruct the image, was
also assessed. The hyperparameters for these methods were
tuned according to the original works.

B. Validation

To evaluate the quality of the reconstructed images pX ,
several quantitative metrics [29] were considered. The first
one was the peak signal to noise ratio (PSNR), defined as

PSNR “
10

s

s
ÿ

k“1

log10

˜

xyE tpX q:,:,ku
}pX q:,:,k ´ p pX q:,:,k}2F

¸

, (26)

where Et¨u denoted the expectation operator.
The second metric was the root mean-squared error

RMSE “
}X ´ pX }2F
}X }2F

. (27)

The third one was the Cross-Correlation (CC), taking values
between 0 and 1:

CC “
1

xys

˜

s
ÿ

k“1

ρ
´

X :,:,k, pX :,:,k

¯

¸

, (28)

where ρp¨, ¨q is the Pearson correlation coefficient between the
estimated and original slices.

Then, the Structural Similarity Index Measure (SSIM), used
to measure the structural differences between X and pX [30],
was computed.

The average sharpness index (SI) [31], widely used for
automatic image restoration and image quality assessment
without reference, was calculated across the two first spatial
dimensions (namely SIx, SIy) and the average SI across the
frontal slice dimension (denoted SIs). The computational time
in seconds for each algorithm was given by the tic and toc
functions of MATLAB.

C. Datasets

1) Phantom data: A test object (physical phantom), used
for quality control and resolution assessment, was scanned
with a 3T Prisma MRI scanner (Siemens Healthineers, Erlan-
gen, Germany). The HRII was obtained and was used as the
reference for comparison of the different SR reconstruction
methods. The acquisition used a turbo spin echo sequence,
with a native resolution of 1 ˆ 1 ˆ 1.1 mm3 (1.1 mm was
the finest resolution allowed by the scanner here), which was
interpolated to 1 ˆ 1 ˆ 1 mm3 and zero-padded in the third
dimension to produce a reference tensor X P R224ˆ224ˆ224,
considered as the ground truth image (HRII). The scan time
for the HRII was 6 min and 30 s.

Low-resolution scans (observed LRI data) were acquired in
three orthogonal orientations with voxels of size 1 ˆ 1 ˆ 4
mm3 in each of the three orientations. The three observations
were such that Y1 P R56ˆ224ˆ224, Y2 P R224ˆ56ˆ224 and
Y3 P R224ˆ224ˆ56, respectively. Thus the downsampling ratio
between the HRII and the LRI was d “ 4. The degradation
matrices were such that D1 “ D2 “ D3 P R56ˆ224. The
acquisition of each LRI took approximately 2 min.

Secondly, the brain LRI data were acquired with voxels of
size 1ˆ1ˆ8 mm3. The downsampling ratio between the HRII
and the LRI was d “ 8, yielding D1 “ D2 “ D3 P R28ˆ224.
The acquisition of each of the three LRI in that case took
approximately 1 min.

https://cprevost4.github.io/RICOTTA_Software/
https://cprevost4.github.io/RICOTTA_Software/


7

2) Real brain data: The volunteer experiment was con-
ducted on a 3T Signa HDxt MRI scanner (General Electric,
Milwaukee, USA). The volunteer study was approved by an
ethics committee and written informed consent was obtained
(ClinicalTrials.gov identifier: NCT02887053).

A high-resolution reference dataset of the whole brain
(HRII) was acquired using a fast gradient echo sequence
with a native resolution of 1 ˆ 1 ˆ 1 mm3, which was zero-
padded in the third dimension to produce a reference tensor
X P R224ˆ224ˆ224, considered as the ground-truth HRII. The
scan time for the HRII was 8 min. Brain LRI data were
obtained with voxels of size 1 ˆ 1 ˆ 4 mm3 (d “ 4). The
acquisition of each LRI took approximately 2 min.

An additional LRI dataset was acquired, to push the scanner
resolution limit, with voxel of size 0.5 ˆ 0.5 ˆ 2 mm3 (the
total scan time was 11 min). Here the 3 volumes were placed
such that their intersection covered the cerebellum region, and
the SR reconstruction aimed at 0.5 ˆ 0.5 ˆ 0.5 mm3, which
was significantly below the typical resolution of clinical brain
scans on a 3T scanner. For this dataset, due to the scanner
limitations, the reference was taken as the reconstruction
obtained by Beltrami-based inversion.

VII. NUMERICAL RESULTS

A. Tuning of the parameters

The good performance of our method relied on the tuning
of several hyperparameters. In medical imaging, the best
assessment of the image quality is often performed by the
practitioner. The hyperparameters were chosen to yield good
SI, the closest metric to the human expertise.

For this study, we used the second brain dataset with x “
y “ s “ 100. Firstly, the choice of the ranks is usually a
very difficult question arising when using tensor factorization.
Here, we set R1 “ p2 and R2 “ s3 to avoid artifacts in
the reconstructed image dimensions. Figure 2-(a) showed the
metrics as a function of R3 P t1, . . . ,

MxMy

K u. They increased
with R3, and reached a plateau around R3 “ 100. Hence we
set Rk

3 “ minp100, nkq for k P t1, . . . ,Ku.
Figure 2-(b) showed on a semi-log scale the metrics as a

function of K P t1, 2, 5, . . . , 100, 200, 500u. The PSNR and
CC decreased from K “ 10, while the SI were best for K “

500. This is reasonable since a better sharpness means that the
pixels are less “blurred”. As a result, we set K “ 100.

Figure 2-(c) showed the influence of the number of sub-
tensors p P t4, 8, . . . , 24u of the reconstruction. The PSNR
and CC decreased with p. The sharpness SIx and SIy were
rather stable while SIs was generally higher for a large value
of p. It is reasonable since a large value of p might fail to
capture the different types of regions in the image. In our
other experiments, we took p “ 4.

B. Reconstruction performance

Table Ishowed the reconstruction performance of Algo-
rithm 2 and of the benchmarked algorithms. The best result
of each column was shown in bold.

The proposed algorithm yielded most of the best metrics for
a large downsampling ratio (d “ 8). The PSNR and SSIM of
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Fig. 2. PSNR, CC and mean SI in three orientations, as a function of : (a)
the rank R3 in the cluster dimension; (b) the number K of different clusters;
(c) the size p of the window used to create the subtensors.

Method PSNR (dB) Ò SSIM Ò RMSE Ó CC Ò Time (s) Ó Total time (min, s) Ó

First brain dataset
Proposed 32.17 0.627 97.26 0.967 117.10 7 min 57 s

RICOTTA 30.46 0.553 131.39 0.923 221.28 9 min 41 s
SRT 20.77 0.699 212.10 0.986 224.08 9 min 43 s
SRB 35.69 0.841 509.09 0.977 130.81 8 min 9 s

Second brain dataset
Proposed 28.46 0.711 51.38 0.936 10.60 11 min 10 s

RICOTTA 28.26 0.759 83.48 0.934 0.83 11 min 1 s
SRT 13.65 0.571 185.27 0.709 1.07 11 min 1 s
SRB 12.22 0.558 310.81 0.459 5.91 11 min 6 s

First phantom dataset
Proposed 37.25 0.664 27.68 0.998 97.39 7 min 36 s

RICOTTA 36.85 0.717 29.28 0.999 205.83 9 min 24 s
SRT 15.14 0.712 249.28 0.999 209.96 9 min 29 s
SRB 40.11 0.802 42.44 0.999 165.25 8 min 45 s

Second phantom dataset
Proposed 34.70 0.572 33.35 0.999 50.73 6 min 51 s

RICOTTA 32.18 0.600 41.19 0.999 13.31 6 min 13 s
SRT 15.52 0.207 206.92 0.963 18.89 6 min 19 s
SRB 20.05 0.229 159.99 0.961 221.81 9 min 41 s

TABLE I
RECONSTRUCTION METRICS, COMPUTATION TIME AND TOTAL

PROCESSING TIME.

the Beltrami-based approach was generally better for d “ 4,
but with a higher runtime. The proposed algorithm had a com-
petitive tradeoff between processing time and reconstruction
performance.

Figures 3 to 5 showed greyscale slices of the reference and
reconstructed HRII in the three orientations, with a close-up
picture on some details. The average SI was indicated for each
orientation.

Our approach reconstructed the image correctly. In particu-
lar, it provided the best sharpness for the second brain dataset.
The Beltrami regularization added during reconstruction of the
subtensors corrected artifacts due to the low-rank assumption
while preserving the details of the image. The quality of the
reconstructed image was similar to that of the reference HRII,
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(a) (b) (c) (d) (e)
Fig. 3. Reconstruction of the first brain HRII. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

(a) (b) (c) (d) (e)
Fig. 4. Reconstruction of the second brain HRII. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

(a) (b) (c) (d) (e)
Fig. 5. Reconstruction of the second phantom HRII. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

(a) (b) (c) (d) (e)
Fig. 6. Reconstruction of the first brain HRII with two images. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

without the need for a longer acquisition time.

C. Reconstruction from two images only

The performance of our method was assessed when using
only two LRIs out of three: Y1 and Y3 only. Table II showed
the reconstruction metrics for the four considered datasets. The
best result of each column was shown in bold.

The proposed algorithm slightly higher performance than
RICOTTA. It provided the best PSNR and RMSE for all
datasets. Its performance was also significantly superior to
those of the methods based on regularized model inver-
sion, whose performance highly suffered from the lack of
knowledge of one image. The proposed approach was faster

than inversion-based methods, especially for the second brain
dataset (cerebellum) and second phantom.

Figures 6 to 8 showed greyscale slices of the reference
and reconstructed HRII in the three orientations, with zoomed
details. Our approach reconstructed the image correctly with a
quality similar to that of the reference HRII, without the need
for a longer acquisition time. It is also less sensitive to artifacts
and loss of quality when using only two images, compared to
the baseline approaches.

VIII. CONCLUSION

This paper shows the capabilities of our approach to perform
correctly the multi-frame super-resolution task in MRI. Non-
local low-rank approximations overcame the difficulties previ-
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(a) (b) (c) (d) (e)
Fig. 7. Reconstruction of the second brain HRII with two images. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

(a) (b) (c) (d) (e)
Fig. 8. Reconstruction of the first phantom HRII with two images. (a) Reference HRII, (b) Proposed approach, (c) RICOTTA, (d) SRT , (e) SRB .

Method PSNR (dB) Ò SSIM Ò RMSE Ó CC Ò Time (s) Ó Total time (min, s) Ó

First brain dataset
Proposed 32.14 0.631 41.15 0.967 122.19 6 min 1 s

RICOTTA 29.02 0.620 55.76 0.897 210.92 7 min 30 s
SRT 15.02 0.497 337.60 0.974 311.24 9 min 11 s
SRB 20.34 0.630 509.48 0.961 111.25 5 min 51 s

Second brain dataset
Proposed 28.38 0.702 48.35 0.936 19.40 7 min 39 s

RICOTTA 27.68 0.740 82.21 0.928 19.75 7 min 39 s
SRT 9.78 0.646 253.17 0.816 193.71 10 min 33 s
SRB 8.22 0.623 307.57 0.501 25.88 7 min 45 s

First phantom dataset
Proposed 37.09 0.663 28.36 0.999 90.33 5 min 30 s

RICOTTA 34.03 0.692 37.41 0.999 257.97 8 min 18 s
SRT 8.90 0.522 455.55 0.997 93.14 5 min 33 s
SRB 13.15 0.595 375.71 0.996 130.98 6 min 9 s

Second phantom dataset
Proposed 34.15 0.569 35.63 0.997 51.82 2 min 52 s

RICOTTA 29.61 0.593 52.87 0.998 11.64 2 min 11 s
SRT 9.04 0.393 389.89 0.993 54.15 2 min 54 s
SRB 12.24 0.429 320.87 0.993 154.37 4 min 33 s

TABLE II
RECONSTRUCTION METRICS FROM TWO IMAGES ONLY, COMPUTATION

TIME AND TOTAL PROCESSING TIME.

ously arising with the non-local matrix and global tensor ap-
proaches. The experiments showed that the proposed method
was capable of successfully reconstructing the high-resolution
isotropic image with only the use of two observations instead
of three. The low computation time was lower than the
acquisition time of the reference HRII, which confirmed the
interest for other approaches.

Our approach has a high versatility for an easy transfer
to different imaging fields. It should be applicable to a wide
range of MRI acquisition techniques, e.g., T1-weighted, T2-
weighted, or diffusion-weighted imaging in the brain. It could
help improve the trade-off between scan time, resolution, SNR
and contrast in MRI. Indeed, this will facilitate the clinical
implementation of our algorithm, allowing physicians to obtain
images very quickly after acquisition, with both practical
(convergence analysis) and theoretical guarantees (theorems).

APPENDIX A
SOLVING FOR pG IN ALGORITHM 1

In this Appendix, we provide details on how to solve for
pG in Step 4 of RICOTTA (see Algorithm 1). It consisted in
solving the least-squares problem

argmin
pG

}A vectpGu ´ b}2F ` µ} vect
pGu}2F , (29)

with

A “

»

—

–

?
λ1xWb pVbD1

pU
?
λ2xWbD2

pVb pU
?
λ3D3

xWb pVb pU

fi

ffi

fl

, b “

»

–

?
λ1 vectY1u?
λ2 vectY2u?
λ3 vectY3u

fi

fl . (30)

It was solved through normal equations of the form
`

ATA` µI
˘

vectpGu “ ATb, (31)

with the left-hand side matrix ATA “

λ1IR2R3
b

´

pUTDT
1D1

pU
¯

` λ3

´

xWTDT
3D3

xW
¯

b IR1R2

` λ2IR3 b

´

pVTDT
2D2

pV
¯

b IR1 , (32)

and the vector on the right-hand side was ATb “

λ1 vectrrY1; pU
TDT

1 ,
pVT,xWTssu

` λ2 vectrrY2; pU
T, pVTDT

2 ,
xWTssu

` λ3 vectrrY3; pU
T, pVT,xWTDT

3 ssu. (33)

Equation (31) was a generalized Sylvester equation:

M1
pGM2 `M3

pGM4 “M5, (34)

where pG was an unfolding of pG.
Two options were proposed for converting Equation (31)

into Equation (34). In the first case, pG “ Gp1qT P RR1ˆR2R3 ,

M1 “ λ1
`

UTDT
1D1U

˘

, M2 “ IR2R3
, M3 “ IR1

,

M4 “ λ2
`

VTDT
2D2V

˘

` λ3
`

WTDT
3D3W

˘

,
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and M5 P RR2R3ˆR1 was a matricization of ATb.
In the second case, pG “ Gp3q P RR1R2ˆR3 ,

M1 “ λ1
`

UTDT
1D1U

˘

` λ2
`

VTDT
2D2V

˘

,

M2 “ IR3 , M3 “ IR1R2 , M4 “ λ3
`

WTDT
3D3W

˘

,

and M5 P RR1R2ˆR3 is a matricization of XTz.
The two options were equivalent and the fastest one was

chosen according to the multilinear rank. The complexity for
solving equation (34) was thus Opm3 ` n3q flops for pG P

Rmˆn if fast solvers, such as Hessenberg-Schur or Bartels-
Stewart methods [32], were used.
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