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Terrestrial ecosystems respond to changes in environmental conditions, mainly via key
climatic controls of precipitation and temperature on vegetation activities and
decomposition processes !. Yet, the relationship between climate and the overall
spatiotemporal dynamics and uncertainties of the global carbon cycle, i.e., gross
primary productivity (GPP), effective ecosystem carbon turnover times (7), and
consequently the total ecosystem carbon stock (Curar), are unclear 25, Using a global
observation-based synthesis, we first show that the apparent partial spatial climate
sensitivities of GPP and 7 are associated with relative availability of precipitation and
temperature, and are therefore modulated by aridity. The apparent sensitivity of GPP
to temperature increases from arid to humid climatic regions. In contrast, its sensitivity
to precipitation is invariant throughout different climatic regions. Simultaneously, the
T-precipitation response is strongly non-linear resulting in ~2 times longer 7 in arid
regions compared to humid regions for a given temperature. Compared with these
observed patterns, the offline carbon cycle simulations of seven European Earth System
Models (ESMs), that participated in CMIP6, perform relatively better for climate
sensitivities of GPP than those of 7. This leads to a large spread and bias in Ciws in both
warm and cold semi-arid and arid regions where only a few models capture the
observed 7-precipitation relationship. The emergence of the hydrological controls,
modulated by aridity, on global carbon cycle implies that the changes in precipitation
may moderate the temperature-driven climate feedback of the global carbon cycle

under climate change.

Introduction

The exchange of carbon between the biosphere and atmosphere represents a key mechanism
controlling the effect of global changes on the carbon cycle °, as well as on the water and
energy cycles 7. The land ecosystems, at the centre of biosphere-atmosphere interaction, store
carbon by integrating the differences in carbon captured through gross primary productivity
(GPP), and carbon released through decomposition processes. Due to the complex
dependencies of the photosynthesis and decomposition on climate, biomes, and carbon use
efficiency of vegetations 3, the resulting carbon stocks vary significantly across space and
time. The differences in modelling these complex climate-biosphere dependencies, therefore,
lead to large differences in Earth system model (ESM) predictions of carbon stocks °-!° that

are prevalent under the current climate and exacerbate under future climate change scenarios.



The ecosystem turnover and associated carbon losses and stocks, thus, represent major
sources of uncertainties regarding carbon cycle — climate feedbacks "2 and the projections

5,13,14

of future carbon budgets , and modelling and constraining them with observations still

pose a significant challenge to ESMs 24,

Various studies have, therefore, investigated the relationship between land carbon stocks and
their climate drivers. For example, the uncertainties in soil organic carbon and their responses
to climate change have been extensively studied !°, but mostly focused on temperature, as the
first principles dictate the key role of temperature in determining the current and future
carbon cycle dynamics '®. The studies focusing only on energy-limited humid and cold
regions, understandably, have shown strong associations of spatial variations of carbon stocks
and temperature !7. When other climatic regions globally are considered, though, temperature
alone only explains ~10% of the total spatial variation of the observation-based soil organic
carbon '° suggesting a larger influence of additional environmental factors. In particular,
precipitation, which is the primary source of moisture for all land processes, is potentially a
strong driver of spatial variation of turnover times, the 7 '8, as demonstrated by the
significance of moisture effects on decomposition !? and the observation-based linkages
between water and carbon cycles 2°. The moisture availability is especially critical in arid to
semi-arid regions, which cover ~39% of the global vegetated land, and substantially influence
the interannual variabilities of global biosphere-atmosphere carbon exchange 22, but the

effects on modelled 7 has been largely ignored 4.

In an ecosystem under a steady state, the temporal variations in total ecosystem carbon
storage (hereafter Croa) become negligible as the net input (GPP) and output (total ecosystem
respiration) carbon fluxes balance each other. The spatial variations of Cros across
ecosystems are, then, essentially defined by the differences in GPP and the carbon loss
determined by decomposition rates and 7. The climate, though, has differential influences on
and association with GPP and 7, which result in a unique spatial heterogeneity in Coras
compared to those of either GPP or 7. It is, therefore, critical that the sensitivities of GPP, z,
and Cro to climatic variations are simultaneously evaluated, especially in ESMs where the

uncertainties in Cios may be related to not only GPP 2 but to both  and GPP °.

Here, based on observation-based estimates of the carbon cycle, we first evaluate the
apparent spatial sensitivities of climatological mean GPP and 7 to two primary climatic
drivers: mean annual air temperature (MA47) and mean annual precipitation (MAP). To infer

effective or apparent climatological z of an ecosystem, we assume that the ecosystem carbon



reaches a steady-state over multiple decades, and calculate 7 as the ratio of long-term
averages of total ecosystem carbon stock and GPP 7182526 The apparent spatial sensitivities
of the climatological carbon cycle are assessed in a climate phase-space of temperature and
precipitation for different climatic regions (arid to humid) that are delineated using an aridity
index, defined as the ratio of mean annual precipitation and potential evapotranspiration (see
Methods and Figure A1). While aridity itself is not directly mechanistically connected to
physiological and decomposition processes within an ecosystem, it is a rather clear indicator
of relative availability of limiting moisture and energy resources that define the soil moisture
regime (Figure A2), and consequently, the vegetation responses and patterns 2’-2°, The
climate sensitivities of z and GPP are represented using non-linear relationships with
temperature and precipitation (see Methods). The relationships are then used as the basis for
evaluation of the offline carbon cycle model simulations of seven European ESMs from
CRESCENDO project (see Methods), which participated in the Sixth Phase of Coupled
Model Intercomparison Project (CMIP6).

Observation-based climate sensitivities

Both 7 and GPP exhibit unique sensitivities to the spatial variabilities of precipitation and
temperature in all climatic regions despite large heterogeneity within a climatic region
(Figure 1, Table A4). First, 7 varies strongly across both temperature and precipitation
gradients in all climatic regions. The sensitivity of 7 to temperature is well-documented for
humid regions !7. Interestingly, there is a significant offset in 7 as the climate gets drier with
the longest 7 in arid regions (=178 years at 0°C) compared to humid regions (76 years). In
fact, for any given temperature, 7 is longer in the arid regions compared to humid regions,
suggesting an influence of, or covariation with, precipitation across climatic regions. The
sensitivities to temperature, i.e., the slope of the fitted lines in Figure 1a, are all within ~17%
across different climatic regions (Table A3). It should be noted that a significant number of
grid cells, with a mean temperature less than 0°C, have longer 7 than under warmer
temperatures within the same climatic region. Yet, the non-linear increase in temperature
sensitivity with decreasing temperature is not as strong as reported previously for 7 of soil
organic carbon 7 and the linear coefficients dominate the non-linear coefficients in different
climatic regions (inset of Figure 1, and Table A3). While several factors may lead to such
differences (e.g., differences in observed data, methodology, etc.), one key reason may also

be the selection of climatic regions. For instance, in regions with temperature >10°C,



ignoring arid to semi-arid regions with a systematically longer 7 than humid region would
skew the overall distribution of 7, which would then lead to a hyper-logarithmically nonlinear

7- temperature relationship.

The apparent sensitivity of 7 to precipitation is large when the precipitation is lower than
~1000 mm/year across all climatic regions (Figure 1b). Only within 0-1000 mm/year range
of precipitation, 7 varies by more than an order of magnitude. Contrasting to temperature, the
T-precipitation relationship saturates at higher precipitation (>1000 mm/year) in all regions
except arid regions where precipitation never crosses the threshold. The overall apparent
sensitivity of 7 to precipitation is, therefore, hyper-logarithmically nonlinear, as indicated by a
clear positive curvature. While the functional relationship of precipitation is almost the same
for all but energy-limited humid regions, the sensitivity of 7 to precipitation is smaller for
humid regions compared to arid regions, indicating a saturation of the precipitation effect on
7. The difference of 7 across different climatic regions is the smallest in the lowest
precipitation ranges. Similar to the z-temperature relationship, though, there is still a large
variability of 7 for given precipitation within all climatic regions (as indicated by low »? and

higher 7maq of fitted relationships in Figure 1 and Table A4).

GPP also has a clear relationship with temperature, the strength of which is dependent on the
climatic region (Figure 1c). The temperature sensitivity is the largest in humid and the
smallest in arid climatic region. In the humid region, GPP sensitivity to temperature increases
with temperature. The GPP increases steadily for increasing precipitation with very small
differences across different climatic regions (Figure 1d). The increase in GPP with
precipitation is quasi-linear in all climates, as GPP saturates at the highest precipitation
values, especially in the humid regions. This, again, suggests that precipitation plays an
important role in determining GPP when the vegetation activities are likely to be limited by
moisture. While a strong relationship of GPP with precipitation has been shown previously
3032 the minimal difference of GPP across different climatic regions for given precipitation

shows that the spatial variation of GPP is mainly related to precipitation alone.
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Figure 1. Relationship between observation-based ecosystem turnover time of carbon (7,
years) and gross primary productivity (GPP, kgC/m?/year) with climate. In the top row,
the relationship of 7 with a) mean annual temperature (MAT, °C) and b) precipitation (MAP,
mm/year) are plotted. The bottom row shows the same for GPP (c and d). The different
colours indicate different climatic regions defined by the aridity index, and individual grid-
cells are plotted as dots. The lines show a non-linear least square fit (see Methods) for the
variation of 7 and GPP with MAT and MAP within each climatic region. The inset text shows
the parameters of the fit (non-linear coefficient | linear coefficient | constant) while the fitting
performances are provided in Table A4. Note the logarithmic vertical axis for 7 in a and b.

Climate sensitivities in Carbon Cycle models

In the CRESCENDDO model simulations, the apparent sensitivities of 7 to climate have
larger biases than those of GPP to climate, when compared against respective observation-
based sensitivities (Figure 2). First, the comparison of the z-temperature relationship reveals
that all models, except CLM4.5 and SURFEX, have a shorter 7 than observation across all

climatic regions while the linear correlation between the model and observation-based



relationships are generally high (first column, Figure 2). This is accompanied by a large bias
in 7 with most models, except CLM4.5, showing a clear underestimation. The differences
between models and observation and among models also remain fairly similar across all
climates. For example, the model with the longest 7 in the arid region also has the longest 7 in
other climatic regions. This suggests that the temperature dependence of 7 in a given model
remains fairly consistent across different climatic regions. Of the models, only CLMS5 shows
a stronger sensitivity of 7 to temperature with a hyper-logarithmically nonlinear increase in z

when the temperature decreases below 0°C (Figure 2¢e).

Similar to observation, the models also exhibit a tendency of non-linear increase in 7 for
decreasing precipitation, with the largest sensitivity in arid regions and the smallest
sensitivity in humid regions (second column of Figure 2). Most models, though, show a
smaller sensitivity to precipitation than the observation with a consistent underestimation bias
across all climate, with the largest difference in the arid regions. In fact, only CLM4.5 and
SURFEX show a significant increase of 7 in the lower precipitation range that is akin to the

observation.

For GPP, the models show increased sensitivity to temperature from arid to humid climatic
regions (third column of Figure 2) except for CLM4.5 (Figure 2c), which shows a smaller
increase in GPP at a higher temperature in all but the humid region, and LPJ-GUESS (Figure
2s) with much larger GPP in arid regions. In general, all models represent the sensitivity of
GPP to temperature fairly well with a relatively smaller biases than the same of z. The
sensitivity of GPP to precipitation also shows a small spread among the models (fourth
column of Figure 2). Only in the humid regions, a large number of models, e.g., CLM4.5 and
JSBACH, over-predict GPP in the highest precipitation range, where the observation-based

GPP shows a saturating tendency.
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Figure 2. Evaluation of sensitivities of climatological carbon cycle dynamics to climate
in CRESCENDO models. In the first and second columns, the relationships between
ecosystem turnover time of carbon (z, years) versus mean annual temperature (MAT) and
precipitation (MAP) are presented, followed by those for gross primary productivity (GPP,
kgC/m?/year) in the third and fourth columns. Along the row, the comparisons for different
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ORCHIDEE LPJ-GUESS JULES JSBACH CLM5

SURFEX

models against the observation are presented. The different colours indicate different climatic

regions defined by the aridity index. The dotted lines indicate the observation-based
relationship, and the solid lines indicate relationship from the model simulations. The inset
text shows coefficient of determination (%) and mean relative bias between the fitted
relationships from the models and observation. Note the logarithmic vertical axis for 7 in the

first and second columns.



Partial correlations with climate
To elucidate the regional variations of 7, GPP and the resulting Cwi, and eliminate
collinearity between precipitation and climate, here, we evaluate the zonal variations and

their partial associations with precipitation and temperature.

In general, the large-scale zonal distribution of 7 follows temperature, and that of GPP
follows precipitation (first column of Figure 3, and Figure A4). The 7 is the shortest in
tropical regions with the highest temperature and the longest in high latitudes with the lowest
temperature (Figure 3a). Similarly, GPP is the largest in the wettest tropical regions with the
highest precipitation (Figure 3d). The zonal distribution of Cyws reveals a smaller variation
across the latitude compared to z and GPP (Figure 3g). Nonetheless, the largest Cros OCcur in
either the humid tropics with the largest GPP or in the high latitudes with the longest 7. In
general, the CRESCENDO models produce zonal variations similar to observation-based
estimates, with the smallest bias for GPP, and a consistent underestimation bias of 7 and Cjpsa

across the latitude.

The observation-based 7 has a stronger negative correlation with temperature in the energy-
limited regions such as the tropics and high latitudes of both hemispheres compared to the
moisture-limited regions (Figure 3b). In general, the latitudinal variation of z-temperature
correlation is much stronger in the models than in the observation. This is especially true for
sub-tropical mid-latitudes (40°S to 40°N) except the humid tropical regions. In the same
regions, the local variation of 7 has a stronger correlation with precipitation than with
temperature (Figure 3c). The z-precipitation relationships in the models have a larger spread,
and most models have a weaker z-precipitation correlation than in the observation. This is
especially clear in the subtropical southern hemisphere and temperate northern hemisphere.
This weaker z-precipitation correlation is concurrent with a stronger z-temperature correlation
in the models suggesting a dominant temperature control on carbon cycle sensitivity to
climate. In these regions, only SURFEX shows a strong local-scale z-precipitation correlation
that is consistently stronger than the observation, but it also exhibits a stronger bias in the

high latitudes.

Further, both the observations and models show a much stronger correlation of GPP with
precipitation (Figure 3f) than with temperature (Figure 3¢) across most of the latitudes. Only
in the northern high latitudes over ~50°N (with MAT < 0°C), GPP has a stronger correlation

with temperature than with precipitation. In fact, in these regions, the low winter temperature

9



affects the MAT significantly, and correcting for winter reveals a clearer role of temperature
in the high latitudes (see Figure A6). The model spread is also relatively smaller for the
correlation of GPP with climate than of 7 with climate. This shows that the models, in
general, reproduce both the global and local responses of GPP to temperature and

precipitation much better than those of 7.

Further, as expected, the observation-based relationship of Crws and climate is a complex
amalgam of those of GPP and 7. For example, Ciwi-temperature correlation is relatively
small in magnitude (Figure 3h) due to the opposing z-temperature (negative) and GPP-
temperature (positive) correlations. The Ciwi-precipitation correlation follows the same zonal
variation as that of GPP but with a lower magnitude (Figure 3i) due to predominantly
negative r-precipitation correlation. The CRESCENDO models generally exhibit a stronger
positive correlation of Cys With climate than in the observation. This strong Cioza-
precipitation correlation in the models is due to a strong correlation between Ciois and GPP

(see Figure A6).

10



Obs-based 1 CLM5 JSBACH JULES LP)-GUESS ORCHIDEE SURFEX Model Ensemble

a) 1 (years) b) rr_mar, map €) I't—map,MaT
80 e . .
60 g g
40 - - 4 <
=
T 201, z g
el
2
£ o0
©
-
-20 A - -
5
—40 4 ~ - - v
|
_60 = T T T 1 T T T 1
10! 102 103 -1.0 -0.5 00 05 1.0 -1.0 -0.5 0.0 0.5 1.0
d) GPP (kgC/m?/year) €) rGpp - MAT, MAP f) repp— map, maT
80 ' |
60 4
40 4
=
< 20+
kel
2
£ oA
©
-l
_20 -
-40 4
-60
0 1 2 3
9) Ctotal (kgC/mZ)
80
60 -
40
=
; 20 H
kel
2
5 0
©
il |
_20 —
—40 -
—60 - T T 1 T T 1

T T
-1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 1.0

Figure 3. Zonal distribution of ecosystem turnover time of carbon (z, years), gross
primary productivity (GPP, kgC/m?/year), and total ecosystem carbon stock (Crorar,
kgC/m?) and their relationships with climate. The zonal means are plotted in the left
column, and the correlations with temperature and precipitation are plotted in the centre and
right column, respectively. The correlation with precipitation is controlled for temperature
and vice-versa. The Pearson’s correlation coefficient for each latitude is calculated for a
moving window of 10 grid cells along the latitude (5°). Only the coefficients that are
statistically significant at 5% significance level are shown. The individual models are plotted
in coloured thin lines, and the multimodel ensemble in thick blue lines. In the correlation
plots, the thick dashed blue lines show the normalized mean correlation of all models with
shades indicating variation within one standard deviation. The observation is plotted as a
thick black line with shade indicating the range within the 5" and 95™ percentiles.
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Model biases and agreement
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Figure 4. Global distributions of ecosystem turnover time of carbon (7, years), gross
primary productivity (GPP, kgC/m?/year), and total ecosystem carbon stock (Crorar,
kgC/m?) and their biases. The multimodel ensemble, observation-based estimate, and the
bias and agreement are presented in the first, second, and third row, respectively. Multimodel
ensemble is calculated as the median of the seven CRESCENDO models. The bias is
calculated as the ratio between multimodel ensemble and the corresponding observation. In
the global maps of bias (third row), stippling indicates the regions where only two or fewer
models fall within the range of observational uncertainties (5" and 95" percentiles).

Spatially, the CRESCENDO multi-model ensembles exhibit similar global distributions
compared to the corresponding observation-based estimates of 7 (Figure 4a, b), GPP (Figure
4d, e), and Crows (Figure 4g, h). Globally, the observation-based 7 is the shortest in tropical
regions with high GPP as well as a relatively high Cioi, and the longest in high latitude
regions with a relatively lower GPP but high Ciwi. The longer 7 is also prevalent in cold and
dry arid regions, such as the surroundings of the Gobi Deserts, where both GPP and Cios are
lower than other regions. The observation-based Cjoi sShows a pattern of large carbon
storages in either a region with high GPP or a longer 7. Additionally, larger Ciows are also

evident in the Arctic North America and Boreal Eurasia characterized by occurrences of peat.
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On a broad scale, the CRESCENDO multimodel ensemble 7 also exhibits a similar spatial
gradient with shorter 7 in the tropics and longer 7 in the northern high latitudes. Such spatial
gradients are reproduced by individual models as well (Figure A8). Despite the similarity in
spatial variability, the multimodel ensemble 7 still has a substantial underestimation bias in
the semiarid regions (sub-Saharan Sahel, central Asia, northern Australia, and western United
States), where the multimodel ensemble is ~5 times shorter than the observation (Figure 4c).
The models tend to agree with each other more in the northern high latitudes and the humid
tropics than they do in the arid and semi-arid regions with large biases, as also shown
previously for CMIP5 models (Carvalhais et al., 2014). Moreover, fewer than two models are
within the observational uncertainty (hereafter referred to as low agreement) in ~22% of the
total grid cells. In the semi-arid region, the underestimation of 7 (the overestimation of
turnover rate) is prevalent in all but three models (CLM4.5, JULES and SURFEX in Figure
A7).

Both the spatial variability and magnitude of GPP in CRESCENDO models compare better
with the corresponding observation than in the case of 7 (see Figure A9 as well). In the
tropical humid and semi-arid regions, the GPP bias is small in relative terms (Figure 4f). In
semi-arid regions of south America and Australia, the relative bias in GPP is high due to
relatively lower GPP values in the observation. But the largest overestimation bias can be
seen in the northern high latitudes which have low GPP. The models also agree less in the
regions with the largest bias with almost ~35% of global grid cells having a low model
agreement. Note that such low agreement is also due to small uncertainty range in the
ensemble of GPP observations (bar charts in Figure A7b). When the global and regional
GPP are compared, almost all models are within the observational uncertainty globally due to

better performance in the humid and sub-humid climate compared to other regions (Figure

AT7b).

Lastly, the spatial variability of Cis in most CRESCENDO models is similar to that from
observation-based estimate (Figure A10), even though the distinctly large storage in
peatlands is not reproduced by most models. The bias in Cyw bears a striking similarity to the
spatial pattern of bias of 7. There are, however, also regions where the opposing biases in 7
and GPP lead to unbiased Crori. For example, in the Iberian Peninsula and Hudson Bay, the
overestimation of GPP is compensated by an underestimation of 7 (overestimation of
turnover rate) resulting in a relatively unbiased Ciowr. Due to such compounding effects, there

is even more widespread occurrence of low model agreement for Ciorar (~40% of global grid
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cells), and biases, mostly similar with those of 7, are widespread across different climatic

regions (Figure A7c).

To attribute the bias in Crowi, we compare the biases in GPP, Crowi, and 7 in each
CRESCENDO model (Figure 5). Note that an ideal model would have low biases in all GPP,
t and Crowmi. The contrast between the biases in GPP and Ciw reveals a dominant control of z
on the Ci bias. The ISBACH, LPJ-GUESS, and ORCHIDEE models show consistently
lower Ciwi than observation-based estimate, that is likely associated with an underestimation
of 7, as the biases in GPP are relatively lower than those in Cyws (larger density of points
along the axis of no bias in GPP). Other models perform better for both GPP and 7 in all but
arid climatic region. Only CLM4.5 and SURFEX show a good agreement of 7 in arid region
(red lines close to 1:1 line). CLM4.5, though, also has a slight overestimation bias in Ciors in
all other climatic regions arising from overestimation of z. In fact, in CLMS5, the biases in 7
are reduced across all climatic regions. Only JULES and SURFEX produce a larger density
of grid cells where biases are low for GPP, 7, and Cioai. In JULES, 7 and Cior are
underestimated mainly in the arid and humid region. Globally, only CLM4.5 has larger range
of spatial variability than in the observation (the slope of the fitted global line greater than 1).
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Figure 5. Relationship of biases in gross primary productivity (GPP) and total
ecosystem carbon stock (Crrs) in CRESCENDO model simulations. The different colours
indicate different climate defined by the aridity classes, and individual grid-cells are plotted
as dots. The percentage values in the parenthesis of the title shows the fraction of the global
grid cells that are within the range of bias between 0.1 and 4. The dashed vertical line shows
the axis of no bias in GPP (ratio of GPP from model to that from observation = 1), the same
for Ciowr 1s shown by a horizontal dashed line. The grey solid line indicates the axis along
which there is no bias in 7. An ideal point of no biases in GPP, Cioai, and 7 is indicated by a
cross ‘x’. The coloured lines indicate the main axis of variations of biases in GPP and Ciow
(linearly fitted lines that passes through origin). The white contour lines indicate the density
of grid cells, with higher density of lines showing larger occurrence of grid cells.



Conclusions and discussion

Adding to a well-established association of carbon cycle with temperature, we show that
precipitation also plays a key role in defining primary climate controls on spatial variabilities
of GPP and carbon turnover times. The moisture control results in an emergent association of
turnover time with aridity (Figure 1) that encompasses a wide range of precipitation and
temperature regimes. Aridity regulates the moisture availability and, thus, modulates the
apparent climate sensitivities of climatological carbon cycle dynamics. Despite uncertainties
in the observation-based data, the presented observation-based climate sensitivities of carbon
cycle are robust across full factorial of the latest estimates of GPP, soil and vegetation carbon
stocks (Figure A11). We note that the apparent sensitivities presented here only reveals the
primary controls, which is also indicated by a large spread within a climatic region (Figure
1). The additional heterogeneities may be associated with differences in soil and land
properties, along with differences in secondary moisture effects such as photodegradation and
pulsing of microbial activity from rainfall, drought-related mortality *3, disturbances and fire

34,35
3

regimes etc.

We found that the offline simulations of the latest generation of Earth System Models from
CRESCENDO project reproduce well the association of GPP with climate, but fall short for
turnover times, especially in semiarid and arid regions leading to large uncertainties in
simulated carbon stocks. The models with relatively lower biases in turnover time and carbon
stock in arid and semiarid regions produce a better zonal variation of z-precipitation
relationship, while the poorer model performance is characterized by biases in z-temperature
relationship. This implies an insufficient model representation of moisture control on
climatological carbon cycle dynamics even though all models include the moisture effects on

both GPP and decomposition rates (Table A2).

The identification of exact mechanisms of moisture control on carbon cycle, especially
without an observation-based soil moisture that extends beyond top few centimetres of soil, is
still challenging. For example, we cannot clarify if the modelled soil moisture is itself biased
or if the response of carbon cycle to soil moisture is misrepresented. Nevertheless, an
evaluation of evapotranspiration shows a very consistent performance across models in all
climatic regions (Figure A12), which should lead to a consistent soil moisture across models.
Yet, the spatial covariation of carbon fluxes-moisture-temperature reveals diverse moisture-
temperature relationships across different models (Figure A13). The temperature responses
of GPP and respiration are highly consistent, but the moisture responses differ significantly
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across different models. The model performing better in arid and semi-arid regions (e.g.,
SURFEX) has contrasting responses than the models with poorer performance providing
secondary evidence of the potential weakness in the model representation of moisture
controls. Factorial experiments of each model are necessary to identify the reasons behind,

and to bridge the differences between, the apparent moisture controls presented in this study.

Lastly, the weaker performance of precipitation-turnover relationships leads to large
uncertainties of carbon stocks especially in arid and semi-arid climatic regions, as the biases
in Cuw are largely associated with biases in turnover time rather than those in GPP.
Additionally, we found that biases of GPP and turnover time manifest to a larger bias in
Ciotar. This has serious implications in the predictions of changes in carbon stock under
climate change, as the changes in precipitation, temperature, and thus aridity 3¢ will have a
non-negligible influence. The reduction of uncertainties in modelled carbon stock under
global changes is, therefore, not a carbon-cycle only challenge and it must be addressed with

a broader scope of improving the hydrological influences on the terrestrial carbon cycle.
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Methods

Ecosystem carbon turnover time:

A turnover rate of a storage is broadly defined as the rate of fractional loss of storage per unit
time. For an ecosystem under natural condition, the turnover time, an inverse of turnover rate,
is, therefore, the time duration carbon stays in the ecosystem between carbon assimilation
through photosynthesis and loss to atmosphere through respiration and decomposition
processes. Under steady state assumption, the output carbon fluxes equilibrate with the input
primary productivity, and temporal changes in carbon storage become small. Thus, the
steady-state turnover time of an ecosystem can be effectively calculated as the ratio of carbon

storage and the input flux to the ecosystem as,

__cTotal

PP (D,

where, 7 is the ecosystem turnover time (years), Crow 1 the long-term average total ecosystem
carbon storage per unit area (kgC/m?) and GPP is the annual mean gross primary productivity
(kgC/m?/year). As stated and used in previous studies 782526 the 7 in Eqn (1) is under the
assumption of a steady state ecosystem and represents the apparent or effective turnover time
of the whole ecosystem carbon storage. It emerges as the diagnostic property of an
ecosystem, rather than the intrinsic property of decomposition processes that explicitly

controls Ciozai.

Observation-based datasets:

Due to potential uncertainties in the global observation-based estimates, we used an ensemble
of six GPP datasets, four soil carbon (Cj.;7) and four vegetation carbon (C.,) stock datasets.
The data ensembles, spanning a wide range of sources and methods, represent the current
state-of-the-art of global observation-based estimates of the carbon cycle components and,
likely, cover the full range of observational uncertainties. As we use only a single ensemble
estimate from each product, we assume that the differences and uncertainties are larger across

the datasets than within a single dataset.

The GPP ensemble includes Model Tree Ensembles (MTE) (Jung et al., 2011) and its recent
successors from FLUXCOM based on remote sensing and that with additional meteorological
forcing 3, solar-induced fluorescence (SIF) based GOSIF GPP *°, light use efficiency based
GPP from vegetation photosynthesis model (VPM) #, and lastly, an independent machine
learning prediction from FluxSat ! that uses corrected satellite-based reflectance. All GPP

products are either upscaled from or extensively evaluated against eddy covariance
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observations of carbon fluxes from FLUXNET (www.fluxdata.org) sites (Baldocchi et al.,
2001). For example, the MTE, FLUXCOM, and FluxSat products use different combinations
and corrections of training data and drivers from satellite remote sensing and meteorological
dataset to upscale site-level observation to the global scale using different machine learning
algorithms. VPM, a light use efficiency model, is similar to MODIS GPP but with an
additional validation for FLUXNET sites, and GOSIF GPP uses a set of GPP-SIF
relationships to produce an ensemble of high resolution global GPP fields that are
independent of reflectance-based remote sensing products. While the spatial variability of the
mean GPP is one of the most robust features when comparing different observation-based
GPP products, it is desirable to use an ensemble as no single data is superior to all others

universally 43.

For Csoir, we use the full depth soil organic carbon estimates including a data that combines
inventories from Harmonized World Soil Database ** with the Northern Circumpolar Soil
Carbon Database 4 extrapolated to full depth '¥; from SoilGrids that uses machine learning
method to upscale soil profile measurements with land and climate characteristics as
predictors*; and from Sanderman et al. that corrects for land use and forest cover 47. Due to
differences in number and locations of observed soil profiles used, predictors, and prediction
methods, the soil carbon estimates are uncertain, especially in high latitude regions, with a
large Cy,is but a relatively fewer measurement profile. Nonetheless, the global distributions of
Csoir in these products are robust %, and their differences reflect potential uncertainties across
all observation-based global estimates. We note that the SoilGrids data has been recently
updated, but the new version of the data, the LANDGIS, has not been used in this analysis
owing to lack of extensive validation and potential over-estimation issue in the northern high
latitudes *4#°. It should here be noted that using the LANDGIS instead of SoilGrids does not

significantly affect the main findings of this study (see Figure 1 and Figure A3).

The C,.; ensemble includes four different RADAR and LIDAR satellite-based estimates of
aboveground biomass with a corresponding estimate for belowground biomass *%. As
different data are based on different satellites and algorithms, and have been validated with
observations whenever and wherever available, they are indicative of global vegetation

biomass and associated uncertainties in observation-based estimates.

An ensemble of observation-based 7 was then obtained using Eqn (1) for a full factorial

combination of all Csi1, Creg, and GPP products resulting in 96 different z maps.
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In this study, for GPP, Ciowi and 7, the ensemble median across data products was used as the
representative observation-based estimate, and the 5™ and 95 percentiles were used as

uncertainty range.

Lastly, for an additional evaluation of CRESCENDO models, the ensemble estimates of

evapotranspiration from FLUXCOM remote sensing products *° was used.
Climatic regions based on aridity index:

The aridity index, calculated as the ratio of mean precipitation and potential
evapotranspiration (PET), is used to delineate different climatic regions based on relative
availability of moisture and energy. For consistency, the CRU-NCEP precipitation, used to
force the CRESCENDO model simulations, is also used for calculating the aridity index. The
PET data is based on an estimate from the latest climate datasets at a high resolution >!.
Different climatic regions were then delineated based on the aridity index ranges suggested
by UNEP >? as: arid (<0.2), semi-arid, sub-humid, and humid (see Figure A1). The average
annual precipitation (temperature) varies from 245 mm/year (7.6°C) in arid regions to 880.3
mm/year (0.9°C) in humid regions. These regions constitute 8.2%, 24.3%, 15.1%, and 52.4%
of the total area considered in this study. In relative terms, the arid and semiarid regions
contribute ~18% of the global GPP and hold ~24% of the global carbon stock (Table A1).
Combined, these regions have a t of ~43 years, which is ~34% longer than the global 7 of ~32

years.
Climate sensitivities:

The overarching aim of this study is to investigate the climate sensitivities of climatological
mean carbon cycle dynamics across all major climatic regions globally and assess the
apparent sensitivities of spatial covariations of carbon cycle with climate. Under humid
climate, spatial sensitivity of 7 is itself dependent on temperature 7. But, to what extent the
same applies to other climatic regions and carbon cycle variables is unclear. This is especially
critical with regard to precipitation that represents the potential moisture supply for an
ecosystem that determines both the carbon assimilation and decomposition processes.
Further, we hypothesize that the relative availability of moisture (supplied by precipitation)
and energy (determined by temperature) plays a central role in defining the carbon cycle
dynamics across spatiotemporal scales. We, therefore, investigate the relationships between

the carbon turnover time and GPP with precipitation and temperature across different
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climatic regions characterized by an aridity index. We assume that the relationship between

7/GPP and climate are non-linear and assume it to be of a second-degree polynomial form as,
y = ax?+bx+c (),

where, y is the response/dependent variable, x is the independent variable, and a, b and c are
the parameters of the quadratic equation. The terms a and b are the coefficients of the non-
linear and linear terms, respectively, and c is the constant term that defines the
offset/intercept when the independent variable is zero. As 7 is expected to have a non-linear
exponential relationship with temperature, we log-normalize it and use log(7) as the

dependent variable.

The parameters of Eqn (2) for each climatic region are estimated using a robust non-linear

least square regression with Huber loss function > that is less sensitive to outliers in the data.
CRESCENDO model simulations:

We use the observation-based climate sensitivities to evaluate the process representations in
land surface schemes of (used in) the ESMs from seven different European research
institutes. The stand-alone offline land simulations were carried out as a part of the

CRESCENDO project (https://ukesm.ac.uk/crescendo/) to understand and evaluate the carbon

and nitrogen cycle processes in the current state-of-the-art ESMs. The same land surface
schemes were used in the ESM simulations for the sixth phase of coupled model
intercomparison project (CMIP6). Following the TRENDY protocol 34, the models were
forced by CRUNCEP v7 % forcing dataset
(https://vesg.ipsl.upmec.fr/thredds/catalog/work/p529viov/cruncep/V8 1901 2016/catalog.ht

ml), observed atmospheric CO; concentration, nitrogen deposition, and annual land-use
changes. The offline simulations forced with an observation-based dataset are suitable for
evaluating the response of the land carbon cycle processes to the climate forcing, as they are
less prone to biases and uncertainties arising from differences in carbon-climate feedbacks in

the coupled simulations of ESM.

The data of CRESCENDO model simulations were last accessed in January, 2019. While the
simulations are available for longer time period, the simulation results from 2001 to 2010
inclusive, consistent with the time period across different observation-based estimates of
carbon cycle variables, were used for evaluations in this study. The Cr:w Was calculated as a
sum of all the carbon pools respiring to the atmosphere. Similar to the observation, z was

calculated as the ratio of Ciss and GPP.
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All models were forced in an offline mode with the same meteorological drivers, but at a
different resolution with a different experimental and process setup (see Table A2 for an
overview). Regarding carbon cycle spinup, all models except JULES were initialized with
zero carbo stock, and forced by the repeated meteorological data of the first few years for a
total of 500-10000 years. It should be noted that, in essence, irrespective of the initial
condition, the JULES model produces a consistent model state at the end of spinup period ¢,
and, in general, by definition, the spin-up and initial condition are not systematically related
to the biases in the model states. There are further differences in soil physics and model
structure therein. For example, CLMS5, JULES, and SURFEX have a finer discretization of

soil layers and/or represent soil physics with freeze-thaw dynamics.

CLM4.5, the terrestrial component of the CMCC coupled model version 2 37 within CMIP6,
was used in its Biogeochemical (BGC) configuration %% for the CRESCENDO simulations.
CLM4.5 describes photosynthetic, hydrologic, and decomposition processes. Photosynthesis
is based on Ball-Berry model, and hydrology includes soil moisture and groundwater

processes. The decomposition rates are dependent on soil temperature, soil moisture, oxygen

and depth.

CLMS, the terrestrial component of NorESM, builds on CLM4.5, with major updates on soil
hydrology and carbon coupling . Soil hydrology is based on variable soil thickness with
high resolution layers and spatially varying root profile. Photosynthesis is based on the
Medlyn-model and includes nitrogen limitation using optimality principles. The
representation of the decomposition process is updated with a new metric for the apparent
soil carbon turnover 7 in which the temperature affects the moisture limitation of

decomposition through freezing of liquid water.

JSBACH version 3.2 ®! is the terrestrial component of MPI-ESM1.2. As compared to its
predecessor, it includes novel components of soil carbon, nitrogen limitation, a five-layer
hydrology scheme, the wildfire model SPITFIRE, as well as improved land use
representations ®2. The soil carbon decomposition processes are based on the YASSO model
63 and include five different soil carbon pools according to the chemical quality of the organic
matter, each for woody and non-woody litter. The vertical distribution of soil carbon is not
resolved and permafrost is not considered in the applied version. Decomposition rates depend
on air temperature and precipitation, due to the foundation of YASSO on observed litter

decomposition rates.



JULES 35, the land component of UKESM, includes the improvements in parameterization
of the vegetation dynamics, canopy structural properties, and the parameters affecting the
photosynthesis and respiration fluxes ®*. The nutrient availability limits the photosynthesis
indirectly by controlling the biomass and leaf area index. The litter and exudate fluxes
convert to the soil organic carbon through controls of nitrogen availability, and the soil

decomposition process are controlled further by temperature and moisture.

LPJ-GUESS  is the dynamic vegetation model of EC-Earth used in CMIP6. LPJ-GUESS
employs a two-layer leaky bucket soil hydrology scheme with percolation between layers and
deep drainage. Photosynthesis is controlled by nitrogen limitation following whole plant
optimal nitrogen content. The soil organic matter dynamics are based on the CENTURY soil
model in which the decay rates depend on the moisture content of the top soil layer, soil

temperature, texture, lignin fractions, tillage and nitrogen limitation.

ORCHIDEE, the land surface scheme of the IPSL-CMS5 ESM, consists of a multi-layer soil
that accounts for transport of water by diffusion and deep drainage, and of heat with
improved thermodynamics and conduction process . The resulting soil moisture and
temperature are used for analytically solving soil organic matter dynamic that guarantees
steady-state conditions. Photosynthesis is based on the Farquhar-model and is limited by the
leaf nitrogen. The soil heterotrophic respiration is independent of the nitrogen content of soil

organic matter.

SURFEX/ISBA-CTRIP, the land surface scheme of the CNRM-ESM2-1 in CMIP6 67-68
solves the energy and water balance of one vegetation canopy, 12 snow layers, and up to 14
soil layers in deep soils and permafrost. Soil texture, albedo and carbon content determine the
thermal and hydraulic properties of the soil. The litter and soil organic matter processes are
based on the soil carbon part of the CENTURY model, and the soil heterotrophic respiration
is limited under high soil moisture. The nitrogen limitation leaf growth is empirically based
on a meta-analysis of CO2 enrichment experiments that limit leaf nitrogen content and

specific leaf area.

Zonal variations and correlation:

The zonal variations and correlations are computed using a moving window of 10 grid cells
along the latitude (5° coverage). The zonal means of the GPP and Cjoi are weighted by the

area of the grid cell which vary along the latitude, and the zonal mean of 7 was estimated as



the ratio of zonal Cis and GPP, and not as a zonal mean of 7 in different grid cells. The
observational uncertainty band for the zonal means are calculated as 5™ and 95 percentiles

of the zonal value using different data products.

The correlations between 7 or GPP or Ciw and temperature or precipitation were calculated
as the partial Pearson’s correlation coefficient controlling for the other. To accommodate for
the influence of the extreme cold winter temperature on the mean annual temperature in high
latitude regions, the monthly temperature below -5°C were considered physiologically (for
photosynthesis) and metabolically (for respiration) irrelevant, and these values were set to -
5°C while calculating the mean annual temperature. Note that the processing is only relevant
for high latitude regions where the duration of and temperature in winter vary significantly

within a moving window (see Figure 3 and Figure Al.

Within a moving window, one percent grid cells were discarded to minimize the effects of
outliers on the correlation coefficient. Unless otherwise mentioned in the captions, the
uncertainty band around the observation are the ranges within 5" and 95" percentile of the
values calculated from different data products. The partial correlation coefficients were tested
for statistical significance at 5% level of significance, and all insignificant correlations are

masked out when plotting.
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Extended Tables

Table Al. Summary of the median and the range of observation-based gross primary

productivity (GPP in pgCl/year), total carbon storage (Cior in pgC) and turnover time (7 in

years) globally, and in different climatic regions. The median is calculated from the ensemble

members of the observation-based data. The range indicates the values within 5* and 95
percentile of the ensemble members.

Global Arid Semi-arid Sub-humid Humid
(&dd 109.5 2.7 16.8 12.8 77.6
(98.3-119.6) (2.3-3.1) (14.8-19.3) (11.1-13.6) (69.0-85.3)
Crotal 3482.9 149.2 680.3 4939 2150.4
(2245.0-4804.8) (105.3-162.4) (424.7-811.5) (289.3-698.0) (1418.0-3151.5)
T 31.9 52.9 39.7 38.8 27.7
(18.9-47.4) (35.1-73.2) (22.9-54.1) (21.4-62.1) (16.8-44.3)
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Table A2. An overview of the CRESCENDO models, the major processes therein, and the simulation setup. Human activities include human
need-driven processes that affects the vegetation carbon stock such as crop harvest (H), pasture (P), wood harvest (W), deforestation (D), land
use changes (LUC), and nitrogen deposition (NDep). All models include carbon losses from heterotrophic respiration (RH), and some models
include the carbon losses from soil due to leaching of dissolved organic carbon (DOC).

. Native
Model oy Forcing for R .
. Initial . spatial Dynamic | Human . . .
Name s Spinup spinup . . N Soil physics (number Seil carbon
SN Institution carbon resolution vegetatio | activitie R
(LSM/ES (years) (repeat 0 Vgt of layers, total depth) sink terms
M) stock years) (° latitude x | n process | s
° longitude)
. 1020
CLM4.5/ Euro Mediterranean Centre accelerated 1.25°%0.937 LUC
1 CMCC- on Climate Change +C3Cg(;: ;On_ 0 30 years 5; xP- no W D’ 15 layers, 35.1776 m RH
ESM (CMCC) Foundation ’
accelerated
NORCE Norwegian RH; carbon cost
2 CLM5/No Research Centre, Bergen, 1526 0 30 years 0.5°x0.5° no LUC, 20 layers, 8.5 m for nutrient
rESM W,D
Norway processes
C stock
. from o LUC, Soil physics: 5 layers,
3 | JSBACH/ | Max Planck Institute for > 10000 TRENDY | 20 years 1-875°1.8 | not NDep, | 9.834 m; soil carbon: 1 | RH
MPI-ESM | Meteorology 75° (T63) activated
v6 W, H layer
simulation
C stock LuC
JULES/U | Met Office Hadley Centre, from ~1.25°x1.87 >
4 KESM UK NERC 10000 independent 20 years 5° (N96) yes EDep, 4 layers, 3 m RH
simulation
LPJ- Department of Physical Soil: 40500; 30 years, no LUC, Soil moisture: 2 layers,
5 GUESS/E | Geography and Ecosystem Vegetation: | 0 IAV of 0.5°x0.5° yes NDep, 1.5m; RH; DOC
C-Earth Science, Lund University 500 temperature H, P soil carbon: 1 layer
ORCHID e 340 for Soil moisture: 11
Institut Pierre Simon litter input; o ° LUC, .
6 EE/IPSL- . . 0 30 years 0.5°x0.5 no layers, 2 m; soil carbon: | RH
Laplace (IPSL), France cSoil: until W, H,D
CM5 1 layer
steady state
Soil temperature: 14
SURFEX/ | CNRM, Meteo- Soil: 8875; ﬁf)fsrfr? " lsaOlirs all
7 CNRM- France/CNRS/Université Vegetation: | 0 20 years 1°x1° no LUC e Yers, RH; DOC
1z rooting depth (1m for
CM5 Fédérale de Toulouse 470 .
grasses, 8m for tropical
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Table A3. Summary of the parameters of the non-linear least square fitting of the relationships between 7 and GPP and climate: a: coefficient for
the quadratic term, b: coefficient for the linear term, and c: constant.

Arid Semi-arid Sub-humid Humid

a b c a b c a b c a b c

Obs-based 2.61E-05 -3.45E-02 | 2.25 1.01E-04 -3.34E-02 | 1.97 1.33E-12 -3.01E-02 | 1.84 2.38E-04 -3.60E-02 | 1.88
CLM4.5 9.51E-04 -5.23E-02 | 2.13 1.36E-04 -3.48E-02 | 1.96 7.23E-16 -3.33E-02 | 1.92 1.92E-04 -3.32E-02 | 1.82

= CLMS5 1.01E-03 -6.36E-02 | 1.86 9.70E-04 -5.82E-02 | 1.53 4.41E-04 -3.96E-02 | 1.40 7.31E-04 -3.93E-02 | 1.44
< | JSBACH 1.04E-20 -1.62E-02 | 0.91 5.00E-04 -3.55E-02 | 1.00 1.56E-04 -3.11E-02 | 1.16 2.06E-05 -2.53E-02 | 1.29
EL JULES 3.94E-04 -2.56E-02 | 1.45 9.43E-20 -1.50E-02 | 1.54 1.52E-18 -1.11E-02 | 1.51 7.76E-16 -1.44E-02 | 1.43
LPJ-GUESS 5.86E-04 -3.81E-02 | 141 2.84E-04 -2.81E-02 | 1.41 1.70E-04 -2.36E-02 | 1.39 2.16E-04 -2.67E-02 | 1.42
ORCHIDEE 5.55E-04 -3.32E-02 | 1.21 4.82E-04 -2.49E-02 | 1.07 4.93E-04 -2.01E-02 | 1.00 1.05E-04 -1.50E-02 | 1.15
SURFEX 3.31E-14 -3.37E-02 | 2.23 1.48E-17 -2.98E-02 | 1.95 5.78E-20 -2.54E-02 | 1.75 2.85E-17 -2.84E-02 | 1.72
Obs-based 1.05E-06 -2.64E-03 | 2.40 2.30E-06 -4.19E-03 | 3.05 1.11E-06 -2.86E-03 | 2.91 2.65E-07 -1.31E-03 | 2.60
CLM4.5 9.25E-07 -2.26E-03 | 2.19 2.03E-06 -3.90E-03 | 2.96 8.09E-07 -2.57E-03 | 2.93 2.63E-07 -1.27E-03 | 2.52

o CLMS5 1.54E-06 -3.44E-03 | 2.01 3.97E-06 -6.45E-03 | 3.20 2.00E-06 -4.32E-03 | 3.00 2.74E-07 -1.24E-03 | 2.18
< | JSBACH 2.86E-07 -6.45E-04 | 0.84 1.79E-06 -3.21E-03 | 1.83 1.22E-06 -2.99E-03 | 2.28 2.20E-07 -1.05E-03 | 1.84
E.L JULES 7.30E-08 -1.87E-04 | 1.25 4.86E-07 -1.16E-03 | 1.81 1.80E-31 -4.95E-04 | 1.76 7.74E-08 -5.02E-04 | 1.72
LPJ-GUESS 4.23E-07 -1.02E-03 | 1.28 2.19E-06 -3.50E-03 | 2.28 9.63E-07 -2.25E-03 | 2.23 1.79E-07 -8.92E-04 | 1.92
ORCHIDEE 5.30E-07 -1.15E-03 | 1.18 1.65E-06 -2.61E-03 | 1.74 9.30E-07 -1.84E-03 | 1.68 9.53E-08 -491E-04 | 1.41
SURFEX 9.71E-07 -2.51E-03 | 2.38 9.44E-07 -2.69E-03 | 2.69 2.63E-07 -1.50E-03 | 2.41 1.76E-07 -1.01E-03 | 2.27
Obs-based 3.97E-04 1.09E-03 | 0.17 2.88E-04 1.54E-02 | 0.41 3.87E-21 3.22E-02 | 0.69 7.24E-04 4.83E-02 | 0.69
CLM4.5 1.35E-04 2.77E-04 | 0.15 3.68E-15 5.76E-03 | 0.38 3.85E-34 1.35E-02 | 0.59 4.17E-04 5.60E-02 | 0.90

: CLMS5 5.20E-04 -2.19E-03 | 0.14 5.74E-04 3.08E-03 | 0.38 4.42E-05 1.66E-02 | 0.73 6.07E-04 3.89E-02 | 1.00
s | JSBACH 3.57E-04 -6.90E-04 | 0.11 7.05E-04 6.56E-03 | 0.24 7.18E-04 1.97E-02 | 0.49 1.89E-03 3.95E-02 | 0.66
ga JULES 4.85E-15 4.02E-03 | 0.10 4.40E-04 1.50E-02 | 0.18 4.03E-04 3.02E-02 | 0.48 2.07E-04 5.62E-02 | 0.90
O | LPJ-GUESS 2.12E-18 1.97E-02 | 0.36 1.06E-15 1.80E-02 | 0.61 6.14E-22 1.87E-02 | 0.83 4.63E-15 4.74E-02 | 1.07
ORCHIDEE 4.04E-04 3.40E-03 | 0.05 6.45E-04 1.67E-02 | 0.26 1.54E-04 3.36E-02 | 0.66 8.37E-04 5.06E-02 | 0.78
SURFEX 2.61E-04 2.62E-03 | 0.07 5.66E-04 1.27E-02 | 0.24 5.08E-04 2.57E-02 | 0.49 1.64E-03 420E-02 | 0.51
Obs-based -8.84E-08 1.09E-03 | 0.00 -1.87E-07 1.43E-03 | 0.00 -2.45E-07 1.61E-03 | 0.00 -1.58E-07 1.46E-03 | 0.00
CLM4.5 3.30E-07 5.79E-04 | 0.00 -7.28E-07 1.33E-03 | 0.00 -9.64E-07 1.84E-03 | 0.00 -1.01E-07 1.48E-03 | 0.00

% CLMS5 8.81E-08 9.87E-04 | 0.00 -2.28E-07 1.31E-03 | 0.00 -8.16E-07 1.96E-03 | 0.00 -2.27E-07 1.68E-03 | 0.00
= | JSBACH 2.44E-07 6.05E-04 | 0.00 6.06E-07 6.19E-04 | 0.00 3.00E-07 9.70E-04 | 0.00 -1.31E-08 1.40E-03 | 0.00
ga JULES 3.77E-07 4.79E-04 | 0.00 9.44E-07 3.75E-04 | 0.00 5.15E-07 8.24E-04 | 0.00 -2.40E-07 1.73E-03 | 0.00
O | LPJ-GUESS -9.69E-07 2.55E-03 | 0.00 -1.33E-06 2.42E-03 | 0.00 -1.23E-06 2.47E-03 | 0.00 -2.34E-07 1.70E-03 | 0.00
ORCHIDEE 1.74E-07 7.45E-04 | 0.00 7.27E-07 8.20E-04 | 0.00 -4.85E-08 1.48E-03 | 0.00 -1.77E-07 1.62E-03 | 0.00
SURFEX 3.38E-08 6.52E-04 | 0.00 7.23E-07 6.34E-04 | 0.00 3.42E-07 9.49E-04 | 0.00 -1.09E-07 1.42E-03 | 0.00
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Table A4. Performance metrics for least square regression of the relationship between 7, GPP, and climate: 7 coefficient of determination. rmqa:

relative median absolute deviation calculated as the median of absolute deviation normalized by the interquartile range of the observation.

MAT MAP

Arid Semi-arid Sub-humid Humid Arid Semi-arid Sub-humid Humid

}’2 Vmad }’2 Vmad }’2 Vmad }’2 Vmad I’2 VYmad I’2 Vmad I’2 VYmad I’2 Vmad

Obs-based 0.06 0.25 0.45 0.14 0.44 0.14 0.37 0.13 0.00 0.27 0.58 0.14 0.57 0.14 0.00 | 0.18
CLM4.5 0.00 0.32 0.00 0.11 0.31 0.10 0.00 0.11 0.00 0.48 0.00 0.16 0.32 0.10 0.00 | 0.18
CLMS5 0.00 0.36 0.00 0.18 0.00 0.25 0.00 0.24 0.00 0.37 0.00 0.30 0.01 0.26 0.00 | 0.35

. JSBACH 0.23 0.42 0.40 0.22 0.34 0.14 0.65 0.16 0.01 0.44 0.40 0.29 0.48 0.15 0.62 | 0.20
JULES 0.00 0.39 0.00 0.31 0.01 0.30 0.20 0.17 0.00 0.49 0.00 0.38 0.01 0.32 0.22 | 0.17
LPJ-GUESS 0.17 0.31 0.10 0.19 0.23 0.14 0.11 0.14 0.00 0.47 0.11 0.22 0.25 0.14 0.00 | 0.19
ORCHIDEE 0.51 0.40 0.66 0.22 0.67 0.22 0.66 0.19 0.01 0.45 0.00 0.25 0.04 0.26 047 | 0.24
SURFEX 0.14 0.22 0.49 0.14 0.68 0.16 0.86 0.07 0.00 0.29 0.60 0.16 0.74 0.14 0.00 | 0.12
Obs-based 0.22 0.41 0.51 0.32 0.77 0.20 0.84 0.13 0.52 0.32 0.60 0.24 0.73 0.20 0.80 | 0.18
CLM4.5 0.03 0.47 0.11 0.54 0.23 0.51 0.54 0.30 0.69 0.32 0.23 0.47 0.29 0.48 0.69 | 0.31
CLMS5 0.19 0.37 0.36 0.37 0.33 0.42 0.63 0.26 0.74 0.31 0.44 0.31 0.33 0.43 0.70 | 0.25

g: JSBACH 0.14 0.49 0.43 0.45 0.63 0.27 0.74 0.16 0.70 0.39 0.59 0.36 0.68 0.28 0.83 | 0.15
O | JULES 0.02 0.71 0.49 0.26 0.77 0.23 0.84 0.18 0.69 0.52 0.82 0.16 0.89 0.18 090 | 0.14
LPJ-GUESS 0.39 0.37 0.38 0.40 0.29 0.40 0.46 0.36 0.33 0.35 0.43 0.36 0.36 0.37 0.49 | 0.36
ORCHIDEE 0.23 0.37 0.59 0.25 0.73 0.21 0.82 0.12 0.60 0.43 0.71 0.20 0.71 0.22 0.79 | 0.17
SURFEX 0.19 0.34 0.61 0.24 0.79 0.19 0.85 0.10 0.57 0.33 0.78 0.17 0.80 0.13 0.78 | 0.17
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Extended Figures

Arid Semi-arid Sub-humid Humid
[<0.2] [0.2-0.5] [0.5-0.65] [>0.65]
(8.2%) (24.3%) (15.1%) (52.4%)

Figure Al. Global distribution of climatic regions. The climatic regions are defined using
the ranges of aridity index, which is calculated as the ratio of mean annual precipitation and
potential evapotranspiration. The ranges of aridity (in square brackets) that define different
climate regions are taken from UNEP (United Nations Environment, 1992). From the original
UNERP classification, the hyper-arid climate was merged into arid climate because it only
comprised 0.1% of grid cells after excluding the desert regions. The percentage values (in
parenthesis) indicate the fraction of the valid grid cells with the climate.
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Figure A2. Covariation of climate and moisture. Mean annual precipitation (MAP,
mm/year), mean annual temperature (MAT, °C) and water availability index (WAL, -) 3 are
plotted in X, Y and Z axes respectively. The different colours indicate different climatic
regions defined by aridity index, and individual grid-cells are plotted as dots. The WAl is a
proxy for soil moisture content based on the water balance concept, and it varies between 0

(dry) and 1 (wet).
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Figure A3. Same and Figure 1, but using the LANDGIS ¢ instead of SoilGrids 7 dataset in
the observation-based ensemble of soil organic carbon estimates.
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Figure A4. Zonal distributions of mean annual precipitation (mm/year) and mean air
temperature (°C). The values for each latitude are calculated as mean within a moving
window of 10 grid cells along the latitude (5°). The shaded region indicates the 5™ and 95®
percentiles within the latitudinal moving window.
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Figure AS5. Same as Figure 3 but using the average temperature that is corrected for low

T
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T
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winter temperature below freezing point. For the correction, the temperature of months below

0°C are set at 0°C before calculating the mean annual temperature, which results in an

estimate that only includes physiologically relevant months while considering the duration of
the period with below freezing temperature.
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Figure A6. Zonal correlation between total ecosystem carbon stock (Crrar, kgC/m?) and
gross primary productivity (GPP, kgC/m?/year). In a) correlation between Cros and GPP,
b) controlled for precipitation, and c) controlled for temperature are presented. The Pearson’s

correlation coefficient for each latitude is calculated for a moving window of 10 grid cells

along the latitude (5°). The thick dashed blue lines show the normalized mean correlation of

all models with shades indicating variation within 1 standard deviation. The observation is

plotted as a thick black line with shade indicating the range within the 5" and 95" percentiles.
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Figure A7. Evaluation of a) ecosystem turnover time (7, years), b) gross primary
productivity (GPP, pgCl/year), and c) total carbon storage (Cri, pgC) over different
climatic regions. In the bar charts, the observation and their uncertainties (5" and 95
percentiles) are plotted. In the colourmap matrix, horizontal axis shows different climatic
regions and the global values, and the vertical axis shows different models or model
ensembles. The colour indicates the bias, calculated as the ratio of modelled and observed
values. The inset text shows 7 or GPP or Cioa for a given model and climate. The colour of
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the text indicates whether the modelled values are within the range of observational
uncertainty with green for those within and orange for those outside.
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Figure A8. Comparison of the global distribution of ecosystem turnover times of carbon (7, years) from observation-based estimate and
CRESCENDO model simulations. Along the diagonal, the maps of 7 from observation and model simulations are plotted. Above the diagonal,
the biases (ratio of observation/model in column to observation/model along row) are plotted. Below the diagonal, density scatter plots are
plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and p indicate the spatial Pearson’s and
Spearman’s correlation coefficient, respectively.
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Figure A9. Comparison of the global distribution of gross primary productivity (GPP, kgC/m?*/year) from observation-based estimate
and CRESCENDO model simulations. Along the diagonal, the maps of GPP from observation and model simulations are plotted. Above the
diagonal, the biases (ratio of observation/model along column to observation/model along row) are plotted. Below the diagonal, density scatter
plots are plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and p indicate the spatial
Pearson’s and Spearman’s correlation coefficient, respectively.
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Figure A10. Comparison of the global distribution of total ecosystem carbon storage (Cror, KgC/m?) from observation-based estimate
and CRESCENDO model simulations. Along the diagonal, the maps of Ciws from observation and model simulations are plotted. Above the
diagonal, the biases (ratio of observation/model along column to observation/model along row) are plotted. Below the diagonal, density scatter
plots are plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and p indicate the spatial

Pearson’s and Spearman’s correlation coefficient, respectively.
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Figure A11. Same as Figure 1 of the main text but using the state-of-the-art observation-
based datasets of soil carbon (cSoil) and vegetation carbon (cVeg) stocks, and gross primary
productivity (GPP). In total, 3 different soil carbon datasets, 4 different vegetation carbon
datasets, and 6 different GPP estimations were used (see Methods). In the first row, a full
factorial of all datasets generating 72 members were used. The second, third and fourth rows
consider the influence of using different cSoils (3), cVeg (4), and GPP (6), respectively,
while the other two variables are set at the ensemble medians. The thick lines and shaded
regions around them indicate the median and interquartile range of all fitted relationships,
respectively. Different colours indicate different climatic regions. Note the logarithmic axis
for 7 in the first and second columns.
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Figure A12. Evaluation of sensitivities of evapotranspiration to climate in
CRESCENDO models. The relationships between total evapotranspiration (ET, in mm/day)
versus mean annual temperature (MAT) and precipitation (MAP) are presented in the first
and second column, respectively. Along the row, the comparisons for different models
against the observation * are presented. The different colours indicate different climatic
regions defined by the aridity index. The solid lines indicate the observation-based
relationship, and the broken lines indicate relationship from the model simulations. The inset
text shows the ratio between the linear coefficients and constants from the least square fits for
the model and observation for each climatic region. Note that for ET-MAP relationship, the
constant/intercept term is always 0.
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Figure A13. Spatial sensitivities of climatological total soil moisture state and carbon
fluxes in CRESCENDO model simulations. In the first column, the relationship between
the spatial variability of mean annual temperature (MAT) and total soil moisture (6) is
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presented. In the second, third and fourth columns, the relationships of spatial variabilities of

heterotrophic respiration (Rj), autotrophic respiration (R.), and gross primary productivity

(GPP) with MAT are, respectively, presented. The fifth, sixth and seventh columns repeat the

same but with 6. The different colours indicate different climatic regions defined by the
aridity index. The lines are the least square fits for each climatic region. Along the row, the
comparisons for different models against the observation are presented. For a consistent
comparison across different variables and differences in sizes of soil column in different
models, all variables are scaled by the 98" percentile within each climate region so that the
spatial variability is roughly normalized between 0 and 1.
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