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Abstract. This paper introduces a family of coupled tensor optimization problems for joint6
super-resolution and unmixing in remote sensing. Using β-divergences allows the proposed methods7
to account for various noise statistics. A family of simple, efficient and flexible algorithms is pro-8
posed, that are capable of solving the two problems at hand. Moreover, the proposed algorithms are9
able to estimate the degradation operators mapping the HSI and MSI to the unknown SRI. We in-10
troduce penalized versions of our optimization problems, with an emphasis on the minimum-volume11
regularization approach. This approach is designed to efficiently identify the number of factors in the12
tensor decomposition, and to effectively manage scenarios involving potential rank deficiencies in the13
estimated mixing factors. It facilitates the computation of interpretable and meaningful tensor de-14
compositions, and enhances the identifiability of the decomposition model. The proposed algorithms15
demonstrate competitive performance against state-of-the-art methods for joint fusion and unmix-16
ing, even in scenarios with various noise statistics and challenging cases, including partially unknown17
degradation operators, almost collinear materials, and estimation of the number of endmembers.18

Key words. Nonnegative tensor factorization, block-term decomposition, β-divergence, mini-19
mum volume regularization, automatic model order selection, blind spectral unmixing, hyperspectral20
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1. Introduction. In remote sensing, hyperspectral images (HSIs) provide views23

of a portion of the Earth with high spectral resolution. However, due to the tradeoff24

between spatial and spectral resolutions, the HSIs to have low spatial resolution [39].25

On the other hand, multispectral images (MSIs) possess high spatial resolution, at26

the cost of a restricted number of spectral bands. The composition of each pixel in27

these images can be approximated by a sum of a small number of spectral signatures,28

or endmembers. This representation is known as the linear mixing model. Blind29

spectral unmixing consists in identifying the materials present within the scenery30

with limited prior information, classically by computing the spectral signatures of31

these materials (the endmembers), and their abundance maps. However, due to the32

limited resolutions of the HSIs and MSIs, unmixing with high resolution cannot be33

performed on these images.34

The hyperspectral super-resolution (HSR) problem [46] was formulated to cir-35

cumvent the physical limitations of the HSIs and MSIs. It aims at recovering a super-36

resolution image (SRI) with both high spatial and high spectral resolutions from an37

HSI and an MSI of the same scene. Traditional unmixing can then be performed on38

the reconstructed SRI. Hence the goal of developing an efficient method for solving39

both problems at once.40

Early matrix approaches for the HSR problem [40,44,45,47] performed a coupled41

low-rank factorization of the matricized HSI and MSI. Some of them were based on42

the linear mixing model, [27,47], thus they were suitable for joint HSR and unmixing.43

More recently, tensor-based approaches were proposed for the HSR problem.44
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2 C. PRÉVOST, V. LEPLAT

In [17, 18], the HSR problem was formulated as a coupled canonical polyadic de-45

composition, while a coupled Tucker decomposition was used in [35]. However, the46

factors of these decompositions lacked physical interpretation, thus these methods47

could not perform unmixing.48

The block-term decomposition (BTD) had been successfully used to perform un-49

mixing on the SRI in [36]. Motivated by its usefulness, and by the success of tensor-50

based HSR, it has since then grown very popular to perform HSR [6,14,29,49]. In [32],51

the BTD was used for joint fusion and unmixing in the presence of spectral variability.52

Successfully solving both the HSR and unmixing problems faces several challenges.53

First, the observation models and assorted algorithms must enforce non-negativity54

constraints. These constraints, when applied on the BTD factors, ensure that they55

can be recast in the linear mixing model as endmembers and abundance maps. The56

vast majority of algorithms for tensor/matrix non-negative factorization (NTF/NMF)57

rely on Block Coordinate Descent (BCD) schemes, see e.g., [4, 7, 15,28].58

Second, in remote sensing, observed images often contain highly similar or nearly59

collinear materials. For instance, consider the scenario where mineral components60

within a rock sample or materials like road, soil, and sand are primarily composed of61

silica. This property of the images may lead unmixing algorithms to recover rank-62

deficient mixing factors. This is particularly challenging when using the BTD, since its63

numerical implementation is very sensitive to the initialization, as highlighted in [32].64

The third and most important challenge consists in correctly estimating the num-65

ber of materials underlying the images. In practice, this value is often unknown.66

An incorrect estimation may negatively affect the performance of the fusion and un-67

mixing algorithms, and may also not ensure the uniqueness of the solutions to these68

problems. In the absence of groundtruth reference, the number of materials can be69

estimated prior to processing owing to the extensive spectral information available70

in the HSI [1, 11]. Some recent works were devoted to the task of estimating the71

number of factors in BTD models using e.g., penalized optimization [38], Bayesian72

inference [12] or autoregressive models [48].73

In this paper, a family of coupled optimization problems based on the BTD is74

introduced. The case of joint HSR and unmixing in remote sensing exemplifies the75

interest for these optimization problems. Other fields of applications could be en-76

visioned for the considered model, such as audio signal processing [24], biomedical77

imaging [23] or graph signal processing [20]. Using β-divergences, various noise sta-78

tistics present within the data can be accounted for, see [13] for a detailed overview79

of the topic. A family of simple, efficient and flexible algorithms is developed, that80

are able to handle the three above challenges within a unified framework.81

Previously, the short paper [33] provided a brief overview of the optimization82

problem and partial simulations. This paper introduces a new family of regularized83

and constrained non-negative BTD problems and conduct additional simulations, in-84

cluding cases with collinear materials, unknown spatial degradation, and estimation85

of the model. Our main contributions are the following.86

‚ We develop a family of tensor-based algorithms utilizing multiplicative up-87

dates tailored for the β-divergence. Among others, these algorithms allow the88

estimation of the degradation operators responsible for mapping the HSI and89

MSI to the unknown SRI. This fundamental principle, initially introduced90

in [25] through coupled matrix models, is extended into a coupled tensor91

framework.92

‚ We incorporate a minimum-volume regularization into our optimization pro-93

cedures. This regularization is designed to facilitate the computation of an94

interpretable and meaningful nonnegative BTD, while concurrently strength-95

ening the identifiability of the decomposition model. It also addresses the96

challenge of rank deficiency and automating the critical step of determining97
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CONSTRAINED NON-NEGATIVE BLOCK-TERM DECOMPOSITION 3

the number of factors, commonly referred to as “model order selection” in98

the matrix case. In this paper, we use this terminology when discussing the99

ability of a method to identify the factor count within the decomposition. It100

is imperative not to conflate this concept with the “order” of the input tensor,101

defined as its number of dimensions. While the advantages of the minimum-102

volume regularization were previously discussed in [24], this previous work103

exclusively applied this regularization to uncoupled matrix models.104

‚ To circumvent the numerical sensitivity of the BTD, a robust way to initialize105

the algorithms based on matrix multiplicative updates is introduced.106

‚ The proposed methods compete favorably with the state-of-the-art for joint107

fusion and unmixing of synthetic and semi-real data sets including three noise108

statistics: Gaussian noise, Poisson noise and multiplicative Gamma noise.109

Finally, we showcase the good performance of our methods in challenging110

cases: partially unknown degradation operators, almost collinear materials,111

and estimation of the number of endmembers.112

This paper is organized as follows. Subsection 2.1 introduces the background on113

tensor algebra, the observation model and its assumptions. Section 3 describes the114

optimization problems that we consider. Section 4 contains the proposed algorithms115

and the suggested initialization strategy. Section 5 presents the numerical experiments116

on a series of synthetic and semi-real datasets.117

2. Background and problem formulation.118

2.1. Background on tensor algebra. The following notations [5,22] are used:119

lower (a) or uppercase (A) plain font for scalars, boldface lowercase (a) for vectors,120

boldface uppercase (A) for matrices and calligraphic (A) for tensors. The elements121

of vectors, matrices and tensors are denoted as ai, Ai,j and Ai1,...,iN , respectively.122

The transpose of a matrix A is denoted by AT. Notation IN is used for the N ˆN123

identity matrix and 0LˆK for the L ˆ K matrix of zeros. Notation 1L denotes an124

all-ones vector of size L ˆ 1. For a matrix X, the notation X ě 0 means that X125

is entry-wise non-negative. Symbols b and d denote the Kronecker and Khatri-Rao126

products, respectively. The Hadamard (element-wise) product is denoted by d. The127

operator vec for the standard column-major vectorization of a matrix or a tensor.128

Each dimension of a tensor is called a mode, and the number of dimensions is called129

order.130

Definition 2.1 introduces the BTD with ranks pLr, Lr, 1q, that will be used to131

build the model. The main advantage of this decomposition is to link the low-rank132

factors to high-resolution abundance matrices and spectral signatures used in blind133

spectral unmixing of the unknown SRI.134

Definition 2.1 (Block-term decomposition). An order-3 tensor X P RIˆJˆK135

admits a block-term decomposition (BTD) with ranks pLr, Lr, 1q (LrLr1-BTD) if136

X “

R
ÿ

r“1

`

ArB
T
r

˘

b cr,(2.1)137

138

where b denotes the outer product, Ar P RIˆLr , Br P RJˆLr , and cr P RK , for r P139

t1, . . . , Ru. Moreover, we denote A “ rA1, . . . ,ARs P RIˆ
ř

r Lr , B “ rB1, . . . ,BRs P140

RJˆ
ř

r Lr and C “ rc1, . . . , cRs P RKˆR.141

Property 2.2 recalls the unfolding formulae for the LrLr1-BTD, that will be help-142

ful for building our algorithms.143

Property 2.2 (Tensor unfoldings). Using the above notation, the unfoldings of144
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4 C. PRÉVOST, V. LEPLAT

a tensor X admitting an LrLr1-BTD as above can be expressed as145

Xp1q “ A pCdp Bq
T
, Xp2q “ B pCdp Aq

T
,146

Xp3q “ C rpA1 dB1q 1L1
, . . . , pAR dBRq 1LR

s
T
,147148

where dp denotes the partition-wise Khatri-Rao products defined as follows: CdpA “149

rc1 bA1, . . . , cR bARs.150

2.2. Assumptions. Let us consider two tensors Y1 P RI1ˆJ1ˆK1 and Y2 P151

RI2ˆJ2ˆK2 . The observed tensors Y1, Y2 are degraded versions of the same tensor152

Y P RIˆJˆK . In remote sensing, the tensors Y1 and Y2 respectively denote the HSI153

and MSI, and Y denotes the unknown SRI we intend to recover. Thus we assume154

I1 ă I2, J1 ă J2 and K2 ă K1: indices I`, J` denote the spatial dimensions whereas155

K` denote the spectral ones (` “ 1, 2). In order to ease the notation, we assume that156

I “ I2, J “ J2 et K “ K1.157

Assumption 2.3 (Structure of the SRI). In the noiseless case, the tensor Y ad-158

mits a BTD with ranks (Lr, Lr, 1) such that159

Y “

R
ÿ

r“1

`

ArB
T
r

˘

b cr.(2.2)160

161

Under nonnegativity constraints, the vectors cr in Equation (2.2) can be viewed as162

the endmembers associated to the R constitutive materials of Y , while the matrices163

ArB
T
r “ Sr P RIˆJ represent the corresponding abundance maps.164

Assumption 2.4 (Structure of Sr). Matrices Sr are low-rank matrices, i.e.,165

Sr « ArB
T
r P RIˆJ ,(2.3)166167

where Ar P RIˆL and Br P RJˆL admit rank Lr for all r P t1, . . . , Ru.168

This assumption is reasonable, since an upper bound on the reconstruction error of169

such matrices by (2.3) can be obtained [3]. Furthermore, this assumptions will serve170

to link the linear mixing model to the LrLr1-BTD.171

Let S “ rvectS1u, . . . , vectSRus P RIJˆR be the matrix containing the vectorized172

abundance maps of each material and C “ rc1, . . . , cRs P RLˆR the matrix whose173

columns are the spectral signatures. The transposed third-mode unfolding of Equa-174

tion (2.2) [6, 49] reads175

Yp3qT “ SCT P RIJˆK ,(2.4)176177

which is the linear mixing model (LMM) for the SRI Y under nonnegativity con-178

straints. Using Assumption 2.4 the block-term structure (2.2) can thus be viewed as179

tensor format for the LMM, under low-rank constraints of the abundance maps.180

2.3. Observation model. As done in previous works (see [43] and references181

therein), the following model providing the links between Y and its two degraded182

versions Y1 and Y2 is considered. The tensors Y and (Y1,Y2) are such that183

$

’

’

&

’

’

%

Y1 «
R
ř

r“1

´

P1Ar pP2Brq
T
¯

b cr,

Y2 «
R
ř

r“1

`

ArB
T
r

˘

bP3cr,

(2.5)184

185
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CONSTRAINED NON-NEGATIVE BLOCK-TERM DECOMPOSITION 5

which is a coupled LrLr1-BTD. The tensors Y1 and Y2 are degraded from Y using186

linear downsampling operators P1 P RI1ˆI , P2 P RJ1ˆJ et P3 P RK2ˆK , assumed to187

be full-rank. In a remote sensing framework, the matrix P3 P RK2ˆK contains the188

spectral response functions for each band of the MSI sensor. The spatial degradation189

matrices P1 P RI1ˆI and P2 P RJ1ˆJ perform Gaussian blurring and downsampling190

along each spatial dimension, i.e. we suppose that the spatial degradation operation191

is separable, as in the commonly used Wald’s protocol [42]. The approximately equal192

symbols in Equation (2.5) account for the presence of noise during the degradation193

process.194

3. Optimization problems.195

3.1. Formulation of the joint fusion and unmixing problem. State-of-the-196

art unmixing algorithms aim at recovering tSr “ ArB
T
r u
R
r“1 and C from the mixed197

pixels in Y . Here, since Y is unknown and only Y1 is observed with high spectral198

resolution, traditional algorithms are only able to recover spatially-degraded versions199

of the abundance maps [6], namely200

P1SrP
T
2 P RI1ˆJ1 for r P t1, . . . , Ru.(3.1)201202

Differently from those works, fusion between an HSI with an MSI with high spatial203

resolution allows one to seek for abundance maps at a higher spatial resolution.204

Furthermore, in remote sensing, Y1 and Y2 can be acquired at different time205

instants. The different acquisition conditions can result in e.g., variations in atmo-206

spheric, seasonal or illumination conditions [16]. Moreover, the specificities of the207

imaging devices might change after launch of installation in an aircraft, due to e.g.,208

outgassing, aging of components, or misalignment. These uncertainties motivate the209

need for more flexible models, capable of estimating one or several degradation ma-210

trices Pi (i P t1, . . . , 3u).211

Thus jointly solving the data fusion and blind unmixing problems consists in212

finding the pLrLr1q factors tArB
T
r u
R
r“1, C, and possibly the degradation matrices213

Pi, under the assumption of (2.5), subject to the constraints214

tArB
T
r u
R
r“1 P XA,B, C P XC, Pi P XP,i for i P t1, . . . , 3u ,(3.2)215216

where XT Ď RMˆN denotes the feasible (convex) set for matrix T of size M ˆN .217

3.2. Non-negative tensor optimization problem. Trying to minimize the218

approximation errors in (2.5) leads, for instance, to minimizing the following general219

cost function:220

(3.3)

Φ “Dβ

˜

Y1}

R
ÿ

r“1

´

P1Ar pP2Brq
T
¯

b cr

¸

` λDβ

˜

Y2}

R
ÿ

r“1

`

ArB
T
r

˘

bP3cr

¸

`

R
ÿ

r“1

γpABq,rΨpABq,rpArB
T
r q ` γCΨCpCq `

3
ÿ

i“1

γPi
ΨPi

pPiq

221

subject to the constraints in (3.2). The scalar λ is a positive penalty parameter222

controlling the weights for the data fitting terms associated to each observation in223

the cost function Φ, while γp.q are positive parameters controlling the weights of224

the regularization functions Ψp.q potentially applied to all the factors of the LrLr1-225

BTD. Such regularization functions are used to promote solutions with desired and226

meaningful structures, such as low-rank, sparsity and minimum-volume to cite a few.227

For a tensor Y P RIˆJˆK , the beta-divergence is defined as:228

(3.4) Dβ

˜

Y}
R
ÿ

r“1

`

ArB
T
r

˘

b cr

¸

“
ÿ

i,j,k

dβ
`

pYqi,j,k}
`

pArqi,:pBrq
T
:,j

˘

b pcrqk
˘

,229
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6 C. PRÉVOST, V. LEPLAT

with dβpx}yq the β-divergence between the two scalars x and y. For β “ 2, this230

amounts to the standard squared Euclidean distance since d2px}yq “
1
2 px´ yq2. For231

β “ 1 and β “ 0, the β-divergence corresponds to the Kullback-Leibler (KL) diver-232

gence and the Itakura-Saito (IS) divergence, respectively. For NMF and NTF models,233

the data fitting term should be chosen depending on the noise statistic assumed in the234

generative model of the data, see [7, 8, 21, 25] and references therein for more details.235

Section 4 presents our Algorithms to tackle specific instances of the general family of236

problems given in Equation (3.3).237

3.3. Considered variants of the problem. In this paper, two specific in-238

stances of the optimization problem (3.3) subject to constraints in (3.2) are consid-239

ered.240

Nonnegative and non-regularized. For this case, γp.q “ 0 for the regularization241

functions Ψp.q, and the feasible sets Xp.q in (3.2) are the nonnegative orthants of242

appropriate dimensions. The optimization problem defined here will be dubbed as243

“β-pLr, Lr, 1q-NBTD”.244

Nonnegative minimum-volume. The following family of optimization problems is245

considered:246

(3.5)

min
tSru,tPiu,C

Dβ

˜

Y1}

R
ÿ

r“1

´

P1Ar pP2Brq
T
¯

b cr

¸

` λDβ

˜

Y2}

R
ÿ

r“1

`

ArB
T
r

˘

bP3cr

¸

` γvolpCq

s.t. Sr “ ArB
T
r ě 0 @r,Pi ě 0 @i, cr P ∆K @r,

247

where ∆K “ tx P RK` |
řK
k“1pxqk “ 1u, and volpCq is a function measuring the volume248

spanned by the columns of C. In [24], the authors use volpCq “ log detpCTC ` δIq249

where δ is a small positive constant that prevents log detpCTCq from going to ´8250

when C tends to a rank deficient matrix (that is, when rankpCq ă R). This model is251

particularly powerful as it leads to identifiability which is crucial in many applications252

such as in hyperspectral imaging or audio source separation [10]. Finally, the feasible253

sets for factors tArB
T
r u
R
r“1 and Pi are the nonnegative orthant of appropriate size,254

while the feasible set for factor C is the set of column-stochastic matrices. The255

problem defined in (3.5) will be dubbed as “min-vol β-pLr, Lr, 1q-NBTD”.256

Section 4 explains how to tackle the two variants of optimization problems de-257

tailed above. In particular, the optimization problem (3.5) is handled with the general258

framework presented in [26] with a special focus on the Kullback-Leibler (KL) diver-259

gence, that is when β “ 1.260

4. Algorithms. This section addresses the β-pLr, Lr, 1q-NBTD problem. Sub-261

sequently, we will proceed to present our algorithmic solution for tackling the “min-vol262

KL-pLr, Lr, 1q-NBTD” problem outlined in (3.5).263

4.1. Nonnegative and non-regularized. Most nonnegative tensor decompo-264

sition algorithms are based on an iterative scheme that alternatively updates one265

factor at the time with the others kept fixed, as it will be adopted in this paper.266

The goal in this section is to derive an algorithm to solve the nonnegative and non-267

regularized version of (3.3) based on the multiplicative updates (MU) rule. Let us268

consider the subproblem in A (with the others fixed) after unfolding along the first269

mode following Property 2.2:270

(4.1) min
Aě0

DβpY
p1q
1 }P1ApCdp P2Bq

Tq ` λDβpY
p1q
2 }ApP3Cdp Bq

Tq.271

To tackle this problem, we follow the standard majorization-minimization (MM)272

framework [41] and the results given by [25, Lemma 2]. Given the current iterate273
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Ã, let us pose H1 “ pCdp P2Bq
T and H2 “ pP3Cdp Bq

T, we obtain the following274

update:275

(4.2)

A “ Ã d

¨

˚

˚

˝

„

PT1

ˆ

´

P1ÃH1

¯.pβ´2q

d Y
p1q
1

˙

HT
1 ` λ

ˆ

´

ÃH2

¯.pβ´2q

d Y
p1q
2

˙

HT
2



„

PT1

´

P1ÃH1

¯.pβ´1q

HT
1 ` λ

´

ÃH2

¯.pβ´1q

HT
2



˛

‹

‹

‚

.γpβq

276

where A d B (resp. rAs
rBs ) is the Hadamard product (resp. division) between A and277

B, Ap.αq is the element-wise α exponent of A, γpβq “ 1
2´β for β ă 1, γpβq “ 1 for278

β P r1, 2s and γpβq “ 1
β´1 for β ą 2 [9]. The subproblems in B and C can be solved279

similarly and their closed form expressions can be found in Appendix A.280

As opposed to the majority of state-of-the-art methods, the proposed algorithms281

are also able to estimate the degradation matrices Pi for i P t1, ..., 3u. These updates282

can be derived based on the classical MU associated to the matrix model X “ UVT283

[9]. For P1, we are interested in solving DβpY
p1q
1 }P1ApC dp P2Bq

Tq. By posing284

VT “ ApCdp P2Bq
T, we derive:285

(4.3) P1 Ð rP1 d

¨

˚

˚

˝

„

´

rP1V
T
¯.pβ´2q

d Y
p1q
1



V

”

rP1VT
ı.pβ´1q

V

˛

‹

‹

‚

.γpβq

.286

Similar rationale has been followed for the updates of P2 and P3, see Appendix A for287

more details.288

Algorithm 4.1 summarizes the proposed method to tackle the β-(Lr,Lr,1)-NBTD289

optimization problem (3.3). It consists in two optimization loops:290

Loop 1: A, B and C only are alternatively updated with downsampling matrices291

fixed for a maximum of i1 iterations. Pi for i P t1, ..., 3u kept fixed to obtain good292

estimates for A, B and C.293

Loop 2: All the factors, including the matrices Pi, are alternatively updated. The294

maximum number of iterations for Loop 2 is i2. For the HSR problem, the operators295

Pi for i P t1, ..., 3u are usually known and therefore the parameter i2 is set to zero.296

Loop 2 is considered in the case we have partial knowledge or uncertainties on one of297

more downsampling operators, similarly as done in [25] with a matrix model. This298

case will be later referred to as “semi-blind”.299

The Algorithm is stopped when the relative change of the cost function Φ from300

(3.3) is below some given threshold κ, or when the maximum number of iterations is301

reached.302

Initialization: Many options are available to initialize factors pA,B,Cq. In this303

paper, an efficient way to initialize the low-rank factors of the LrLr1-BTD is proposed.304

For factor C, VCA [31] is performed on the HSI Y1, thus extracting high-resolution305

spectral information. Then, the matrix S of vectorized abundance maps is obtained306

by solving the following inverse problem under nonnegative constraints:307

(4.4) min
Sě0

P3CST « Y
p3q
2 .308

Initialization of Ar and Br for r P t1, . . . , Ru is performed based on the classical MU309

Sr “ ArB
T
r [9] with a maximum of j1 iterations.310

In the semi-blind case, i.e., when one or several matrices Pi are unknown, they are311

initialized similarly using (4.3) with a maximum of j2 iterations. The initialization312

procedure is summarized in Algorithm 4.2.313
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Algorithm 4.1 MU for β-(Lr,Lr,1)-NBTD

Require: Input tensors Y1 ě 0, Y2 ě 0, initializations A,B,C ě 0, downsam-
pling operators Pi ě 0 for i P t1, ..., 3u; R, ranks tLru

R
r“1, maximum number of

iterations i1 and i2, a threshold 0 ă κ ! 1, and a weight λ ą 0.
Ensure: An approximate solution to (3.3) under constraints (3.2)

1: % Loop 1: update of matrices A, B and C only
2: iÐ 0, Φ0 “ 1, Φ1 “ 0.

3: while i ă i1 and
ˇ

ˇ

ˇ

Φi
´Φi`1

Φi

ˇ

ˇ

ˇ
ą κ do

4: Update A, B and C sequentially; see Equations (4.2)
5: Compute the objective function Φi`1

6: end while
7: % Loop 2 : update of A, B, C and Pi
8: iÐ 0

9: while i ă i2 and
ˇ

ˇ

ˇ

Φi
´Φi`1

Φi

ˇ

ˇ

ˇ
ą κ do

10: Update A, B, C and Pi for i P t1, ..., 3u sequentially; see Equations (4.2)
and (4.3)

11: Compute the objective function Φi`1

12: end while
13: return Ŷ “

řR
r“1

`

ArB
T
r

˘

b cr

Algorithm 4.2 Initialization of Algorithm 4.1

Require: Input tensors Y1 ě 0, Y2 ě 0, downsampling operators Pi ě 0 for i P
t1, ..., 3u; R, ranks tLru

R
r“1, maximum number of iterations j1 and j2, a threshold

0 ă κ ! 1.
Ensure: Initial values A, B, C

1: Initialize C using VCA on Y1;
2: Compute S using result of (4.4);
3: % Non-blind case: update of Ar, Br only
4: j Ð 0, Φ0 “ 1, Φ1 “ 0.

5: while j ă j1 and
ˇ

ˇ

ˇ

Φj
´Φj`1

Φj

ˇ

ˇ

ˇ
ą κ do

6: Update Ar, Br using the classical MU
7: Compute the objective function Φj`1

8: end while
9: % Blind case: Update Ar, Br, and Pi for i P t1, . . . , 3u

10: j Ð 0

11: while j ă j2 and
ˇ

ˇ

ˇ

Φj
´Φj`1

Φj

ˇ

ˇ

ˇ
ą κ do

12: Update Ar, Br, and Pi using matrix-based MU
13: Compute the objective function Φj`1

14: end while
15: return A “ rA1, . . . ,ARs, B “ rB1, . . . ,BRs and C

4.2. Nonnegative minimum-volume. The primary approach for addressing314

the “min-vol KL-pLr, Lr, 1q-NBTD” problem in equation (3.5) is analogous to the315

methodology employed in Section 4.1, specifically the cyclic block majorization mini-316

mization (BMM) framework. This framework involves cyclically updating each block317

of variables with the others kept fixed, with each update accomplished by minimizing318

a majorizer constructed using the current iterate. The MU for updating the factors319

This manuscript is for review purposes only.
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tAr,Bru
R
r“1 and tPiu

3
i“1 for Problem (3.5) are the same as the ones presented in the320

previous section dedicated to tackling the β-(Lr,Lr,1)-NBTD problem, since the sub-321

problems in theses factors are identical. Therefore, this subsection focuses on solving322

the sub-problem of (3.5) that concerns the minimum-volume penalty and column-323

stochasticity constraints, specifically the updating factor C. The recent optimization324

framework proposed in [26] is used to derive efficient MU for the sub-problem in C,325

which is defined as follows:326

(4.5)
min
C

DβpY
p3q
1 }CH1q ` λDβpY

p3q
2 }P3CH2q ` γ log detpCTC` δIq

s.t. eTC “ eT ,C ě 0.
327

with H1 “ pP1Advec P2Bq
T, and H2 “ pAdvec Bq

T.328

An upper bound for the term log detpCTC`δIq is required by [26, Assumption. 1].329

It is majorized using a convex quadratic separable auxiliary function provided in [24,330

Eq. (3.6)] and which is derived as follows. First, the concave function log detpQq for331

Q ą 0 can be upper bounded using the first-order Taylor approximation: for any332

rQ ą 0,333

log detpQq ď log detprQq ` xrQ´1,Q´ rQy “ xrQ´1,Qy ` cst,334

where cst is some constant independent of Q. For any C, rC, and denoting rQ “335

rCT
rC` δI ą 0, we obtain336

(4.6) log detpCTC` δIq ď
A

rQ´1,CTC
E

` cst “ tracepCrQ´1CT q ` cst,337

which is a convex quadratic and Lipschitz-smooth function in C, and where rC338

will be practically chosen as the current iterate for C. With this and following the339

framework from [26], the Lagrangian function is built as follows340

(4.7)

Gµ
`

C|rC
˘

“

K
ÿ

k

GY1
pck|rckq ` λ

K
ÿ

k

GY2
pck|rckq ` γ

˜

K
ÿ

k

l̄ pck|rckq ` c

¸

` µT
K
ÿ

k

ˆ

ck ´
1

K
e

˙

,

341

where ck denotes the k-th row of C, G is the separable majorizer for β-divergence342

proposed in [9] (one for each β-divergence Dβ in (4.5)), l̄ is a convex and separable343

majorizer1 for the convex quadratic (4.6) and given by [24, Eq. (3.6)], and c is a344

constant. Let µ be the vector of Lagrange multipliers of dimension R associated to345

each linear constraint eT cr “ 1. One can easily show that Gµ is separable w.r.t. each346

component of ck and, given µ, one can compute the closed-form solution (the details347

are omitted):348

(4.8)
C‹pµq “ rCd

„

”

“

Q` eµT
‰.2
`R

ı. 12
´
`

Q` eµT
˘



rDs
,

349

where Q “ EK,I1J1S
T ´ 4γ

`

rCU´
˘

` λPT3 EK2,IJH
T , D “ 4γ rC pU` `U´q, and350

R “ 8γ rC pU` `U´q d

ˆ

”

Y
p3q
1

ı

r rCH1s
HT

1 ` λP
T
3

”

Y
p3q
2

ı

rP3
rCH2s

HT
2

˙

with U “ U` ´ U´ “351

1 tight at the current iterate rC, that is
řK

k l̄ prck|rckq “ traceprC rQ´1
rCT q
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`

rCT
rC ` δI

˘´1
, U` “ maxpU,0q ě 0 and U´ “ maxp´U,0q ě 0, and EK,I1J1 is352

the K-by-I1J1 matrix of all ones. As proved in [26, Proposition. 2], the constraint353

eTC‹pµq “ eT is satisfied for a unique µ P RR. Therefore a Newton-Raphson method354

can be used to find the µ with quadratic rate of convergence; see [26, Proposition. 3].355

Algorithm 4.3 summarizes our method to tackle (3.5).356

Algorithm 4.3 MU for min-vol KL-(Lr,Lr,1)-NBTD

Require: Input tensors Y1 ě 0, Y2 ě 0, initializations A,B,C ě 0, downsam-
pling operators Pi ě 0 for i P t1, ..., 3u; R, ranks tLru

R
r“1, maximum number of

iterations i1 and i2, a threshold 0 ă κ ! 1, and weights λ, γ ą 0.
Ensure: An approximate solution to (3.5)

1: % Loop 1
2: iÐ 0, Φ0 “ 1, Φ1 “ 0.

3: while i ă i1 and
ˇ

ˇ

ˇ

Φi
´Φi`1

Φi

ˇ

ˇ

ˇ
ą κ do

4: % Update of matrices A, B
5: Update A, B and C sequentially; see Equations (4.2)
6: % Update of matrix C

7: UÐ
`

CTC` δI
˘´1

8: U` Ð max pU, 0q
9: U´ Ð max p´U, 0q

10: QÐ EK,I1J1H
T
1 ´ 4γ

`

CU´
˘

` λPT3 EK2,IJH
T
2

11: DÐ 4γC pU` `U´q

12: RÐ 8γC pU` `U´q d

ˆ

”

Y
p3q
1

ı

rCH1s
HT

1 ` λP
T
3

”

Y
p3q
2

ı

rP3CH2s
HT

2

˙

13: µÐ root
`

eTC‹pµq “ eT
˘

over RR % see (4.8) for the expression of C‹pµq

14: CÐ Cd

„

”

rQ`eµT s
.2
`R

ı. 1
2´pQ`eµT q



rDs

15: Compute the objective function Φi`1

16: end while
17: % Loop 2
18: iÐ 0

19: while i ă i2 and
ˇ

ˇ

ˇ

Φi
´Φi`1

Φi

ˇ

ˇ

ˇ
ą κ do

20: Update A, B, C and Pi for i P t1, ..., 3u sequentially; see Equations (4.2),
(4.3) and update of C as performed in Loop 1

21: Compute the objective function Φi`1

22: end while
23: return Ŷ “

řR
r“1

`

ArB
T
r

˘

b cr

4.3. Key insights about the Algorithms. The following paragraphs discuss357

key elements for Algorithms 4.1 and 4.3 proposed in previous sections.358

Comments on computational complexity: The computational complexity of Al-359

gorithm 4.1, designed to solve the β-(Lr, Lr, 1)-NBTD problem, exhibits asymptotic360

equivalence to the standard MU for β-NMF, after unfoldings. This implies that it re-361

quires OpIJK ˆ
řR
r Lrq operations per iteration. The main driver of this complexity362

lies in the aforementioned matrix products. One might question the influence of the363

computation step of Algorithm 4.3, which aims to calculate the optimal Lagrangian364

multipliers, thereby ensuring the column-stochasticity constraints of matrix C are sat-365

isfied. In [26], the authors demonstrate the quadratic convergence of the procedure366
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employed to compute the Lagrangian multipliers. As a result, the number of iterations367

required for this process remains low in practical scenarios. Consequently, the overall368

complexity of Algorithm 4.3 is predominantly determined by the computationally in-369

tensive matrix products mentioned earlier. For more comprehensive information, we370

refer the reader to [26].371

Parallelization: Some of the most computationally intensive steps of the proposed372

algorithm can be easily ran onto a parallel computation platform. Indeed, the com-373

plexity of the MU given in Equation (4.2), for instance, is mainly driven by the matrix374

products in which matrices A and H are involved. On MATLAB for example, one375

can easily take of advantage of a GPU compatible with CUDA libraries by simply376

transforming usual arrays into GPU arrays and significantly speed up the Algorithm.377

Comments on convergence guarantees: In practice, the updates of factors A, B,378

C and Pi are obtained from the element-wise maximum between the matrix updates,379

that correspond to the closed form expression of the minimizer of the majorization380

built at the current iterate [9, 25], and a small positive scalar ε (here we choose the381

Matlab machine epsilon). These modified updates aim at establishing convergence382

guarantee to stationary points within the Block Successive Minimization Methods383

(BSUM) framework [37].384

5. Numerical experiments. All tests are preformed using Matlab R2021a on385

a laptop Intel CORE i7-11800H CPU @2.30GHz 16GB RAM with GeForce RTX3060386

GPU. The code is available online at https://github.com/cprevost4/bLL1 NBTD.387

5.1. Test setup. The proposed algorithms were compared to several tensor388

methods designed for solving the HSR problem, namely STEREO and Blind-STEREO389

[17, 19], SCOTT and BSCOTT [34], CT-STAR and CB-STAR [2], SCLL1 [6] and390

CNN-BTD-Var [32]. Among them, SCLL1 and CNN-BTD-Var were based on the391

LL1-BTD model2, therefore they are able to solve the unmixing problem3.392

Several matrix-based approaches were also benchmarked: CNMF [47], FUSE [46],393

HySure [40], SFIM [46] and MR-β-NMF [25]. Being based on coupled nonnegative394

matrix factorization, CNMF and MR-β-NMF were able to perform joint fusion and395

unmixing. In particular, MR-β-NMF was based on multiplicative updates with the396

β-divergence, but did not include a volume-regularizing constraint. The ranks and397

regularization parameters were chosen according to the original works.398

The proposed algorithms were initialized using Algorithm 4.2 with a maximum399

of 500 iterations and a threshold κ “ 10´7. All methods were limited to a maximum400

of 1000 iterations, encompassing both loops, and utilized a fixed value of κ “ 10´7.401

The groundtruth SRI Y was compared to the estimated SRI pY obtained by the402

algorithms. The main performance metric used in comparisons was the Peak Signal-403

to-Noise ratio (PSNR) [46]:404

(5.1) PSNR “ 10log10

˜

}Y}2F
}pY ´Y}2F

¸

.405

In addition to PSNR, we considered different metrics [46] described below:406

(5.2) CC “
1

IJK

˜

K
ÿ

k“1

ρ
´

Y :,:,k, pY :,:,k

¯

¸

,407

where ρp¨, ¨q is the Pearson correlation coefficient between the estimated and original408

2These works all considered the simpler model with L1 “ . . . “ LR.
3The performance of SCLL1 for blind spectral unmixing was not assessed in the original work.
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spectral slices;409

(5.3) ERGAS “
100

d

g

f

f

e

1

IJK

K
ÿ

k“1

}pY :,:,k ´Y :,:,k}
2
F

µ2
k

,410

where µ2
k is the mean value of pY :,:,k. ERGAS represents the relative dimensionless411

global error between the SRI and the estimate, which is the root mean-square error412

averaged by the size of the SRI. We also used Spectral Angle Distance (SAD):413

(5.4) SAD “
1

R

R
ÿ

r“1

arccos

ˆ

cTrpcr
}cr}2}pcr}2

˙

,414

which computes the spectral angle distance between original and estimated spectra,415

and can be used to assess unmixing performance as well. Performance for recovery of416

the abundance maps was assessed using the root mean-squared error between reference417

S and estimate pS:418

(5.5) RMSE “
1

R

R
ÿ

r“1

g

f

f

e

1

IJ

IJ
ÿ

d“1

´

pSrqd ´ ppSrqdq
¯2

.419

The computational time for each algorithm was given by the tic and toc functions420

of Matlab. Finally, the compression rate (C.R.) of each method was computed, i.e.,421

the ratio between the number of elements in the unknown SRI and the number of422

unknown parameters in the algorithms. The higher this value, the less parameters423

need to be recovered by the model.424

5.2. Degradation model. We considered synthetic and semi-real datasets for425

which a reference SRI is available. The HSI was obtained by spatial degradation of426

Y using P1 and P2 while the MSI was obtained by spectral degradation of Y with427

P3 according to model (2.5).428

For spatial degradation, we followed the commonly used Wald’s protocol [42].429

The matrices P1, P2 were computed with a separable Gaussian blurring kernel of size430

q “ 9. Downsampling was performed along each spatial dimension with a ratio d “ 4431

between the SRI and HSI, as in previous works [17]– [6].432

For the spectral degradation matrix P3, the spectral response functions of the433

Sentinel-2 instrument4 was used. It spans the electromagnetic spectrum from 412nm434

to 2022nm and produces a 10-band MSI (K2 “ 10) corresponding to the wavelengths435

433–453nm (atmospheric correction), 458–522nm (soil, vegetation), 543–577nm (green436

peak), 650–680nm (maximum chlorophyll absorption), 698–712nm (red edge), 733–437

747nm (red edge), 773–793nm (leaf area index, edge of NIR), 785–900nm (leaf area438

index), 855–875nm (NIR plateau), 935–955nm (water vapour absorption). The spec-439

tral degradation matrix P3 acts as a selection-weighting matrix, utilizing the shared440

spectral bands between the SRI and the MSI datasets.441

As done in [25], three noise statistics were considered: Gaussian Noise, Poisson442

noise and Multiplicative Gamma noise. Gaussian and Poisson noise were added to443

the observations in order to yield 30dB SNR. For Gamma noise, we considered a444

distribution of mean 1 and variance 0.05. Since both observations are subject to the445

same level of noise, we fixed the weight λ “ 1.446

4available for download at https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/
document-library/-/assetpublisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses.
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5.3. Datasets. Experiments were run on synthetic and semi-real datasets de-447

scribed below.448

Synthetic dataset: A dataset where the SRI admits an exact LrLr1-BTD was449

created, in order to perform simulations in a controlled environment.450

We considered R “ 4 spectral signatures cr (r P t1, . . . , Ru) obtained from the451

Jasper Ridge reference data5. The SRI Y P RIˆJˆK (I “ J “ 120, K “ 173) was split452

into 36 equal blocks in the spatial dimensions. We set L1 “ L2 “ 3 and L3 “ L4 “ 6.453

Each abundance map Sr (r P t1, . . . , Ru) was a block matrix with Lr blocks of size454
I
Lr
ˆ J

Lr
. Each block in the parcel map was a patch composed of entries equal to455

one. At most one material is active in each block, thus the so-called “pure pixel456

assumption” was valid. Figure 1 depicts the abundance maps for the four materials457

in the synthetic data set.

Fig. 1. Abundance maps for the four materials in the synthetic dataset.

458
The reference SRI is computed as follows:459

Y “

R
ÿ

r“1

Sr b cr.460

461

Semi-real datasets: The first semi-real dataset we considered is built upon the462

Jasper Ridge reference SRI Y P R100ˆ100ˆ173. It includes four materials: road, soil,463

water and vegetation. We chose R “ 4, and L1 “ 15, L2 “ 8, L3 “ 20, L4 “ 13.464

A second semi-real dataset was considered and based on the Ivanpah Playa [30]465

reference SRI Y P R95ˆ95ˆ156 This dataset is composed of four, very similar materials:466

road, solar panels, light sand and darker sand. Thus it constitutes a challenging467

example for which unmixing may lead to rank-deficient solutions.468

5.4. Reconstruction results. In order to assess the performance of our ap-469

proaches for data fusion, the quality metrics obtained with each method over 5 trials470

are reported in the Tables 1–3 below. The two best metrics of each columns are471

shown in bold. For comparison with Algorithm 4.3, we only show the results for the472

KL divergence, i.e., for β “ 1 along with Poisson noise. The results for other noise473

statistics are available in supplementary materials.474

The proposed algorithms yield better metrics than most baseline methods. More-475

over, they provide excellent reconstruction results for, e.g., the Ivanpah Playa dataset.476

The compression rate is higher than that of matrix-based approaches (i.e., less infor-477

mation was needed to reconstruct the SRI). It is however lower than that of other478

tensor-based algorithms, but provide significantly better results than, e.g., CT-STAR479

and CNN-BTD-Var for the semi-real datasets.480

As it will be highlighted in the following sections, the good unmixing performance481

of the minimim-volume regularized approach come at the cost of a tradeoff in the re-482

construction performance. The proposed algorithms however remain very competitive483

for reconstruction of the three considered SRI.484

5.5. Unmixing results. For the unmixing task, the reference and estimated485

spectral signatures and abundance maps are depicted. Due to space limitations,486

5Available for download at http://lesun.weebly.com/hyperspectral-data-set.html.
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Method CC (Ò) SAD (Ó) RMSE (Ó) ERGAS (Ó) PSNR (dB) (Ò) Time (sec) (Ó) C.R. (Ò)

STEREO 0.999 2.82 8.882e-3 1.347 35.31 1.573 120
BSTEREO 0.995 7.98 2.134e-2 2.809 29.93 1.379 101

SCOTT 0.999 2.77 1.122e-2 1.518 34.30 2.087 234
BSCOTT 0.999 1.47 1.146e-2 1.601 34.11 0.204 159

SCLL1 0.987 5.70 3.609e-2 5.434 24.46 33.57 266
CT-STAR 0.999 0.25 5.272e-3 0.713 39.71 0.102 242
CB-STAR 0.999 1.25 6.408e-3 0.991 38.02 20.14 138

CNN-BTD-Var 0.997 5.30 1.260e-2 2.952 32.76 3.302 266
CNMF 0.999 1.09 7.313e-3 1.364 36.20 1.872 43
FUSE 0.994 2.77 1.470e-2 2.813 30.92 0.146 6

HySure 0.998 3.04 1.375e-2 2.174 32.35 17.48 43
SFIM 0.990 4.96 2.544e-2 3.817 28.07 0.281 6

MR-β(=1)-NMF 0.998 2.22 7.026e-2 1.581 37.08 586.77 43
Alg. 4.1 (β = 1) 0.999 1.19 1.065e-2 0.776 35.69 23.42 497
Alg. 4.3 (β = 1) 0.999 2.96 8.703e-3 2.007 36.88 30.19 497

Table 1
Reconstruction of the synthetic dataset with Poisson noise.

Method CC (Ò) SAD (Ó) RMSE (Ó) ERGAS (Ó) PSNR (dB) (Ò) Time (sec) (Ó) C.R. (Ò)

STEREO 0.989 3.01 1.378e-2 2.617 31.10 1.597 92
BSTEREO 0.989 3.05 1.435e-2 2.479 30.69 1.673 82

SCOTT 0.991 3.30 1.584e-2 2.361 30.20 0.180 191
BSCOTT 0.981 3.55 2.282e-2 3.191 28.11 0.213 127

SCLL1 0.979 5.23 2.983e-2 3.656 25.46 11.387 199
CT-STAR 0.886 8.63 5.328e-2 7.204 19.53 0.092 456
CB-STAR 0.992 2.89 1.371e-2 2.269 31.09 7.592 116

CNN-BTD-Var 0.920 8.63 4.152e-2 6.078 21.45 1.130 199
CNMF 0.999 0.90 6.000e-3 1.493 27.96 1.302 42
FUSE 0.984 2.88 2.066e-2 3.227 28.15 0.276 8

HySure 0.998 2.05 1.196e-2 1.778 33.55 13.734 42
SFIM 0.989 3.71 2.083e-2 2.832 29.54 0.320 8

MR-β(=1)-NMF 0.964 5.63 2.111e-2 6.514 27.81 61.268 42
Alg. 4.1 (β “ 1) 0.990 3.16 1.712e-2 2.657 29.58 42.241 87
Alg. 4.3 (β = 1) 0.986 3.95 2.144e-2 2.88 27.58 19.77 87

Table 2
Reconstruction metrics on the Jasper Ridge dataset, Poisson noise.

only the results for our algorithms and SCLL1 in the scenario of Poisson additive487

noise are shown. The other results, including the other baseline algorithms and noise488

statistics, are available as supplementary materials. Figures 2–4 show the reference489

and estimated spectra (first column), reference abundance maps (second column) and490

the estimated maps (third column).
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Fig. 2. Unmixing on the synthetic dataset with Poisson noise, (a) Algorithm 4.1, (b) Algo-

rithm 4.3, (c) SCLL1.
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Method CC (Ò) SAD (Ó) RMSE (Ó) ERGAS (Ó) PSNR (dB) (Ò) Time (sec) (Ó) C.R. (Ò)

STEREO 0.987 1.82 1.421e-2 1.119 32.07 1.640 92
BSTEREO 0.979 2.84 1.897e-2 1.477 29.90 1.499 81

SCOTT 0.979 1.80 1.629e-2 1.265 30.58 0.189 196
BSCOTT 0.870 5.45 3.946e-2 3.320 23.82 0.115 142

SCLL1 0.974 5.12 6.996e-2 3.985 22.05 2.838 86
CT-STAR 0.948 1.30 2.257e-2 1.595 27.01 0.053 442
CB-STAR 0.988 1.24 1.215e-2 0.969 32.31 5.955 196

CNN-BTD-Var 0.973 1.11 1.827e-2 1.295 28.42 2.727 86
CNMF 0.988 1.12 8.598e-3 0.766 34.96 1.931 42
FUSE 0.991 1.05 9.621e-3 0.825 34.02 0.233 8

HySure 0.939 3.71 2.583e-2 2.083 27.15 13.852 42
SFIM 0.963 2.08 1.605e-2 1.289 30.02 0.258 8

MR-β(=1)-NMF 0.983 1.82 1.415e-2 1.573 32.26 152.81 42
Alg. 4.1 (β “ 1) 0.983 1.75 1.489e-2 1.176 31.43 46.472 125
Alg. 4.3 (β = 1) 0.984 1.74 1.502e-2 1.172 31.33 19.16 125

Table 3
Reconstruction metrics on the Ivanpah Playa dataset, Poisson noise.
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Fig. 3. Unmixing on the Jasper Ridge dataset with Poisson noise, (a) Algorithm 4.1, (b)

Algorithm 4.3, (c) SCLL1.

One can observe that the baseline algorithm SCLL1 provide rather poor results,492

due to its incapacity to account for different noise statistics and different Lr values.493

Conversely, the spectral signatures and abundance maps are correctly estimated by494

the proposed algorithms for the three considered datasets. Algorithm 4.3 generally495

yields better estimation of the spectra and less artifacts on the abundance maps. Even496

though Ivanpah Playa is a notoriously difficult dataset for unmixing, Algorithm 4.3497

provides a good estimation of the materials in the scene.498

5.6. Performance in a semi-blind scenario. The performance of our algo-499

rithms was then evaluated in a semi-blind scenario, i.e., when the spatial degradation500

matrices P1 and P2 are unknown. This scenario is likely to occur, e.g., when the501

HSI and MSI are acquired at different times or in the presence of motion blur. The502

proposed algorithms were compared to two semi-blind tensor algorithms: BSTEREO503

and BSCOTT, that do not estimate P1 and P2.504

We considered the Jasper Ridge dataset and the three noise statistics. Table 4505

presents the reconstruction metrics obtained for the benchmarked algorithms. The506

proposed algorithms generally provides good reconstruction, especially with additive507

Gaussian noise. One can observe that using Algorithm 4.3 with β “ 1 improves the508

overall reconstruction performance. Although the computation time is higher than509

that of the other tensor algorithms, it is significantly smaller than the one of the510

MR-β-NMF approach.511

Figure 5 shows a portion of the reference and estimated spatial degradation (that512
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Fig. 4. Unmixing on the Ivanpah Playa dataset with Poisson noise, (a) Algorithm 4.1, (b)

Algorithm 4.3, (c) SCLL1.

Method CC (Ò) SAD (Ó) RMSE (Ó) ERGAS (Ó) PSNR (dB) (Ò) Time (sec) (Ó)

Gaussian Noise - 30 dB

BSTEREO 0.962 5.28 2.585e-2 4.690 25.13 0.974
BSCOTT 0.947 5.60 3.169e-2 5.972 24.48 0.108

MR-β-NMF 0.971 6.88 4.508e-2 6.120 22.34 1393.747
Alg. 4.1 (β “ 2) 0.976 3.85 2.521e-2 4.407 26.36 74.142

Poisson Noise - 30dB

BSTEREO 0.962 5.67 2.726e-2 3.917 24.90 1.752
BSCOTT 0.951 5.57 3.094e-2 4.467 24.46 0.465

MR-β-NMF 0.988 4.57 2.306e-2 3.228 28.83 1187.941
Alg. 4.1 (β “ 1) 0.964 6.95 2.653e-2 3.922 25.92 50.776
Alg. 4.3 (β = 1) 0.986 4.34 2.161e-2 2.937 27.76 26.59

Gamma Noise

BSTEREO 0.961 5.57 2.691e-2 4.503 24.82 1.689
BSCOTT 0.951 5.80 3.258e-2 4.936 24.13 0.483

MR-β-NMF 0.981 5.41 3.335e-2 4.46 25.58 1401.120
Alg. 4.1 (β “ 0) 0.967 3.66 3.024e-2 5.627 25.93 90.296

Table 4
Semi-blind reconstruction on the Jasper Ridge dataset.

is, P2 bP1). A single slice of the true HSI and the tensor constructed by mode prod-513

uct of the SRI with the estimated spatial degradation is also shown. The proposed514

algorithms recovers correctly the structure of the spatial degradation operators. More-515

over, the HSI obtained from the estimated degradation is coherent with the reference516

HSI, and Algorithm 4.3 provides slightly better results.517

Figure 6 shows our unmixing results in the case β “ 1. The spectra and abun-518

dance maps are correctly estimated by the proposed algorithms, even without prior519

knowledge on the spatial degradation matrix. Resorting to Algorithm 4.3 offers better520

estimation of the spectral signatures and less artifacts due to the low-rank assumption521

on the abundance maps.522

5.7. Estimation of the number of endmembers. This subsection highlights523

the capabilities of Algorithm 4.3 to accurately retrieve the number of endmembers524

underlying an image.525

This test considered the synthetic dataset with 4 endmembers. We deliberately526

chose R “ 6 for our algorithms to simulate an overestimation of the number of ma-527

terials. The first 4 columns of C were initialized using VCA while the remaining two528

were initialized randomly. We chose L1 “ L2 “ L5 “ L6 “ 3 and L3 “ L4 “ 6.529

Figure 7 presents the unmixing results obtained with Algorithm 4.1 and Algo-530
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Fig. 5. Estimation of the spatial degradation and comparison with the real HSI, (a) Algo-

rithm 4.1 (β “ 1), (b) Algorithm 4.3 (β “ 1).
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Fig. 6. Semi-blind unmixing, (a) Algorithm 4.1 (β “ 1), (b) Algorithm 4.3 (β “ 1).

rithm 4.3 with β “ 1. Algorithm 4.1 only recovers the first three spectra correctly,531

while the other three do not match the reference spectral signatures. The estimated532

abundance maps seem like mixtures of several reference abundance maps, thus they533

are not estimated correctly. Algorithm 4.3 recovers with high accuracy the four spec-534

tral signatures and abundance maps of interest. The other two materials are almost535

constant and show very low magnitude. These numerical evidences support the ca-536

pacity of Algorithm 4.3 to estimate the correct number of materials, hence performing537

automatic model order selection, on top of the reconstruction and unmixing tasks.538

6. Conclusion. This paper proposes a family of coupled tensor-based optimiza-539

tion problems. Using the beta-divergence, various noise statistics can be accounted540

for. The use of the BTD allows the proposed algorithms to jointly solve the recon-541

struction and unmixing tasks in remote sensing, even in challenging cases such as a542

semi-blind scenario or almost collinear materials. We introduced a new family of pe-543

nalized optimization problems with a focus on the minimum-volume regularization. A544
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Fig. 7. Unmixing results with overestimation of the rank R, (a) Algorithm 4.1 (β “ 1), (b)

Algorithm 4.3 (β “ 1).

new Algorithm, dubbed as “min-vol β-(Lr,Lr,1)-NBTD”, was introduced to efficiently545

solve the regularized problems. The experiments show that the minimum-volume reg-546

ularization approach improves the unmixing performance, at the cost of a small loss in547

the reconstruction performance. More importantly, the “min-vol β-(Lr,Lr,1)-NBTD”548

algorithm correctly estimates the number of materials in the datasets, additionally to549

perform high-quality unmixing. The minimum-volume regularization approach also550

previously showed its interest for automatic model order selection in audio signal pro-551

cessing. Future works will be devoted to the mathematical analysis of this mechanism.552

Appendix A. Detailed MU updates. This appendix contains the closed-553

form expressions for the updates of B and C, similarly to (4.2).554

(A.1)

B “ B̃ d

¨

˚

˚

˝

„

PT2

ˆ

´

P2B̃H1

¯.pβ´2q

d Y
p2q
1

˙

HT
1 ` λ

ˆ

´

B̃H2

¯.pβ´2q

d Y
p2q
2

˙

HT
2



„

PT2

´

P2B̃H1

¯.pβ´1q

HT
1 ` λ

´

B̃H2

¯.pβ´1q

HT
2



˛

‹

‹

‚

.γpβq

,555

where H1 “ pCdp P1Aq
T and H2 “ pP3Cdp Aq

T. For C, we have556

(A.2)

C “ C̃ d

¨

˚

˚

˝

„ˆ

´

C̃H1

¯.pβ´2q

d Y
p3q
1

˙

HT
1 ` λP

T
3

ˆ

´

P3C̃H2

¯.pβ´2q

d Y
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2

˙

HT
2



„
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C̃H1
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1 ` λP

T
3

´

P3C̃H2

¯.pβ´1q
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2



˛

‹

‹

‚

.γpβq

,557

with H2 “ rpA1 dB1q 1L1
, . . . , pAR dBRq 1LR

s
T

and H1 “ pP2 bP1qH2.558

The updates for P2 (resp. P3) are obtained by substituting P1 by P2 (resp.559

P3), Y
p1q
1 by Y

p2q
1 (resp. Y

p3q
2 ) and defining VT “ BpC dp P1Aq

T (resp. VT “560

CpAdvec Bq
T) in (4.3).561
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