N
N

N

HAL

open science

HIGH-DIMENSIONAL, LOW-RANK TENSOR
APPROXIMATION: CRAMER-RAO LOWER
BOUNDS AND APPLICATION TO MIMO
CHANNELS

Clémence Prévost, Pierre Chainais

» To cite this version:

Clémence Prévost, Pierre Chainais. HIGH-DIMENSIONAL, LOW-RANK TENSOR APPROXIMA-
TION: CRAMER-RAO LOWER BOUNDS AND APPLICATION TO MIMO CHANNELS. 2023.

hal-04302405

HAL Id: hal-04302405
https://hal.science/hal-04302405v1

Preprint submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04302405v1
https://hal.archives-ouvertes.fr

1

16

19

36

39
10
41
42
43
44

HIGH-DIMENSIONAL, LOW-RANK TENSOR APPROXIMATION:
CRAMER-RAO LOWER BOUNDS AND APPLICATION TO
MIMO CHANNELS*

C. PREVOST, P. CHAINAIST

Abstract. Tensor factorization has been steadily used in the past decade to represent high-
dimensional data. In particular, the canonical polyadic (CP) decomposition (CPD) is very appreci-
ated for its modeling power and remarkable uniqueness properties. However, computing the CPD is
challenging when the order of the tensor becomes high: numerical issues and high needs for storage
and processing can lead the standard algorithms to diverge. To circumvent this limitation, the equiv-
alence between the CPD and the Tensor Train Decomposition (TTD) is exploited. This approach is
implemented in a new algorithm called Dimensionality Reduction, joint Estimation of the Ambiguity
Matrices and the CP FACtors (DREAMFAC). A global coupled optimization scheme is proposed
to break the curse of dimensionality and estimate the CP factors. DREAMFAC performs better
than state-of-the-art methods. It avoids the usual propagation of the estimation error in the factors
of the TTD. In particular, DREAMFAC reaches the Cramér-Rao lower bounds associated with the
considered coupled CP-TT model, which is not the case for the state-of-the-art sequential proce-
dure. Performances are illustrated on the problem of estimating the channels in a dual-polarized
MIMO system. Numerical experiments show the competitive performance of the proposed method
for recovery of the CP factors and estimation of the channel parameters, even with very low SNR.

Key words. Canonical polyadic decomposition, tensor train decomposition, coupled optimiza-
tion, factor retrieval, MIMO systems

MSC codes. 15A23, 15A69

1. Introduction. Tensors provide a faithful representation of higher-order ob-
servations by preserving their multidimensional structure [7,18]. For instance, color
images can be seen as data cubes with two spatial dimensions (the pixels) and a
spectral dimension (the colours) encoding the red, green and blue channels. Tensor
factorization has been steadily used in the past decade to model such data, due to
its capabilities to capture the interactions between a set of latent factors. It has been
successfully applied to various problems in, e.g., signal processing and machine learn-
ing [34], brain signal processing [1], video completion [41] or telecommunications [29].
The notion of low rank in tensors is not unified: various tensor decompositions are
available, all carrying different properties and rank definitions. Perhaps the most nat-
ural generalization of the concept of matrix rank to tensors is the canonical polyadic
(CP) decomposition (CPD) [10]. The CP rank of a tensor is defined as the minimal
number K of rank-one tensors that, when linearly combined, lead to a perfect recov-
ery of that tensor. A N-th order rank-one tensor is given by the outer product of
N vectors. The CP decomposition has gained a lot of interest for data processing
and analysis, due to its remarkable uniqueness properties under mild conditions [38].
However, the set of low-rank tensors is not closed, therefore computing the CPD is
an ill-posed problem [20]. In practice, this task is usually carried out by suboptimal
iterative algorithms. Furthermore, the storage and processing cost of tensors increase
exponentially with their order N. This limitation is known as the curse of the di-
mensionality [28]. The Tensor Train (TT) decomposition (TTD) has been recently
introduced [27]. This decomposition has two advantages. First, it exploits a stable
numerical estimation procedure which avoids the iterative algorithms used to com-
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2 C. PREVOST, P. CHAINAIS

pute the CPD. Second, it breaks the curse of dimensionality by operating on a set
of matrices and third-order tensors, called TT-cores. In particular, its storage cost is
linear in N. Numerous works were devoted to the task of dimensionality reduction
in the CP model. In [43], the authors provided an equivalence between the CPD
and the TTD through a set of non-singular change-of-basis matrices shared among
the TT-cores. An algorithm, called Joint dImensionality Reduction And Factor Es-
timation (JIRAFE), was proposed. It recovered the factors of the CPD underlying
a high-order tensor from its estimated TT-cores. A JIRAFE-like procedure was also
recently extended to constrained CPD in [13]. These algorithms were based on a
series of local and sequential optimization problems to obtain the CP factors at a
low computational cost. The change-of-basis matrices appearing in the TTD were
estimated once and propagated through the other optimization problems, without
enforcing coherence between the TT-cores. For this reason, JIRAFE may lead to a
sub-optimal estimation of the CP factors estimated in last position of the tensor train.

This work introduces a new algorithm for joint dimensionality reduction and esti-
mation of the CP factors. A global optimization strategy is proposed. In contrast with
JIRAFE, it ensures the coherence between TT-cores by considering coupled updates
for the change-of-basis matrices. This approach is implemented in a new algorithm
called Dimensionality Reduction, joint Estimation of the Ambiguity Matrices and the
CP FACtors (DREAMFAC). Cramér-Rao Bound (CRB) [8,12,30] are used to evalu-
ate and compare the relative performance of JIRAFE and DREAMFAC. Cramér-Rao
bounds for tensor CP models have been extensively studied in the literature, includ-
ing performance bounds for uncoupled CP models [4,21,32], Bayesian frameworks [6],
and constrained models [31]. To take into account the coupling between the TT-
cores, a coupled model that enforces constraints on the change-of-basis matrices is
introduced. For such models the constrained Cramér-Rao bound (CCRB) can be
used, whose versatility was shown by numerous works [22-24,39,40]. An application
to the problem of harmonic retrieval in MIMO systems [2] permits to illustrate the
behaviour of DREAMFAC on a realistic low-rank decomposition problem. Indeed,
for MIMO channels modeling and estimation, it is important to accurately estimate
channels parameters at the base station (angles of arrival, angles of departure, path
gains, and polarization parameters) to perform beamforming and deal with multi-
user interferences. In [29], a tensor-based approach for dual-polarized MIMO channel
estimation was proposed. The MIMO channel was recast as a fourth-order tensor
admitting a CPD. The authors proposed an Alternating Least Squares (ALS) to es-
timate CP factors. In [42], the authors adapted the JIRAFE procedure to treat the
MIMO channel estimation problem. Therefore this problem can be used as a relevant
benchmark.

The paper is organized as follows. Section 2 introduces important background
on tensors and their low-rank decompositions. Section 3 describes the problem at
hand, the JIRAFE procedure and its limitations. The proposed approach DREAM-
FAC is also detailed. Section 4 contains the derivation of the Cramér-Rao bounds
for the proposed coupled model. It includes the detailed probabilistic framework,
and closed-form expressions for the matrices to invert. Section 5 gathers an exten-
sive set of numerical experiments to illustrate the performance of DREAMFAC with
respect toe state of the art. They include simulations highlighting the robustness
of DREAMFAC compared to JIRAFE, comparison of the algorithms’ performance to
the CRB, and results on the selected application to the estimation of MIMO channels.

Notation. The following notations [7, 18] are used: lower (a) or uppercase (A)
plain font for scalars, boldface lowercase (a) for vectors, boldface uppercase (A) for
matrices and calligraphic (LA) for tensors. The elements of vectors, matrices, and
tensors are denoted by aq, A4, a4, and Aqg,, . p,, respectively. The transpose of a
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LOW RANK TENSOR APPROXIMATION AND ESTIMATION OF FACTORS 3

matrix A is denoted by AT. The matrix Iy is the N x N identity matrix and Op i
is the L x K matrix of zeros. The symbols [X], ® and ® denote the Kronecker, Khatri-
Rao and outer products. The operator vec{-} stands for the standard column-major
vectorization of a matrix or a tensor. The operation Diag{A,B} produces a block-
diagonal matrix whose blocks are A and B.

2. Background on low-rank tensor models.

2.1. Preliminaries on tensors. A tensor X € RP1*-XD~ jg an N-dimensional

array indexed by the elements Xy, . 4y, for d, € {1,...,D,} (ne{l,...,N}). Each
dimension of a tensor is called a mode. A mode-p fiber of X is a vector obtained by
fixing all but the p-th dimension.

DEFINITION 2.1 (Tensor unfoldings). The mode-p unfolding of a tensor X, de-

noted by XP) | is the matriz whose rows are the p-mode fibers of X, ordered according
to the vectorization order. For a tensor X € RP1*-*Dn ¢ g X(1) ¢ RDN--D2xD1

DEFINITION 2.2 (Matrix mode product). The matriz p-mode product between a
tensor X and a matric M is denoted by X e, M and is constructed such that each
mode-p fiber of X is multiplied by M, e.qg., the elements of the mode-1 product between
X e RPv<XDn gnd M € REXP1 gre accessed as

Dy
(2.1) (X;M) Cdzsedsy = Dy Xida,day M, L€ {1,..., L},
i=1

Moreover, it holds that Y = X ¢, M < Y® = X®MT.

DEFINITION 2.3 (Tensor contraction product). The contraction product on modes
p, q between two tensors X € RP1-xDn qnd Y e RN %M with D, = J, is denoted
by X o1 Y. It produces a tensor of order N + M — 2 such that

(2.2) <X y)dl, dp1 1N G0t a1 it =
Dyp=Jq

(2'3) Z (X)dl7~-~7dp717£7dp+17“'adN (y)jl,~~-,jq—1,€7jq+1>~-~7j1v1 :
(=1

DEFINITION 2.4 (Outer product). The outer product between N vectors a,, € RP»
(ne{l,...,N}) is a rank-one tensor X = a1®...®ay € RP**PN yhose elements
are accessed as Xqy .. dy = (al)d1 (aN)dN.

2.2. The canonical polyadic decomposition. For all N-dimensional tensor
X € RP1x-xDN there exists an integer K such that it admits a canonical polyadic
(CP) decomposition (CPD) as
(2.4) X =[AL....,An],
where A,, € RP»*K (n e {1,...,N}) are called the CP factors. When minimal, the

integer K is the rank of the tensor X. Then each entry of X can be expressed as

K
(2.5) Xy Z (ADd k- (AN)dn -

The CP factors are essentially unique up to scaling and permutation ambiguities,
if the rank K is not too large [7,18]. The permutation ambiguity means that the
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4 C. PREVOST, P. CHAINAIS

columns of the latent CP factors can be reordered arbitrarily by any permutation
matrix IT e RE*K ag

(2.6) X =[AL,...,Ax] = [ALLL ..., ANII].

The scaling ambiguity means that the individual factors can be scaled as

K K
(2.7) Xiyooan = 2, D, k(A k) - v (AN)ay k) -
k=1r=1

where Ay ... An, =1, forall ke {1,..., K}.

2.3. The tensor train decomposition (TTD). The TTD [27] factorizes a
tensor X € RP1*XDN a5 a series of matrix-tensor products and contractions between
third-order tensors as

(2.8) X —GieGs...eGyn 193G,

where G € RP1* K1 G e REN-1XDN and G, € REn—1XDnxKn forpe {2,..., Ny}),
are referred to as T'T-cores. The integers K3, ..., Ky, are called the TT-ranks. A fast
and efficient way to estimate the TT-cores is to resort to the TT-SVD algorithm [27], a
procedure that sequentially extracts dominant singular vectors from tensor unfoldings.
As a result, the TTD in (2.8) is not unique. In fact, due to the use of the SVD, we
can replace two successive TT-cores G,, and G,,4+1 by G, and G/, such that

1 1
(29) gln = gnngLla g/71,+1 = Mn;gn+1;

where M,, € RE»*&x» ig a non-singular change-of-basis matrix. This means that the
multiplicative ambiguities in the TTD correspond to post- and pre-multiplications by
nonsingular matrices.

2.4. Equivalence between the CPD and the TTD. There exists an equiv-
alence between the CP and TT decompositions. If the TT-ranks are such that
K, =...=Ky_-1 = K < min(Dy,...,Dy), the TTD can be used to efficiently
estimate the rank-K CP factors of a higher-order tensor [43]. In particular, using the
TT-SVD, one can obtain TT factors such that:

(210) Gl = AlMl_la gn = [[Mn—laAnaM:LT]], G"N = MN—lA—II;[a
where M,, € RE»*%» are non-singular change-of-basis matrices. These matrices can

be related to the permutation and scaling ambiguity matrices of the CPD, see the
proof of [43, Theorem 6] for more details.

3. Joint estimation and dimensionality reduction.

3.1. The model and the optimization problem. Let X a tensor of rank K
that admits a CPD of the form

(3.1) X =[AL,...,Ax], where A, e RP"*E yne{1,... N}.
Let Y € RP1*-- XD~ the noisy observation according to the following model

(3.2) V=X+E,

This manuscript is for review purposes only.



178
179

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

209
210
211

212
213
214
215
216
217
218

219
220

LOW RANK TENSOR APPROXIMATION AND ESTIMATION OF FACTORS 5

where the tensor & represents isotropic white Gaussian noise. The model (3.2) can
be rewritten

(3.3) Y =[A1 ..., Ax] + £

The problem of estimating the CP factors A,, based on model (3.3) has found numer-
ous interests over the past decade. It has been applied, among others, to problems
in signal processing and machine learning [34], brain signal processing [1], video com-
pletion [41] or telecommunications [29]. The popularity of the CPD lies in its high
regularization power, mild uniqueness properties and versatility to model a variety of
problems, from denoising to component analysis.

The most popular way to estimate the CP factors is an iterative Alternating
Least-Squared (ALS) algorithm [9]. However, this procedure becomes exponentially
expensive as the order NV increases. One iteration of CP-ALS requires O (K 2 I1,D N)
flops. Furthermore, CP-ALS becomes less robust and is prone to convergence issues for
high-order tensors. These limitations fall under the so-called curse of dimensionality
[28]. Consequently, one may need to perform tensor dimensionality reduction to
exploit the benefits of model (3.3).

Directly solving (3.3) using high-dimensional CP-ALS is costly. To circumvent
this limitation, it is possible to perform low-rank denoising by considering the follow-
ing two optimization problems. To ease the notation, let us denote A = {Aq,..., AN},
M= {Ml, .. .,MNfl} and G = {thg? .. .,QN,MGN}.

First, a low rank-K factorized approximation is obtained by solving

. 1 1 1 9
(34) IDGIIlHy G1§g2Ni1gN711:/GNHF
This step can be interpreted as a denoising of Y using the TT-SVD with rank K. This
operation provides the best rank-K approximation of ) in the least-squared sense,
while being less costly than high-dimensional CP-ALS.
Then, the links between the TT-cores G and the CP factors A (2.10) are formulated
through the optimization problem

N-—1
. —T712
%171'\? Z2 (”gn - [[Mn—hAn?Mn :I]“F)
(3.5) +[G1 =AM E + |Gy — My AL[E,

that accounts for the ambiguities of the TT-SVD through the M matrices. The n-th
ambiguity matrix M, appears twice in (3.5), once in the term related to G,, and once
in that related to G,,+1. As a result, (3.5) is a coupled optimization problem.

3.2. State-of-the-art and its limitations. In [43], the authors proposed to
promote a fast local/sequential optimization method as a sub-optimal solution instead
of minimizing (3.4)—(3.5). This procedure was called Joint dImensionality Reduction
And Factor Estimation (JIRAFE) [43]. The first step of JIRAFE estimates the TT-
cores using the TT-SVD algorithm with ranks K; = ... = Ky_1; = K by solving
(3.4). Then, CP-ALS is performed on a single G,, (n € {2,...,N —1}), e.g. on G,

by minimizing the criterion

(3.6) Mf%i;lM2 1G2 — [M1, Az, M T]|17,

Since the three CP factors M;, Ay, My underlying G5 are estimated thanks to an
alternate least-squares algorithm, this step was referred to as Tri-ALS. In JIRAFE, the
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6 C. PREVOST, P. CHAINAIS

resulting estimate of My is then fixed and propagated to other G,,, n€ {3,..., N —1}.
Then, for each G,,, the cost function to minimize is

. _ =T712
(37) AITE%\I/}N Hgn [I:Mnflv ATH Mn ]]HF7

where M,,_; is supposed to be known. This operation was termed Bi-ALS. Finally,
A, and A y were obtained using the links provided in (2.10). Algorithm 3.1 provides a
complexity gain of approximately Niter flops with respect to CP-ALS. The JIRAFE
procedure is summarized in Algorithm 3.1 below.

Algorithm 3.1 JIRAFE

input: Observation tensor Y, CP-rank K
output: CP factors Aq,...,Apn
Estimate G, Gy and G,, Vn € {2,..., N — 1} using TT-SVD on Y
repeat
Estimate My, Ap, M, " using (3.6) (Tri-ALS)
forn=3,...,.N—1do
Estimate A,,, M ! using (3.7) with M,,_; known (Bi-ALS)
end for
until convergence
Estimate A; and Ay using (2.10)

However, JIRAFE suffers from a major limitation due to the sub-optimal esti-
mation of the ambiguity matrices M,,. For instance, My was estimated only from
G2 even though it was shared between the CPD of Go and G3. More generally, each
matrix M, is shared between the CPD of G,, and G,, 1. As such, some important in-
formation contained in (3.5) is ignored by JIRAFE so that the coherence between the
TT-cores is lost. As a result, the performance of JIRAFE is highly dependent on the
choice of the TT-core considered for the initial Tri-ALS step. By first estimating the
CP factors underlying G5, the estimation error on the M,,, A,, for n > 2 is expected
to increase with n. As a result, My_; and Ay shall inherit from the estimation
errors of previous CP factors. Conversely, if Tri-ALS was performed first on Gn_1
before propagating estimations downto n = 1, A; and M; would not be estimated
accurately. Therefore, the following subsection introduces a new estimation method
to circumvent these limitations.

3.3. Proposed approach. This section proposes a new approach to solve prob-
lem (3.5). It fully takes into account the coupling induced by the M,, by carefully
considering the global minimization of the cost function of (3.5). In place of a se-
quential estimation of factors that solves local optimization sub-problems, the global
optimization is considered. Each iteration of the algorithm will update every factor,
thus ensuring to reach the global minimum of (3.5). This is made possible thanks
to a block-coordinate descent that alternates between all the parameters of interest.
The resulting algorithm is called Dimensionality Reduction, joint Estimation of the
Ambiguity Matrices and the CP FACtors (DREAMFAC).

First, DREAMFAC estimates the G1, Gy and G,, Vn € {2,..., N — 1} thanks
to a TT-SVD applied to Y. This step consists in solving for (3.4), hence this step is
similar in JIRAFE and DREAMFAC. Then, the coupling constraints on the ambiguity

This manuscript is for review purposes only.
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matrices lead to the following coupled model:

GM, =A,
{Gg” =M, (M;TOA,)"
(3.8) {G%T;Mn = (A, OM,_1), . V2<n<N-2,
G,," =M, (M, [,0A,41) ., V2<n<N-2

Gﬁ)_lMN_l = (AN-1OMn_2)
Mpy_1A% =Gy

Considering that the ambiguity matrices M, are fixed, the A, can be updated from
(3.8) by solving a simple least-squares problem, as in JIRAFE. Considering that the
CP factors A, are fixed, the coherence between TT-cores leads to new coupled updates
for the M,, matrices:

. _ T
(3:9) My = argmin [GaMy — Auff + | G5T — My (M7 © As) [

HGOT M, (M;TOA,) 2,
(3.10)
M, = argmin |GEIM, — (A, O M) [

.
+1G T M, (M1, 0A ) |2, V2<n<N-2
(3.11)
My-1 = arg min |G My_1 — (Ay—1 OMpy_s) |% + |Gy — My_ AL 2.
N-—1

The solution to this mixture of least-squares problem is explicit. Appendix A gathers
the resulting closed-form expressions for the ambiguity matrices. In the proposed
approach, the (M, )1<n<n—1 and (A)a<n<n—1) matrices are all updated in the same
loop, termed Multi-ALS. This new procedure, called Dimensionality Reduction, joint
Estimation of the Ambiguity Matrices and the CP FACtors (DREAMFAC), is sum-
marized in Algorithm 3.2 below.

Algorithm 3.2 DREAMFAC

input: Observation tensor Y, CP-rank K
output: CP factors A{,..., AN
Estimate Gy, Gy and G, Vn€ {2,..., N — 1} using TT-SVD on Y
repeat
Estimate the M, using (3.9)—(3.11), and the A,, using (3.7) (Multi-ALS)
Estimate A; and Ay using (2.10)
until convergence

Note that the coherence between the TT-cores is ensured thanks to the cou-
pled estimation of the ambiguity matrices M,,. Hence the information comprised in
model (3.8) is fully exploited by this new approach. As a by-product, in contrast
with JIRAFE, the performance of DREAMFAC is independent on the starting TT-
core. Figure 1 shows a graphical representation of model (3.8) and summarizes the
differences between JIRAFE and DREAMFAC.

Finally, turning to the algorithmic complexity, Algorithm 3.2 requires at most the
same number of updates as JIRAFE. While updating the A,, matrices still requires

This manuscript is for review purposes only.
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% K@K K@K Gy
R

N—Z AN 1 MN 1

JIRAFE M, A M, A3 M, e An_1, My Ay
Tri-ALS Bi-ALS Bi-ALS LS
M, ..., My_1 (coupled updates) and Ay, ..., Ay (LS)

DREAMFAC Multi-ALS

F1G. 1. Graphical representation of JIRAFE (black) and DREAMFAC (blue).

O (Kan) flops as in JIRAFE, the coupled updates of the M,,’s can be made faster
by using a fast solver for the Sylvester equations [3,14,35]. Such solvers require only
o (2K3) flops, which is smaller! than O (K2Dn) as soon as K « D,,, which is most
likely.

4. Cramér-Rao bounds for the proposed approach.

4.1. General probabilistic framework. To derive appropriate performance
bounds, it is necessary to embed the problem in an appropriate probabilistic frame-
work. This requires to properly define the probabilistic model and the parameters of
interest. A general coupled model has the form

' (w) =

where g,, denote the observations. The functions f,(g,,) are the probability density
functions (PDF) of the random real datasets g,,, parameterized by the unknown
deterministic real parameter vector w. Several assumptions will be necessary: i) the
PDFs f,,(g,,) are non-redundant functions differentiable w.r.t. w, and their support
as functions of g,, do not depend on wj ii) the g,, are statistically independent. The
constraints in the model are described by the functions h,, that are non-redundant
deterministic vector functions, everywhere differentiable with respect to w.

The model (3.8) can be rewritten equivalently under the form (4.1). First, the
link between the TT-cores and the A,,, M,, matrices is such that

(4.2) G = AlMl_&; Gn=[Mp_1n,An, M, 1], Gy = My_1 NAYL.

This paper proposes an approach to solve the approximation problem (??) in the
least-squares sense based on model (3.3). Therefore, it is assumed that the obser-
vations are Gaussian. To be more precise, let us note g, = vec{G,} for n € {1, N}

and g, = vec{G,} for n € {2,..., N — 1}. The vectors g,, are random real Gaussian
distributed datasets parameterized by their mean, i.e.,
(4.3) 9o ~ N(p,(w),071) where p,, = vec{[My—1,n, An, M; 1T},

Tn many applications, e.g., harmonic retrieval in MIMO channels, the number of elements K is
often very small.

This manuscript is for review purposes only.
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and o2 denote the variances of the Gaussian noise on g,,.
The unknown real deterministic parameter w is such that

(4.4) w = [vec{A1}T vec{M;1}T vec{Mi2}" vec{As}" ... vec{An}T].
Second, the coherence between the TT-cores is ensured by the set of constraints
(4.5) My, =M, ¥Vnefl,...,N—1}

Reshaping (4.5) under the form of vector functions depending on w yields

(4.6) h,(w) = vec{M,, ,} —vec{M,, 41} Vne{1,...,N —1}.

As a result, the model (4.3) under constraints (4.6) characterizes (3.8) under the form
of a general coupled model.

4.2. Calculation of the Constrained Cramér-Rao bound. Evaluating the
performance of the coupled model (4.3) under constraints (4.6) is necessary to compare
the relative performance of JIRAFE and DREAMFAC for the estimation of w. The
standard tool for this task is the constrained Cramér-Rao bound (CCRB) [22, 40],
defined? as

(4.7) CCRB(w) = U[U'FU] ' UT,

where F = F(w) is the Fisher Information Matrix (FIM) of the model, J;, is the
Jacobian matrix related to the constraints h(w) = 0 and U is a basis of ker(Jp).

Additionally to the model parameter w, let us define x = vec{X} € R* (¢ =
1, D,,), that represents the vectorized low-rank approximation of . The parameter
@ can be linked to the model parameters through the relationship  — hy(w) = 0,
where hy is a non-redundant deterministic vector function, everywhere differentiable
with respect to w such that

(4.8) ha(w) = vec{[A1, ..., Ax]}.

The above parameterization allows us to compute the CCRB on the reconstruction
of x [19, p.125] as

hr(w)]' ha(w)
(4.9) CCRB(z) = [ T CCRB(w) T |
4.2.1. Expression of the FIM. The FIM for w first needs to be computed in
order to obtain the CCRB.
The FIM for w is a block-diagonal matrix of the form

(4.10) Fw)—| 9 N
: 0
0 0 FN(L«J)

where the blocks F,,(w) encode the contributions of each g,, to the estimation of w.
They are obtained by using the Slepian-Bangs formula [36]:

(4.11) Fo(w) = — [aun(m]T [aun(u)].

2 OwT Ow?’
o2 w w

2If F is invertible, then (4.7) and the alternative expression for the CCRB provided in [15] are

equivalent [40, Corollary 1].
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The expression of [%(T‘")] is obtained simply for n = 1 and n = N:

oy (w) -7
4.12 — =M 1
(4.12) dvec(A,yT v B
Opy (w)
4.13 —— =1 A
( ) 6vec{M1,1}T K b
Opy (w)
4.14 =A I
( ) aVGC{MN,LN}T N K
Opy (w)
4.15 —————— =TIy ( My X1
(4.15) ovec{AN}T N( N- 1N. DN)’
where IIy isa permutatlon matrix linking the entries of vec{G L} to those of vec{G y}.
For n € {2,.. -1}, [a“" “’)] can be computed using relationships between tensor
unfoldings:
(4.16) g, = [(M, ], ©A,) K1k ]| vec{M,_1,}
(4.17) =T [(M, T OM,_1,)KIp, | vec{A,}
(4.18) =TI [T R(A, O My_1 )] vec{M, },

where Hg’l) and HS’" ) are permutation matrices that link the entries of vec{G 2)}

(resp. vec{Gg)}) to those of g,, = VGC{G% }. To ease the notation, we define the
matrices S1.,, 82,93, (n€{2,...,N —1}) as

(4.19) Sin [(Mn LOA )IIK] ;
(4.20) sg,n =0 (M, ] OM,_1,)RIp, ],
(4.21) Sz = MGV [IxR(A, OM,_1.,)].

As a result, we have

[MiIIDI Ix XA ] forn =1,
(4.22) [%@)] —{[S1n S2n Ssnl Vne{2,. .., N-1},
[ANIK IIN (MN 1NIIDN)] for n = N.

The closed-form expressions for the F,, (w) are provided in Appendix B.

4.2.2. Expression of the CCRB. The Jacobian matrix J; is obtained by
deriving the functions h,, (w) with respect to all the elements of w into a block-matrix.
Given the constraints on w in (4.6), it holds that

oh, (w)

(4.23) avec{An}T -0, Vne{l,...,N -1},

oh,, ( k2 ifm=n
4.24
( ) avec{Mm 1m} {0 if m # n,

Iz ifm=n

4.2
(425) 6V€C{Mmm} {Olfmsén
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As a result, Jj, is such that

(4.26)
[0 In2 —Ixk2 O O o ... 0]
e 0 o0 Iz Iy :
In = : = 1 0 o0
91’11\771((0)
owT : : : : : : :
[0 0 O 0 O 0 oo Igz —Ig2 O]

The matrix U can then be obtained by simply solving J,U = 0. Therefore U is the
identity matrix of size K(2N —2+ . Dy). The CCRB submatrices for the A,, and
the M,,_1,,, are obtained by developing expression (4.7):

(4.27) CCRB(A,) =F(A,)™', CCRBM,_;,)=FM,_1,)"

4.3. Reparameterized CRB for reconstruction of the low-rank tensor.
The expression for hy(w) is necessary to compute the reparameterized CRB in (4.9).
The relationships between tensor unfoldings give

(4.28) z=[(AyO...0As)®Ip, ]| vec{A,}

(4.29) =00V [(Ay_10...0 A1) BIp,] vec{Ay},

where the Hﬁg’l) are permutation matrices that link the entries of the vec{X(™)}
vectors to those of vec{X()} = x. The matrices S,, x are defined such that

(4.30) Spx = HE\?’I) [(ANO...0A ;1 0A,10...0A)XIp,],

finally yielding

hy(w
(4.31) [;‘ET)]_[SLX 0 0 Syr 0 0 ... Syx].
Therefore,
(4.32) CCRB(z) = Diag{S] yF(A1) 'S1 x,....Sy +F(An) 'Sy}

Given the expressions of the constrained Cramér-Rao bounds in Equation (4.27) and
Equation (4.32), the performance of the proposed approach can now be evaluated
numerically.

5. Simulations.

5.1. Recovery of the CP factors. A 7-order (N = 7) tensor X with D; =
= Dy = 6 and K = 3 is taken as a reference. This tensor admits a reference
CPD as in (3.1) with i.i.d. entries generated from the normal distribution. The noisy
tensor Y was generated using isotropic white Gaussian noise to yield a SNR of 20dB.
The proposed approach is compared to two JIRAFE-like algorithms. In the first
one, Tri-ALS is initially performed on G5 and the factors is propagated towards the
higher n. In the second one, Tri-ALS is performed on G y_; with propagation towards
the lower n. The TT-cores are estimated using TT-SVD with K = 3. The CP factors

were initialized as A,, = U, (En)% using the SVD of the n-th mode unfolding of Y

This manuscript is for review purposes only.
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Fiac. 2. Columns of the reference (black dashed lines) and estimated factors as returned by
JIRAFE with forward propagation (red circles), JIRAFE with backward propagation (blue squares),
and DREAMFAC (green diamonds).

with rank K, namely Y™ = U,2,V,. The algorithms have a maximum of 1000
iterations, and the results are averaged over 100 noise realizations.

Figure 2 shows columns of the reference and estimated factors. The columns of the
A, factors for n € {2,..., N —1} are correctly estimated by all the algorithms, except
for a few outliers in Ag. Algorithm 3.2 usually provides a slightly better estimate
than the JIRAFE procedures. While DREAMFAC also correctly estimates A; and
Ay, the JIRAFE-like procedures provided an incorrect estimation of A (resp. Aq).

To further investigate the propagation of the errorAthrough the TT-cores, the
normalized mean square error between the estimated A, and the reference A, is
considered:

|A, — A3

5.1 NMSE =
(5-1) AL

—@ NMSE (JIRAFE, forward)
—& NMSE (JIRAFE, backward) ®
—- NMSE (DREAMFAC) /
—+ Normalized CRB //
/
0 |
10 /
N N . . // //d;
N - 7
\\ - » ~ o - /// 4 2
\\\ - _ ; 7
"'"—/—.\\ S~ o7,
\\ - _¢g ‘0
N\ 0 7
107 \‘, -7
1 2 3 4 5 6 7
Mode

Fi1G. 3. NMSE provided by JIRAFE with forward propagation (red dots), backward propagation
(blue squares), and DREAMFAC (green diamonds), and normalized CRB.

Figure 3 shows in semi-log scale the NMSE for each factor, as provided by the
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three algorithms. As a comparison, the value of the uniform CCRB, normalized by
|A,||%, is also displayed. For the two JIRAFE-like procedures, the highest NMSE
corresponded to the last estimated factor, resp. Ay for the forward procedure and A4
for the backward procedure. The NMSE provided by DREAMFAC remained smaller
for both A; and Apy. On average, it was also smaller than that provided by the
JIRAFE algorithms, and reaches the optimal NMSE expected from the normalized
CRB.

5.2. Relative efficiency of the algorithms. This subsection assesses the ef-
ficiency of JIRAFE and DREAMFAC by comparing their performance to the con-
strained Cramér-Rao bound obtained in Section 4.

The reference tensor X is a Tth-order tensor with D; = ... = Dy = 6 and
K = 3. The entries of the true CP factors A, were generated once as i.i.d. real
standard Gaussian variables. The model is simulated under additive Gaussian noise.
We assume that the noise level was the same for all TT-cores: this assumption is
reasonable since the G,, are all estimated from Y using TT-SVD. on the TT-cores.
The SNR on the observed tensors in dB is defined as SNR; = 10log,, (|G:]%/1€:l%).
(i=1,...,N).

The model parameters are retrieved using JIRAFE and DREAMFAC. The CP
factors and ambiguity matrices are initialized randomly. The permutation ambiguities
in the estimated factors are corrected using the Hungarian algorithm [25] to make
comparisons aligned with the reference. The experiments show the uniform MSE and
uniform CCRB obtained from the MSE and CCRB matrix traces, as widely considered
in, e.g., [11,16,17]. The expressions for the bounds proposed in this paper permit the
computation of the uniform CCRB by taking the trace of these matrices.

Figure 4 shows in semi-log scale the uniform bounds and MSEs for all the entries
of the A,, and M,,, w and X as a function of the SNR. It is noticeable that the
uniform MSE produced by DREAMFAC reaches the uniform CCRB. Therefore the
proposed approach is optimal for estimation of the parameters and reconstruction
of X. JIRAFE yields a higher MSE, which was expected since it is a suboptimal
optimization method. The two algorithms depict the same kind of behavior with
respect to the SNR. This is particularly visible for estimation of the ambiguity ma-
trices. DREAMFAC permits to gain 5dB for the estimation of the A,,, and 3dB for
the reconstruction of X compared to JIRAFE.

Figure 5 shows in semi-log scale the uniform CCRB for Ay, Az, A5 and A7, as
well as the uniform MSEs, as a function of the SNR. The results for A, Ay and Ag
are similar. The uniform MSE obtained with DREAMFAC reaches the CCRB for each
factor, and its scale barely varies trough the A,. The MSE obtained with JIRAFE
was higher, and progressively increased for high values of n. Therefore DREAMFAC
is also efficient for the estimation of each CP factor.

5.3. Application to channel estimation in dual-polarized MIMO sys-
tems. The problem of channel estimation in dual-polarized massive MIMO aims at
recovering the channel parameters at the base station (angles of arrival, angles of
departure, path gains, and polarization parameters). In [29], a tensor-based approach
for this task was proposed. The MIMO channel was recast as a fourth-order tensor
admitting a CPD. In [42], the authors adapted the JIRAFE procedure to treat the
channel estimation problem with receiver and transmitter rectangular arrays, hence
the channel was viewed as a fifth-order tensor.

5.3.1. Model description. The steering vectors for the k-th path between a
Uniform Rectangular Array (URA) transmitter of size M# x MY, and a URA receiver
of size M}, x M}, are such that

(5-2) ar(k) = ap(k)Kap(k), ar(k) = ap(k)Kag(k),

This manuscript is for review purposes only.
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Fic. 4. Uniform CCRB and MSE provided by JIRAFE and DREAMFAC, for (a) estimation
of all the Ay, (b) estimation of all the My, (c) estimation of w and (d) reconstruction of X.

with e.g., a%(k) = [1,exp (jwh(k)),...,exp (Jwh(k)(MF — 1], and likewise for
al.(k),a%(k),a% (k). As a result, for K paths, the steering matrices in transmission
and in reception are

(5.3) Ar=ALOAY, Ag=

with e.g., A% = [a%(1),...,a%(K)].

The path-loss matrix B € C**X contains the path-loss parameters. Let the (p, q)-
th subchannel correspond to p € {Vg, Hr} for the vertical (V) polarized and horizontal
(H) polarized receive antennas, and g € {Vp, Hr} for the V-polarized and H-polarized
transmit antennas. For the k-th path and for the (p,q)-th subchannel, B,(cp 9 is the
(M)]

R OAY,

5%1041)

path-loss parameter. Therefore, noting 5@ = [ e B

(5.4) B = [ﬂ(VR,VT) ﬂ(VR,HT) ﬂ(HR’VT) B(HR,HT)],

x Y x Y .
As a result, the channel tensor # € CMr*MrxMrxMgx4 can be written as

(5.5) H = [A% A%, (A7), (A})",B] + €,

which corresponds to a fifth-order CPD of rank K. The noise term € encompasses
the background noise and the estimation error due to the pre-estimation of the un-
structured channel, and can be modeled as zero-mean circularly complex Gaussian
random variables.
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F1a. 5. Uniform CCRB and uniform MSE provided by JIRAFE and DREAMFAC for the
estimation of the A, individually.

The main assumption of the model (5.5) is that K < min(M%, MY, Mg, MY), i.e.,
the steering matrices are full column-rank. Furthermore, it is assumed that there are
few dominant paths, i.e., K < 4 and B is a full column-rank matrix. The assumption
of a small number of paths is usually made in massive MIMO scenarios.

5.3.2. Results. The matrices A% A%, A%, AY were generated once based on
single random realizations of the angular frequencies w¥ (k),w¥.(k),w%(k),w% (k) fol-
lowing a uniform distribution on ]0,7]. The factor B was drawn from a complex
Gaussian distribution with zero mean and unit variance. The following dimensions
were considered: M# = M% =10 and M} = M}, =8, and K = 3.

Figure 6 shows in semi-log scale true factors and the estimated factors provided
by DREAMFAC and JIRAFE, with 30dB SNR. All factors are recovered correctly
by DREAMFAC. The factors estimated by JIRAFE seem coherent with the reference
factors, but with the wrong scale and angle.

To further assess the performance of the proposed approach, the MSE between
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Fi1G. 6. Columns of the reference factors (black dashed lines) and estimated factors as returned
by JIRAFE (red circles) and DREAMFAC (green diamonds).

the true and estimated factors, and between the angular frequencies, were considered:

(5.6)
K 2 K . 2
MSE}, = ) ( @, k) —A“JR(:,k:)) , MSE} = )] (A‘}’z(:,k) —A?z(:,k)> :
k=1 k=1
(5.7)
K R 2 K . 2
MSE3 = ) ( 2 (., k) —Ag(:,k)) , MSEL =) (A%(:,k) —A%(:,k)) :
k=1 k=1
(5.8)
K
MSE,, = ) (wi(k) = 35(k)* + (Wh(k) — &f(k))?
k=1

The MSE were evaluated over 10 values of the SNR in [—20, 30] dB, and calculated by
averaging the results over 500 independent noise realizations. Computing the complex
CCRB is a delicate task that requires the calculation of Wirtinger derivatives [26].
For this reason, calculation of the CRB associated with model (5.5) is relegated to
future works.

DREAMFAC was compared to four tensor-based methods. The first one was
CP-ALS [9] followed by closed-form solutions to estimate the parameters from the
factors. The second one was the so-called CP-VDM, for CPD with Vandermonde fac-
tor matrix, proposed in [37]. The third one was based on the generalized eigenvalue
decomposition (GEVD) [33]. The fourth one was JIRAFE followed by a Vandermonde
rectification strategy [5] (termed JIRAFE-VDM) to enforce the structure of the steer-
ing matrices. This step is crucial to estimate the factors with the correct scale and
angle, as exemplified in Figure 6. All algorithms used at most 1000 iterations.

Figure 7 shows in semi-log scale the averaged MSE for recovery of the steering
matrices. For a SNR superior or equal to 5dB, all approaches but GEVD yield the
same MSE. Thanks to the Vandermonde rectification, JIRAFE could achieve good
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Fic. 7. (a) MSEY,, (b) MSEY,, (c) MSE3,, (d) MSEY. as a function of the SNR.

performance for higher values of the SNR. For lower values of the SNR, DREAMFAC
yields the lowest MSE. Its performance is better than that of JIRAFE, with a gain of
approximately 3dB on the quality of the estimation.

Figure 8 shows in semi-log scale the averaged MSE,, provided by the algorithms,
as a function of the SNR. For estimation of the angular frequencies, DREAMFAC
yields the best MSE for a low SNR. Its gain with respect to JIRAFE for low SNR
is of approximately 5dB. The proposed approach has similar performance to other
approaches for a SNR superior or equal to 5dB.

6. Conclusion. This paper proposes a new approach called DREAMFAC for
Dimensionality Reduction, joint Estimation of the Ambiguity Matrices and the CP
FACtors. It relies on a global coupled optimization scheme, instead of a local and
sequential strategy in previous approaches. DREAMFAC performs favorably with
respect to the state-of-the-art of estimation of the CP factors. We have derived con-
strained Cramér-Rao bounds to evaluate the potential optimum performance under
mild assumptions, as well as for comparison with state-of-the-art methods. Numer-
ical experiments show that the proposed algorithm reaches the Cramér-Rao bound,
as expected since it fully exploits the information of the full coupled model.

The performance of DREAMFAC is exemplified on the realistic problem of com-
plex harmonics retrieval in dual-polarized MIMO channels. The proposed approach
performs well on this task, providing better estimation of the base station parameter
at low SNR than state-of-the-art methods. As a conclusion, this paper clarifies what
are the best performance of a low-rank tensor CP factorization using tensor-train.
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F1G. 8. MSE on the estimation of the angular frequencies.

563 The proposed approach, DREAMFAC, is an optimal solution to this problem.

564 Appendix A. Closed-form expression for the coupled M,, in the pro-
565 posed approach.
566 Solutions the least-squared problems (3.9)—(3.11) can be obtained by solving the

567 following Sylvester equations:

58 (A1) My (My'M;TEATA,) + (GG M, = GTA, + GV (A, O M),

(A.2)

569 M, (MM, TEATA,) + (G2, TG, ) M,

570 —GOT(M,;T0A,) +GP T(A,_1OM, ),
(A.3)

571 M, (M LM, T EAT A ) + (ngs)T(;g)) M,,

572 = G511+)1T (M, [, 0Au ) +GPT (A, OM,_1),

573 (Ad) My-1 (ARAN) + (G, 7GR ) My

574 — GnAN +GY T (AN 1 OMy ).

576 Fast solvers (see [35]) can be used to solve (A.1)—(A.4).

577 Appendix B. Closed-form expressions for the uncoupled FIM.
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The FIM matrices F,,(w) introduced in (4.11) are block-matrices such as

(B.1)
Fy(w) = & [MriMiiBl, MiiKA,
T MITRAT  Ir®ATA,
(B.2)
1 S—lrnsl,n S—lryns2,n S—lrnSB,n
Fo(w) = — | SL,81n SJ.So. s%‘jnsg,n forne{2,...,N -1},
" S3’nsl,n S;nSZ,n S3,ns3,n
(B.3)
1 AT ANRIR (AR RIg) My (ML, yBpy )
Fy(w)=—

IN ( &II,NIDN) I} (Anv1IR) ML, v Myt By,

It is possible to identify the blocks containing the contribution of the A, and the
M,,_1,, to the estimation of w). These blocks, denoted to as F(A,,) and F(M,,_1 ),
are such that

(B.4)

(B.5)

[4] M.

[12] M

=

[13] M

4] G.

IRAIAl forn=1,
F(A,) =157,Sn forne{2,...,N —1},
A}'-VANIR forn= N,

STnS1n forne{2,...,N -1},
MFVT—LNval_LNIDN for n = N.
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