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CRAMÉR-RAO LOWER BOUNDS AND APPLICATION TO2

MIMO CHANNELS˚3

C. PRÉVOST, P. CHAINAIS:4

Abstract. Tensor factorization has been steadily used in the past decade to represent high-5
dimensional data. In particular, the canonical polyadic (CP) decomposition (CPD) is very appreci-6
ated for its modeling power and remarkable uniqueness properties. However, computing the CPD is7
challenging when the order of the tensor becomes high: numerical issues and high needs for storage8
and processing can lead the standard algorithms to diverge. To circumvent this limitation, the equiv-9
alence between the CPD and the Tensor Train Decomposition (TTD) is exploited. This approach is10
implemented in a new algorithm called Dimensionality Reduction, joint Estimation of the Ambiguity11
Matrices and the CP FACtors (DREAMFAC). A global coupled optimization scheme is proposed12
to break the curse of dimensionality and estimate the CP factors. DREAMFAC performs better13
than state-of-the-art methods. It avoids the usual propagation of the estimation error in the factors14
of the TTD. In particular, DREAMFAC reaches the Cramér-Rao lower bounds associated with the15
considered coupled CP-TT model, which is not the case for the state-of-the-art sequential proce-16
dure. Performances are illustrated on the problem of estimating the channels in a dual-polarized17
MIMO system. Numerical experiments show the competitive performance of the proposed method18
for recovery of the CP factors and estimation of the channel parameters, even with very low SNR.19

Key words. Canonical polyadic decomposition, tensor train decomposition, coupled optimiza-20
tion, factor retrieval, MIMO systems21
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1. Introduction. Tensors provide a faithful representation of higher-order ob-23

servations by preserving their multidimensional structure [7, 18]. For instance, color24

images can be seen as data cubes with two spatial dimensions (the pixels) and a25

spectral dimension (the colours) encoding the red, green and blue channels. Tensor26

factorization has been steadily used in the past decade to model such data, due to27

its capabilities to capture the interactions between a set of latent factors. It has been28

successfully applied to various problems in, e.g., signal processing and machine learn-29

ing [34], brain signal processing [1], video completion [41] or telecommunications [29].30

The notion of low rank in tensors is not unified: various tensor decompositions are31

available, all carrying different properties and rank definitions. Perhaps the most nat-32

ural generalization of the concept of matrix rank to tensors is the canonical polyadic33

(CP) decomposition (CPD) [10]. The CP rank of a tensor is defined as the minimal34

number K of rank-one tensors that, when linearly combined, lead to a perfect recov-35

ery of that tensor. A N -th order rank-one tensor is given by the outer product of36

N vectors. The CP decomposition has gained a lot of interest for data processing37

and analysis, due to its remarkable uniqueness properties under mild conditions [38].38

However, the set of low-rank tensors is not closed, therefore computing the CPD is39

an ill-posed problem [20]. In practice, this task is usually carried out by suboptimal40

iterative algorithms. Furthermore, the storage and processing cost of tensors increase41

exponentially with their order N . This limitation is known as the curse of the di-42

mensionality [28]. The Tensor Train (TT) decomposition (TTD) has been recently43

introduced [27]. This decomposition has two advantages. First, it exploits a stable44

numerical estimation procedure which avoids the iterative algorithms used to com-45
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2 C. PRÉVOST, P. CHAINAIS

pute the CPD. Second, it breaks the curse of dimensionality by operating on a set46

of matrices and third-order tensors, called TT-cores. In particular, its storage cost is47

linear in N . Numerous works were devoted to the task of dimensionality reduction48

in the CP model. In [43], the authors provided an equivalence between the CPD49

and the TTD through a set of non-singular change-of-basis matrices shared among50

the TT-cores. An algorithm, called Joint dImensionality Reduction And Factor Es-51

timation (JIRAFE), was proposed. It recovered the factors of the CPD underlying52

a high-order tensor from its estimated TT-cores. A JIRAFE-like procedure was also53

recently extended to constrained CPD in [13]. These algorithms were based on a54

series of local and sequential optimization problems to obtain the CP factors at a55

low computational cost. The change-of-basis matrices appearing in the TTD were56

estimated once and propagated through the other optimization problems, without57

enforcing coherence between the TT-cores. For this reason, JIRAFE may lead to a58

sub-optimal estimation of the CP factors estimated in last position of the tensor train.59

This work introduces a new algorithm for joint dimensionality reduction and esti-60

mation of the CP factors. A global optimization strategy is proposed. In contrast with61

JIRAFE, it ensures the coherence between TT-cores by considering coupled updates62

for the change-of-basis matrices. This approach is implemented in a new algorithm63

called Dimensionality Reduction, joint Estimation of the Ambiguity Matrices and the64

CP FACtors (DREAMFAC). Cramér-Rao Bound (CRB) [8,12,30] are used to evalu-65

ate and compare the relative performance of JIRAFE and DREAMFAC. Cramér-Rao66

bounds for tensor CP models have been extensively studied in the literature, includ-67

ing performance bounds for uncoupled CP models [4,21,32], Bayesian frameworks [6],68

and constrained models [31]. To take into account the coupling between the TT-69

cores, a coupled model that enforces constraints on the change-of-basis matrices is70

introduced. For such models the constrained Cramér-Rao bound (CCRB) can be71

used, whose versatility was shown by numerous works [22–24,39, 40]. An application72

to the problem of harmonic retrieval in MIMO systems [2] permits to illustrate the73

behaviour of DREAMFAC on a realistic low-rank decomposition problem. Indeed,74

for MIMO channels modeling and estimation, it is important to accurately estimate75

channels parameters at the base station (angles of arrival, angles of departure, path76

gains, and polarization parameters) to perform beamforming and deal with multi-77

user interferences. In [29], a tensor-based approach for dual-polarized MIMO channel78

estimation was proposed. The MIMO channel was recast as a fourth-order tensor79

admitting a CPD. The authors proposed an Alternating Least Squares (ALS) to es-80

timate CP factors. In [42], the authors adapted the JIRAFE procedure to treat the81

MIMO channel estimation problem. Therefore this problem can be used as a relevant82

benchmark.83

The paper is organized as follows. Section 2 introduces important background84

on tensors and their low-rank decompositions. Section 3 describes the problem at85

hand, the JIRAFE procedure and its limitations. The proposed approach DREAM-86

FAC is also detailed. Section 4 contains the derivation of the Cramér-Rao bounds87

for the proposed coupled model. It includes the detailed probabilistic framework,88

and closed-form expressions for the matrices to invert. Section 5 gathers an exten-89

sive set of numerical experiments to illustrate the performance of DREAMFAC with90

respect toe state of the art. They include simulations highlighting the robustness91

of DREAMFAC compared to JIRAFE, comparison of the algorithms’ performance to92

the CRB, and results on the selected application to the estimation of MIMO channels.93

94

Notation. The following notations [7, 18] are used: lower (a) or uppercase (A)95

plain font for scalars, boldface lowercase (a) for vectors, boldface uppercase (A) for96

matrices and calligraphic (A) for tensors. The elements of vectors, matrices, and97

tensors are denoted by ad, Ad1,d2
and Ad1,...,DN

, respectively. The transpose of a98
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matrix A is denoted by AT. The matrix IN is the N ˆN identity matrix and 0LˆK99

is the LˆK matrix of zeros. The symbols b, d and b denote the Kronecker, Khatri-100

Rao and outer products. The operator vect¨u stands for the standard column-major101

vectorization of a matrix or a tensor. The operation DiagtA,Bu produces a block-102

diagonal matrix whose blocks are A and B.103

2. Background on low-rank tensor models.104

2.1. Preliminaries on tensors. A tensor X P RD1ˆ...ˆDN is an N -dimensional105

array indexed by the elements Xd1,...,dN
, for dn P t1, . . . , Dnu (n P t1, . . . , Nu). Each106

dimension of a tensor is called a mode. A mode-p fiber of X is a vector obtained by107

fixing all but the p-th dimension.108

Definition 2.1 (Tensor unfoldings). The mode-p unfolding of a tensor X , de-109

noted by Xppq, is the matrix whose rows are the p-mode fibers of X , ordered according110

to the vectorization order. For a tensor X P RD1ˆ...ˆDN , e.g., Xp1q P RDN ...D2ˆD1 .111

Definition 2.2 (Matrix mode product). The matrix p-mode product between a112

tensor X and a matrix M is denoted by X ‚p M and is constructed such that each113

mode-p fiber of X is multiplied by M, e.g., the elements of the mode-1 product between114

X P RD1ˆ...ˆDN and M P RLˆD1 are accessed as115

(2.1)
´

X ‚
1
M

¯

`,d2,...,dN
“

D1
ÿ

i“1

Xi,d2,...,dN
M`,i, ` P t1, . . . , Lu.116

Moreover, it holds that Y “ X ‚p M ô Yppq “ XppqMT.117

Definition 2.3 (Tensor contraction product). The contraction product on modes118

p, q between two tensors X P RD1ˆ...ˆDN and Y P RJ1ˆ...ˆJM with Dp “ Jq is denoted119

by X ‚qp Y. It produces a tensor of order N `M ´ 2 such that120

ˆ

X
q
‚
p
Y
˙

d1,...,dp´1,dp`1,...,dN ,j1,...,jq´1,jq`1,...,jM “(2.2)121

Dp“Jq
ÿ

`“1

pX qd1,...,dp´1,`,dp`1,...,dN
pYqj1,...,jq´1,`,jq`1,...,jM

.(2.3)122

123

Definition 2.4 (Outer product). The outer product between N vectors an P RDn124

pn P t1, . . . , Nuq is a rank-one tensor X “ a1b . . .baN P RD1ˆ...ˆDN whose elements125

are accessed as Xd1,...,dN
“ pa1qd1

. . . paN qdN
.126

2.2. The canonical polyadic decomposition. For all N -dimensional tensor127

X P RD1ˆ...ˆDN , there exists an integer K such that it admits a canonical polyadic128

(CP) decomposition (CPD) as129

(2.4) X “ rrA1, . . . ,AN ss,130

where An P RDnˆK (n P t1, . . . , Nu) are called the CP factors. When minimal, the131

integer K is the rank of the tensor X . Then each entry of X can be expressed as132

Xd1,...,dN
“

K
ÿ

k“1

pA1qd1,k . . . pAN qdN ,k.(2.5)133

134

The CP factors are essentially unique up to scaling and permutation ambiguities,135

if the rank K is not too large [7, 18]. The permutation ambiguity means that the136
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4 C. PRÉVOST, P. CHAINAIS

columns of the latent CP factors can be reordered arbitrarily by any permutation137

matrix Π P RKˆK as138

(2.6) X “ rrA1, . . . ,AN ss “ rrA1Π, . . . ,ANΠss.139

The scaling ambiguity means that the individual factors can be scaled as140

Xd1,...,dN
“

K
ÿ

k“1

K
ÿ

r“1

pλ1,kpA1qd1,kq . . . pλN,kpAN qdN ,kq .(2.7)141

142

where λ1,k . . . λN,k “ 1, for all k P t1, . . . ,Ku.143

2.3. The tensor train decomposition (TTD). The TTD [27] factorizes a144

tensor X P RD1ˆ...ˆDN as a series of matrix-tensor products and contractions between145

third-order tensors as146

X “ G1
1
‚
2
G2 . . .

1
‚
3
GN´1

1
‚
3
GN ,(2.8)147

148

where G1 P RD1ˆK1 , GN P RKN´1ˆDN , and Gn P RKn´1ˆDnˆKn , for n P t2, . . . , N1u),149

are referred to as TT-cores. The integers K1, . . . ,KN1
are called the TT-ranks. A fast150

and efficient way to estimate the TT-cores is to resort to the TT-SVD algorithm [27], a151

procedure that sequentially extracts dominant singular vectors from tensor unfoldings.152

As a result, the TTD in (2.8) is not unique. In fact, due to the use of the SVD, we153

can replace two successive TT-cores Gn and Gn`1 by G1n and G1n`1 such that154

G1n “ Gn
1
‚
3
M´1

n , G1n`1 “ Mn
1
‚
2
Gn`1,(2.9)155

156

where Mn P RKnˆKn is a non-singular change-of-basis matrix. This means that the157

multiplicative ambiguities in the TTD correspond to post- and pre-multiplications by158

nonsingular matrices.159

2.4. Equivalence between the CPD and the TTD. There exists an equiv-160

alence between the CP and TT decompositions. If the TT-ranks are such that161

K1 “ . . . “ KN´1 “ K ď minpD1, . . . , DN q, the TTD can be used to efficiently162

estimate the rank-K CP factors of a higher-order tensor [43]. In particular, using the163

TT-SVD, one can obtain TT factors such that:164

G1 “ A1M
´1
1 , Gn “ rrMn´1,An,M

´T
n ss, GN “ MN´1A

T
N ,(2.10)165166

where Mn P RKnˆKn are non-singular change-of-basis matrices. These matrices can167

be related to the permutation and scaling ambiguity matrices of the CPD, see the168

proof of [43, Theorem 6] for more details.169

3. Joint estimation and dimensionality reduction.170

3.1. The model and the optimization problem. Let X a tensor of rank K171

that admits a CPD of the form172

X “ rrA1, . . . ,AN ss, where An P RDnˆK @n P t1, . . . , Nu.(3.1)173174

Let Y P RD1ˆ...ˆDN the noisy observation according to the following model175

Y “ X ` E,(3.2)176177
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where the tensor E represents isotropic white Gaussian noise. The model (3.2) can178

be rewritten179

Y “ rrA1, . . . ,AN ss ` E.(3.3)180181

The problem of estimating the CP factors An based on model (3.3) has found numer-182

ous interests over the past decade. It has been applied, among others, to problems183

in signal processing and machine learning [34], brain signal processing [1], video com-184

pletion [41] or telecommunications [29]. The popularity of the CPD lies in its high185

regularization power, mild uniqueness properties and versatility to model a variety of186

problems, from denoising to component analysis.187

The most popular way to estimate the CP factors is an iterative Alternating188

Least-Squared (ALS) algorithm [9]. However, this procedure becomes exponentially189

expensive as the order N increases. One iteration of CP-ALS requires O
`

K2
ś

nDN

˘

190

flops. Furthermore, CP-ALS becomes less robust and is prone to convergence issues for191

high-order tensors. These limitations fall under the so-called curse of dimensionality192

[28]. Consequently, one may need to perform tensor dimensionality reduction to193

exploit the benefits of model (3.3).194

Directly solving (3.3) using high-dimensional CP-ALS is costly. To circumvent195

this limitation, it is possible to perform low-rank denoising by considering the follow-196

ing two optimization problems. To ease the notation, let us denote A “ tA1, . . . ,ANu,197

M “ tM1, . . . ,MN´1u and G “ tG1,G2, . . . ,GN´1,GNu.198

First, a low rank-K factorized approximation is obtained by solving199

(3.4) min
G
}Y ´G1

1
‚
2
G2 . . .

1
‚

N´1
GN´1

1
‚
N

GN }
2
F .200

This step can be interpreted as a denoising of Y using the TT-SVD with rank K. This201

operation provides the best rank-K approximation of Y in the least-squared sense,202

while being less costly than high-dimensional CP-ALS.203

Then, the links between the TT-cores G and the CP factors A (2.10) are formulated204

through the optimization problem205

min
A,M

N´1
ÿ

n“2

`

}Gn ´ rrMn´1,An,M
´T
n ss}2F

˘

206

` }G1 ´A1M
´1
1 }2F ` }GN ´MN´1A

T
N }

2
F ,(3.5)207208

that accounts for the ambiguities of the TT-SVD through the M matrices. The n-th209

ambiguity matrix Mn appears twice in (3.5), once in the term related to Gn and once210

in that related to Gn`1. As a result, (3.5) is a coupled optimization problem.211

3.2. State-of-the-art and its limitations. In [43], the authors proposed to212

promote a fast local/sequential optimization method as a sub-optimal solution instead213

of minimizing (3.4)–(3.5). This procedure was called Joint dImensionality Reduction214

And Factor Estimation (JIRAFE) [43]. The first step of JIRAFE estimates the TT-215

cores using the TT-SVD algorithm with ranks K1 “ . . . “ KN´1 “ K by solving216

(3.4). Then, CP-ALS is performed on a single Gn (n P t2, . . . , N ´ 1u), e.g. on G2,217

by minimizing the criterion218

min
M1,A2,M2

}G2 ´ rrM1,A2,M
´T
2 ss}2F ,(3.6)219

220

Since the three CP factors M1, A2, M2 underlying G2 are estimated thanks to an221

alternate least-squares algorithm, this step was referred to as Tri-ALS. In JIRAFE, the222
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6 C. PRÉVOST, P. CHAINAIS

resulting estimate of M2 is then fixed and propagated to other Gn, n P t3, . . . , N´1u.223

Then, for each Gn, the cost function to minimize is224

min
An,Mn

}Gn ´ rrMn´1,An,M
´T
n ss}2F ,(3.7)225

226

where Mn´1 is supposed to be known. This operation was termed Bi-ALS. Finally,227

A1 and AN were obtained using the links provided in (2.10). Algorithm 3.1 provides a228

complexity gain of approximately Niter flops with respect to CP-ALS. The JIRAFE229

procedure is summarized in Algorithm 3.1 below.230

Algorithm 3.1 JIRAFE

input: Observation tensor Y , CP-rank K
output: CP factors A1, . . . ,AN

Estimate G1, GN and Gn @n P t2, . . . , N ´ 1u using TT-SVD on Y
repeat

Estimate M1, A2, M´1
2 using (3.6) (Tri-ALS)

for n “ 3, . . . , N ´ 1 do
Estimate An, M´1

n using (3.7) with Mn´1 known (Bi-ALS)
end for

until convergence
Estimate A1 and AN using (2.10)

However, JIRAFE suffers from a major limitation due to the sub-optimal esti-231

mation of the ambiguity matrices Mn. For instance, M2 was estimated only from232

G2 even though it was shared between the CPD of G2 and G3. More generally, each233

matrix Mn is shared between the CPD of Gn and Gn`1. As such, some important in-234

formation contained in (3.5) is ignored by JIRAFE so that the coherence between the235

TT-cores is lost. As a result, the performance of JIRAFE is highly dependent on the236

choice of the TT-core considered for the initial Tri-ALS step. By first estimating the237

CP factors underlying G2, the estimation error on the Mn,An for n ą 2 is expected238

to increase with n. As a result, MN´1 and AN shall inherit from the estimation239

errors of previous CP factors. Conversely, if Tri-ALS was performed first on GN´1240

before propagating estimations downto n “ 1, A1 and M1 would not be estimated241

accurately. Therefore, the following subsection introduces a new estimation method242

to circumvent these limitations.243

3.3. Proposed approach. This section proposes a new approach to solve prob-244

lem (3.5). It fully takes into account the coupling induced by the Mn by carefully245

considering the global minimization of the cost function of (3.5). In place of a se-246

quential estimation of factors that solves local optimization sub-problems, the global247

optimization is considered. Each iteration of the algorithm will update every factor,248

thus ensuring to reach the global minimum of (3.5). This is made possible thanks249

to a block-coordinate descent that alternates between all the parameters of interest.250

The resulting algorithm is called Dimensionality Reduction, joint Estimation of the251

Ambiguity Matrices and the CP FACtors (DREAMFAC).252

First, DREAMFAC estimates the G1, GN and Gn @n P t2, . . . , N ´ 1u thanks253

to a TT-SVD applied to Y . This step consists in solving for (3.4), hence this step is254

similar in JIRAFE and DREAMFAC. Then, the coupling constraints on the ambiguity255
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matrices lead to the following coupled model:256

#

G1M1 “ A1

G
p1q
2

T “ M1

`

M´T
2 dA2

˘T257

#

G
p3q
n Mn “ pAn dMn´1q , @ 2 ď n ď N ´ 2,

G
p1q
n`1

T “ Mn

`

M´T
n`1 dAn`1

˘T
, @ 2 ď n ď N ´ 2,

(3.8)258

#

G
p3q
N´1MN´1 “ pAN´1 dMN´2q

MN´1A
T
N “ GN

259

260

Considering that the ambiguity matrices Mn are fixed, the An can be updated from261

(3.8) by solving a simple least-squares problem, as in JIRAFE. Considering that the262

CP factors An are fixed, the coherence between TT-cores leads to new coupled updates263

for the Mn matrices:264

M1 “ arg min
M1

}G1M1 ´A1}
2
F ` }G

p1q
2

T ´M1

`

M´T
2 dA2

˘T
}2F ,(3.9)265

` }Gp1q
n

T ´Mn´1

`

M´T
n dAn

˘T
}2F ,266

Mn “ arg min
Mn

}Gp3q
n Mn ´ pAn dMn´1q }

2
F

(3.10)

267

` }G
p1q
n`1

T ´Mn

`

M´T
n`1 dAn`1

˘T
}2F , , @ 2 ď n ď N ´ 2,268

MN´1 “ arg min
MN´1

}G
p3q
N´1MN´1 ´ pAN´1 dMN´2q }

2
F ` }GN ´MN´1A

T
N }

2
F .

(3.11)

269
270

The solution to this mixture of least-squares problem is explicit. Appendix A gathers271

the resulting closed-form expressions for the ambiguity matrices. In the proposed272

approach, the pMnq1ďnďN´1 and pAq2ďnďN´1) matrices are all updated in the same273

loop, termed Multi-ALS. This new procedure, called Dimensionality Reduction, joint274

Estimation of the Ambiguity Matrices and the CP FACtors (DREAMFAC), is sum-275

marized in Algorithm 3.2 below.276

Algorithm 3.2 DREAMFAC

input: Observation tensor Y , CP-rank K
output: CP factors A1, . . . ,AN

Estimate G1, GN and Gn @n P t2, . . . , N ´ 1u using TT-SVD on Y
repeat

Estimate the Mn using (3.9)–(3.11), and the An using (3.7) (Multi-ALS)
Estimate A1 and AN using (2.10)

until convergence

Note that the coherence between the TT-cores is ensured thanks to the cou-277

pled estimation of the ambiguity matrices Mn. Hence the information comprised in278

model (3.8) is fully exploited by this new approach. As a by-product, in contrast279

with JIRAFE, the performance of DREAMFAC is independent on the starting TT-280

core. Figure 1 shows a graphical representation of model (3.8) and summarizes the281

differences between JIRAFE and DREAMFAC.282

Finally, turning to the algorithmic complexity, Algorithm 3.2 requires at most the283

same number of updates as JIRAFE. While updating the An matrices still requires284
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8 C. PRÉVOST, P. CHAINAIS

Fig. 1. Graphical representation of JIRAFE (black) and DREAMFAC (blue).

O
`

K2Dn

˘

flops as in JIRAFE, the coupled updates of the Mn’s can be made faster285

by using a fast solver for the Sylvester equations [3,14,35]. Such solvers require only286

O
`

2K3
˘

flops, which is smaller1 than O
`

K2Dn

˘

as soon as K ! Dn, which is most287

likely.288

4. Cramér-Rao bounds for the proposed approach.289

4.1. General probabilistic framework. To derive appropriate performance290

bounds, it is necessary to embed the problem in an appropriate probabilistic frame-291

work. This requires to properly define the probabilistic model and the parameters of292

interest. A general coupled model has the form293
#

gn „ fωpgnq @ n P t1, . . . , Nu,

hnpωq “ 0,
(4.1)294

295

where gn denote the observations. The functions fωpgnq are the probability density296

functions (PDF) of the random real datasets gn, parameterized by the unknown297

deterministic real parameter vector ω. Several assumptions will be necessary: i) the298

PDFs fωpgnq are non-redundant functions differentiable w.r.t. ω, and their support299

as functions of gn do not depend on ω; ii) the gn are statistically independent. The300

constraints in the model are described by the functions hn that are non-redundant301

deterministic vector functions, everywhere differentiable with respect to ω.302

The model (3.8) can be rewritten equivalently under the form (4.1). First, the303

link between the TT-cores and the An, Mn matrices is such that304

G1 “ A1M
´1
1,1, Gn “ rrMn´1,n,An,M

´T
n,nss, GN “ MN´1,NAT

N .(4.2)305
306

This paper proposes an approach to solve the approximation problem (??) in the307

least-squares sense based on model (3.3). Therefore, it is assumed that the obser-308

vations are Gaussian. To be more precise, let us note gn “ vectGnu for n P t1, Nu309

and gn “ vectGnu for n P t2, . . . , N ´ 1u. The vectors gn are random real Gaussian310

distributed datasets parameterized by their mean, i.e.,311

gn „N pµnpωq, σ
2
nIq where µn “ vectrrMn´1,n,An,M

´T
n,nssu,(4.3)312313

1In many applications, e.g., harmonic retrieval in MIMO channels, the number of elements K is
often very small.
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and σ2
n denote the variances of the Gaussian noise on gn.314

The unknown real deterministic parameter ω is such that315

ω “
“

vectA1u
T vectM1,1u

T vectM1,2u
T vectA2u

T . . . vectANu
T
‰

.(4.4)316317

Second, the coherence between the TT-cores is ensured by the set of constraints318

Mn,n “ Mn,n`1 @ n P t1, . . . , N ´ 1u.(4.5)319320

Reshaping (4.5) under the form of vector functions depending on ω yields321

hnpωq “ vectMn,nu ´ vectMn,n`1u @n P t1, . . . , N ´ 1u.(4.6)322323

As a result, the model (4.3) under constraints (4.6) characterizes (3.8) under the form324

of a general coupled model.325

4.2. Calculation of the Constrained Cramér-Rao bound. Evaluating the326

performance of the coupled model (4.3) under constraints (4.6) is necessary to compare327

the relative performance of JIRAFE and DREAMFAC for the estimation of ω. The328

standard tool for this task is the constrained Cramér-Rao bound (CCRB) [22, 40],329

defined2 as330

(4.7) CCRBpωq “ U
“

UTFU
‰´1

UT,331

where F fi Fpωq is the Fisher Information Matrix (FIM) of the model, Jh is the332

Jacobian matrix related to the constraints hpωq “ 0 and U is a basis of kerpJhq.333

Additionally to the model parameter ω, let us define x “ vectX u P R` (` “334

ΠnDn), that represents the vectorized low-rank approximation of Y . The parameter335

x can be linked to the model parameters through the relationship x ´ hX pωq “ 0,336

where hX is a non-redundant deterministic vector function, everywhere differentiable337

with respect to ω such that338

hX pωq “ vectrrA1, . . . ,AN ssu.(4.8)339340

The above parameterization allows us to compute the CCRB on the reconstruction341

of x [19, p.125] as342

CCRBpxq “

„

hX pωq

BωT

T

CCRBpωq

„

hX pωq

BωT



.(4.9)343
344

4.2.1. Expression of the FIM. The FIM for ω first needs to be computed in345

order to obtain the CCRB.346

The FIM for ω is a block-diagonal matrix of the form347

Fpωq “

»

—

—

—

—

–

F1pωq 0 . . . 0

0
. . .

...
...

. . . 0
0 0 FN pωq

fi

ffi

ffi

ffi

ffi

fl

,(4.10)348

349

where the blocks Fnpωq encode the contributions of each gn to the estimation of ω.350

They are obtained by using the Slepian-Bangs formula [36]:351

Fnpωq “
1

σ2
n

”

Bµnpωq
BωT

ıT ”
Bµnpωq
BωT

ı

.(4.11)352
353

2If F is invertible, then (4.7) and the alternative expression for the CCRB provided in [15] are
equivalent [40, Corollary 1].
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The expression of
”

Bµnpωq
BωT

ı

is obtained simply for n “ 1 and n “ N :354

Bµ1pωq

B vectA1u
T
“ M´T

1,1 b ID1
,(4.12)355

Bµ1pωq

B vectM1,1u
T
“ IK bA1,(4.13)356

Bµ1pωq

B vectMN´1,Nu
T
“ AN b IK ,(4.14)357

BµN pωq

B vectANu
T
“ ΠN

´

M´1
N´1,N b IDN

¯

,(4.15)358
359

where ΠN is a permutation matrix linking the entries of vectGT
Nu to those of vectGNu.360

For n P t2, . . . , N ´ 1u,
”

Bµnpωq
BωT

ı

can be computed using relationships between tensor361

unfoldings:362

gn “
“

pM´T
n,n dAnqb IK

‰

vectMn´1,nu(4.16)363

“ Πp2,1q
n

“

pM´T
n,n dMn´1,nqb IDn

‰

vectAnu(4.17)364

“ Πp3,1qT
n rIK bpAn dMn´1,nqs vectMn,nu,(4.18)365366

where Π
p2,1q
n and Π

p3,1q
n are permutation matrices that link the entries of vectG

p2q
n u367

(resp. vectG
p3q
n u) to those of gn “ vectG

p1q
n u. To ease the notation, we define the368

matrices S1,n,S2,n,S3,n (n P t2, . . . , N ´ 1u) as369

S1,n “
“

pM´T
n,n dAnqb IK

‰

,(4.19)370

S2,n “ Πp2,1q
n

“

pM´T
n,n dMn´1,nqb IDn

‰

,(4.20)371

S3,n “ Πp3,1qT
n rIK bpAn dMn´1,nqs .(4.21)372373

As a result, we have374

”

Bµnpωq
BωT

ı

“

$

’

&

’

%

“

M´T
1,1 b ID1

IK bA1

‰

for n “ 1,

rS1,n S2,n S3,ns @ n P t2, . . . , N ´ 1u,
”

AN b IK ΠN

´

M´1
N´1,N b IDN

¯ı

for n “ N.

(4.22)375

376

The closed-form expressions for the Fnpωq are provided in Appendix B.377

4.2.2. Expression of the CCRB. The Jacobian matrix Jh is obtained by378

deriving the functions hnpωq with respect to all the elements of ω into a block-matrix.379

Given the constraints on ω in (4.6), it holds that380

Bhnpωq

B vectAnu
T
“ 0, @n P t1, . . . , N ´ 1u,(4.23)381

Bhnpωq

B vectMm´1,mu
T
“

#

IK2 if m “ n

0 if m ‰ n,
(4.24)382

Bhnpωq

B vectMm,mu
T
“

#

´IK2 if m “ n

0 if m ‰ n.
(4.25)383

384
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As a result, Jh is such that385

Jh “

»

—

–

Bh1pωq
BωT

...
BhN´1pωq
BωT

fi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 IK2 ´IK2 0 0 0 . . . 0
... 0 0

... IK2 ´IK2 . . .
...

...
...

...
... 0 0 . . .

...
...

...
...

...
...

... . . .
...

0 0 0 0 0 0 . . . IK2 ´IK2 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

(4.26)

386

387

The matrix U can then be obtained by simply solving JhU “ 0. Therefore U is the388

identity matrix of size Kp2N ´ 2`
ř

nDN q. The CCRB submatrices for the An and389

the Mn´1,n are obtained by developing expression (4.7):390

CCRBpAnq “ FpAnq
´1, CCRBpMn´1,nq “ FpMn´1,nq

´1.(4.27)391392

4.3. Reparameterized CRB for reconstruction of the low-rank tensor.393

The expression for hX pωq is necessary to compute the reparameterized CRB in (4.9).394

The relationships between tensor unfoldings give395

x “ rpAN d . . .dA2qb ID1
s vectA1u(4.28)396

“ . . .397

“ Π
pN,1q
X rpAN´1 d . . .dA1qb IDN

s vectANu,(4.29)398399

where the Π
pn,1q
X are permutation matrices that link the entries of the vectXpnqu400

vectors to those of vectXp1qu “ x. The matrices Sn,X are defined such that401

Sn,X “ Π
pn,1q
X rpAN d . . .dAn`1 dAn´1 d . . .dA1qb IDn

s ,(4.30)402403

finally yielding404

(4.31)

„

hX pωq

BωT



“ rS1,X 0 0 S2,X 0 0 . . . SN,X s .405

Therefore,406

CCRBpxq “ DiagtST
1,XFpA1q

´1S1,X , . . . ,S
T
N,XFpAN q

´1SN,X u.(4.32)407408

Given the expressions of the constrained Cramér-Rao bounds in Equation (4.27) and409

Equation (4.32), the performance of the proposed approach can now be evaluated410

numerically.411

5. Simulations.412

5.1. Recovery of the CP factors. A 7-order (N “ 7) tensor X with D1 “413

. . . “ DN “ 6 and K “ 3 is taken as a reference. This tensor admits a reference414

CPD as in (3.1) with i.i.d. entries generated from the normal distribution. The noisy415

tensor Y was generated using isotropic white Gaussian noise to yield a SNR of 20dB.416

The proposed approach is compared to two JIRAFE-like algorithms. In the first417

one, Tri-ALS is initially performed on G2 and the factors is propagated towards the418

higher n. In the second one, Tri-ALS is performed on GN´1 with propagation towards419

the lower n. The TT-cores are estimated using TT-SVD with K “ 3. The CP factors420

were initialized as An “ Un pΣnq
1
2 using the SVD of the n-th mode unfolding of Y421
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C
o

l.
 1

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

C
o

l.
 2

C
o

l.
 3

Fig. 2. Columns of the reference (black dashed lines) and estimated factors as returned by
JIRAFE with forward propagation (red circles), JIRAFE with backward propagation (blue squares),
and DREAMFAC (green diamonds).

with rank K, namely Ypnq “ UnΣnVn. The algorithms have a maximum of 1000422

iterations, and the results are averaged over 100 noise realizations.423

Figure 2 shows columns of the reference and estimated factors. The columns of the424

An factors for n P t2, . . . , N ´1u are correctly estimated by all the algorithms, except425

for a few outliers in A6. Algorithm 3.2 usually provides a slightly better estimate426

than the JIRAFE procedures. While DREAMFAC also correctly estimates A1 and427

AN , the JIRAFE-like procedures provided an incorrect estimation of AN (resp. A1).428

To further investigate the propagation of the error through the TT-cores, the429

normalized mean square error between the estimated pAn and the reference An is430

considered:431

(5.1) NMSE “
}pAn ´An}

2
F

}An}
2
F

.432

1 2 3 4 5 6 7

Mode

10
-5

10
0

NMSE (JIRAFE, forward)

NMSE (JIRAFE, backward)

NMSE (DREAMFAC)

Normalized CRB

Fig. 3. NMSE provided by JIRAFE with forward propagation (red dots), backward propagation
(blue squares), and DREAMFAC (green diamonds), and normalized CRB.

Figure 3 shows in semi-log scale the NMSE for each factor, as provided by the433
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three algorithms. As a comparison, the value of the uniform CCRB, normalized by434

}An}
2
F , is also displayed. For the two JIRAFE-like procedures, the highest NMSE435

corresponded to the last estimated factor, resp. AN for the forward procedure and A1436

for the backward procedure. The NMSE provided by DREAMFAC remained smaller437

for both A1 and AN . On average, it was also smaller than that provided by the438

JIRAFE algorithms, and reaches the optimal NMSE expected from the normalized439

CRB.440

5.2. Relative efficiency of the algorithms. This subsection assesses the ef-441

ficiency of JIRAFE and DREAMFAC by comparing their performance to the con-442

strained Cramér-Rao bound obtained in Section 4.443

The reference tensor X is a 7th-order tensor with D1 “ . . . “ DN “ 6 and444

K “ 3. The entries of the true CP factors An were generated once as i.i.d. real445

standard Gaussian variables. The model is simulated under additive Gaussian noise.446

We assume that the noise level was the same for all TT-cores: this assumption is447

reasonable since the Gn are all estimated from Y using TT-SVD. on the TT-cores.448

The SNR on the observed tensors in dB is defined as SNRi “ 10 log10

`

}Gi}
2
F {}Ei}

2
F

˘

,449

(i “ 1, . . . , N).450

The model parameters are retrieved using JIRAFE and DREAMFAC. The CP451

factors and ambiguity matrices are initialized randomly. The permutation ambiguities452

in the estimated factors are corrected using the Hungarian algorithm [25] to make453

comparisons aligned with the reference. The experiments show the uniform MSE and454

uniform CCRB obtained from the MSE and CCRB matrix traces, as widely considered455

in, e.g., [11,16,17]. The expressions for the bounds proposed in this paper permit the456

computation of the uniform CCRB by taking the trace of these matrices.457

Figure 4 shows in semi-log scale the uniform bounds and MSEs for all the entries458

of the An and Mn, ω and X as a function of the SNR. It is noticeable that the459

uniform MSE produced by DREAMFAC reaches the uniform CCRB. Therefore the460

proposed approach is optimal for estimation of the parameters and reconstruction461

of X . JIRAFE yields a higher MSE, which was expected since it is a suboptimal462

optimization method. The two algorithms depict the same kind of behavior with463

respect to the SNR. This is particularly visible for estimation of the ambiguity ma-464

trices. DREAMFAC permits to gain 5dB for the estimation of the An, and 3dB for465

the reconstruction of X compared to JIRAFE.466

Figure 5 shows in semi-log scale the uniform CCRB for A1, A3, A5 and A7, as467

well as the uniform MSEs, as a function of the SNR. The results for A2, A4 and A6468

are similar. The uniform MSE obtained with DREAMFAC reaches the CCRB for each469

factor, and its scale barely varies trough the An. The MSE obtained with JIRAFE470

was higher, and progressively increased for high values of n. Therefore DREAMFAC471

is also efficient for the estimation of each CP factor.472

5.3. Application to channel estimation in dual-polarized MIMO sys-473

tems. The problem of channel estimation in dual-polarized massive MIMO aims at474

recovering the channel parameters at the base station (angles of arrival, angles of475

departure, path gains, and polarization parameters). In [29], a tensor-based approach476

for this task was proposed. The MIMO channel was recast as a fourth-order tensor477

admitting a CPD. In [42], the authors adapted the JIRAFE procedure to treat the478

channel estimation problem with receiver and transmitter rectangular arrays, hence479

the channel was viewed as a fifth-order tensor.480

5.3.1. Model description. The steering vectors for the k-th path between a481

Uniform Rectangular Array (URA) transmitter of size Mx
T ˆM

y
T and a URA receiver482

of size Mx
R ˆM

y
R are such that483

aT pkq “ a
x
T pkqba

y
T pkq, aRpkq “ a

x
Rpkqba

y
Rpkq,(5.2)484485

This manuscript is for review purposes only.
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Fig. 4. Uniform CCRB and MSE provided by JIRAFE and DREAMFAC, for (a) estimation
of all the An, (b) estimation of all the Mn, (c) estimation of ω and (d) reconstruction of X .

with e.g., ax
T pkq “ r1, exp pjωx

T pkqq , . . . , exp pjωx
T pkqpM

x
T ´ 1qqs

T
, and likewise for486

ay
T pkq,a

x
Rpkq,a

y
Rpkq. As a result, for K paths, the steering matrices in transmission487

and in reception are488

AT “ Ax
T dAy

T , AR “ Ax
R dAy

R,(5.3)489490

with e.g., Ax
T “ ra

x
T p1q, . . . ,a

x
T pKqs.491

The path-loss matrix B P C4ˆK contains the path-loss parameters. Let the pp, qq-492

th subchannel correspond to p P tVR, HRu for the vertical (V) polarized and horizontal493

(H) polarized receive antennas, and q P tVT , HT u for the V-polarized and H-polarized494

transmit antennas. For the k-th path and for the pp, qq-th subchannel, β
pp,qq
k is the495

path-loss parameter. Therefore, noting βpp,qq “
”

β
pp,qq
1 , . . . , β

pp,qq
K

ı

,496

(5.4) B “

”

βpVR,VT q βpVR,HT q βpHR,VT q βpHR,HT q
ı

,497

As a result, the channel tensor H P CMx
TˆMy

TˆMx
RˆMy

Rˆ4 can be written as498

H “ rrAx
R,A

y
R, pA

x
T q
‹
, pAy

T q
‹
,Bss ` E,(5.5)499500

which corresponds to a fifth-order CPD of rank K. The noise term E encompasses501

the background noise and the estimation error due to the pre-estimation of the un-502

structured channel, and can be modeled as zero-mean circularly complex Gaussian503

random variables.504
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Fig. 5. Uniform CCRB and uniform MSE provided by JIRAFE and DREAMFAC for the
estimation of the An individually.

The main assumption of the model (5.5) is that K ď minpMx
T ,M

y
T ,M

x
R,M

y
Rq, i.e.,505

the steering matrices are full column-rank. Furthermore, it is assumed that there are506

few dominant paths, i.e., K ă 4 and B is a full column-rank matrix. The assumption507

of a small number of paths is usually made in massive MIMO scenarios.508

5.3.2. Results. The matrices Ax
T Ay

T ,A
x
R,A

y
R were generated once based on509

single random realizations of the angular frequencies ωx
T pkq, ω

y
T pkq, ω

x
Rpkq, ω

y
Rpkq fol-510

lowing a uniform distribution on s0, πs. The factor B was drawn from a complex511

Gaussian distribution with zero mean and unit variance. The following dimensions512

were considered: Mx
T “Mx

R “ 10 and My
T “My

R “ 8, and K “ 3.513

Figure 6 shows in semi-log scale true factors and the estimated factors provided514

by DREAMFAC and JIRAFE, with 30dB SNR. All factors are recovered correctly515

by DREAMFAC. The factors estimated by JIRAFE seem coherent with the reference516

factors, but with the wrong scale and angle.517

To further assess the performance of the proposed approach, the MSE between518
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16 C. PRÉVOST, P. CHAINAIS

C
o
l.

 1
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

C
o
l.

 2
C

o
l.

 3

Fig. 6. Columns of the reference factors (black dashed lines) and estimated factors as returned
by JIRAFE (red circles) and DREAMFAC (green diamonds).

the true and estimated factors, and between the angular frequencies, were considered:519

MSEx
R “

K
ÿ

k“1

´

Ax
Rp:, kq ´

pAx
Rp:, kq

¯2

, MSEy
R “

K
ÿ

k“1

´

Ay
Rp:, kq ´

pAy
Rp:, kq

¯2

,

(5.6)

520

MSEx
T “

K
ÿ

k“1

´

Ax
T p:, kq ´

pAx
T p:, kq

¯2

, MSEy
T “

K
ÿ

k“1

´

Ay
T p:, kq ´

pAy
T p:, kq

¯2

,

(5.7)

521

MSEω “

K
ÿ

k“1

pωx
T pkq ´ pωx

T pkqq
2
` pωy

T pkq ´ pωy
T pkqq

2

(5.8)

522

` pωx
Rpkq ´ pωx

Rpkqq
2
` pωy

Rpkq ´ pωy
Rpkqq

2
.523524

The MSE were evaluated over 10 values of the SNR in r´20, 30s dB, and calculated by525

averaging the results over 500 independent noise realizations. Computing the complex526

CCRB is a delicate task that requires the calculation of Wirtinger derivatives [26].527

For this reason, calculation of the CRB associated with model (5.5) is relegated to528

future works.529

DREAMFAC was compared to four tensor-based methods. The first one was530

CP-ALS [9] followed by closed-form solutions to estimate the parameters from the531

factors. The second one was the so-called CP-VDM, for CPD with Vandermonde fac-532

tor matrix, proposed in [37]. The third one was based on the generalized eigenvalue533

decomposition (GEVD) [33]. The fourth one was JIRAFE followed by a Vandermonde534

rectification strategy [5] (termed JIRAFE-VDM) to enforce the structure of the steer-535

ing matrices. This step is crucial to estimate the factors with the correct scale and536

angle, as exemplified in Figure 6. All algorithms used at most 1000 iterations.537

Figure 7 shows in semi-log scale the averaged MSE for recovery of the steering538

matrices. For a SNR superior or equal to 5dB, all approaches but GEVD yield the539

same MSE. Thanks to the Vandermonde rectification, JIRAFE could achieve good540
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Fig. 7. (a) MSEx
R, (b) MSEy

R, (c) MSEx
T , (d) MSEy

T as a function of the SNR.

performance for higher values of the SNR. For lower values of the SNR, DREAMFAC541

yields the lowest MSE. Its performance is better than that of JIRAFE, with a gain of542

approximately 3dB on the quality of the estimation.543

Figure 8 shows in semi-log scale the averaged MSEω provided by the algorithms,544

as a function of the SNR. For estimation of the angular frequencies, DREAMFAC545

yields the best MSE for a low SNR. Its gain with respect to JIRAFE for low SNR546

is of approximately 5dB. The proposed approach has similar performance to other547

approaches for a SNR superior or equal to 5dB.548

6. Conclusion. This paper proposes a new approach called DREAMFAC for549

Dimensionality Reduction, joint Estimation of the Ambiguity Matrices and the CP550

FACtors. It relies on a global coupled optimization scheme, instead of a local and551

sequential strategy in previous approaches. DREAMFAC performs favorably with552

respect to the state-of-the-art of estimation of the CP factors. We have derived con-553

strained Cramér-Rao bounds to evaluate the potential optimum performance under554

mild assumptions, as well as for comparison with state-of-the-art methods. Numer-555

ical experiments show that the proposed algorithm reaches the Cramér-Rao bound,556

as expected since it fully exploits the information of the full coupled model.557

The performance of DREAMFAC is exemplified on the realistic problem of com-558

plex harmonics retrieval in dual-polarized MIMO channels. The proposed approach559

performs well on this task, providing better estimation of the base station parameter560

at low SNR than state-of-the-art methods. As a conclusion, this paper clarifies what561

are the best performance of a low-rank tensor CP factorization using tensor-train.562
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Fig. 8. MSE on the estimation of the angular frequencies.

The proposed approach, DREAMFAC, is an optimal solution to this problem.563

Appendix A. Closed-form expression for the coupled Mn in the pro-564

posed approach.565

Solutions the least-squared problems (3.9)–(3.11) can be obtained by solving the566

following Sylvester equations:567

M1

`

M´1
2 M´T

2 d AT
2A2

˘

`
`

GT
1G1

˘

M1 “ GT
1A1 `G

p1q
2

T pA2 dM2q ,(A.1)568

Mn´1

`

M´1
n M´T

n d AT
nAn

˘

`

´

G
p3q
n´1

TG
p3q
n´1

¯

Mn´1

(A.2)

569

“ Gp1q
n

T
`

M´T
n dAn

˘

`G
p3q
n´1

T pAn´1 dMn´2q ,570

Mn

`

M´1
n`1M

´T
n`1 d AT

n`1An`1

˘

`

´

Gp3q
n

TGp3q
n

¯

Mn

(A.3)

571

“ G
p1q
n`1

T
`

M´T
n`1 dAn`1

˘

`Gp3q
n

T pAn dMn´1q ,572

MN´1

`

AT
NAN

˘

`

´

G
p3q
N´1

TG
p3q
N´1

¯

MN´1(A.4)573

“ GNAN `G
p3q
N´1

T pAN´1 dMN´2q .574575

Fast solvers (see [35]) can be used to solve (A.1)–(A.4).576

Appendix B. Closed-form expressions for the uncoupled FIM.577
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The FIM matrices Fnpωq introduced in (4.11) are block-matrices such as578

F1pωq “
1

σ2
1

„

M´1
1,1M

´T
1,1 b Id1

M´1
1,1 bA1

M´T
1,1 bAT

1 IR bAT
1A1



,

(B.1)

579

Fnpωq “
1

σ2
n

»

–

ST
1,nS1,n ST

1,nS2,n ST
1,nS3,n

ST
2,nS1,n ST

2,nS2,n ST
2,nS3,n

ST
3,nS1,n ST

3,nS2,n ST
3,nS3,n

fi

fl for n P t2, . . . , N ´ 1u,

(B.2)

580

FN pωq“
1

σ2
N

»

–

AT
NAN b IR

`

AT
N b IR

˘

ΠN

´

M´1
N´1,N b IDN

¯

´

M´T
N´1,N b IDN

¯

ΠT
N pAN b IRq M´T

N´1,NM´1
N´1,N b IDN

fi

fl .

(B.3)

581

582

It is possible to identify the blocks containing the contribution of the An and the583

Mn´1,n to the estimation of ωq. These blocks, denoted to as FpAnq and FpMn´1,nq,584

are such that585

FpAnq “

$

’

&

’

%

IR bAT
1A1 for n “ 1,

ST
2,nS2,n for n P t2, . . . , N ´ 1u,

AT
NAN b IR for n “ N,

(B.4)586

FpMn´1,nq “

#

ST
1,nS1,n for n P t2, . . . , N ´ 1u,

M´T
N´1,NM´1

N´1,N b IDN
for n “ N.

(B.5)587

588
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