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Terrestrial ecosystems respond to changes in environmental conditions, mainly via key 28 

climatic controls of precipitation and temperature on vegetation activities and 29 

decomposition processes 1. Yet, the relationship between climate and the overall 30 

spatiotemporal dynamics and uncertainties of the global carbon cycle, i.e., gross 31 

primary productivity (GPP), effective ecosystem carbon turnover times (τ), and 32 

consequently the total ecosystem carbon stock (Ctotal), are unclear 2–5. Using a global 33 

observation-based synthesis, we first show that the apparent partial spatial climate 34 

sensitivities of GPP and τ are associated with relative availability of precipitation and 35 

temperature, and are therefore modulated by aridity. The apparent sensitivity of GPP 36 

to temperature increases from arid to humid climatic regions. In contrast, its sensitivity 37 

to precipitation is invariant throughout different climatic regions. Simultaneously, the 38 

τ-precipitation response is strongly non-linear resulting in ~2 times longer τ in arid 39 

regions compared to humid regions for a given temperature. Compared with these 40 

observed patterns, the offline carbon cycle simulations of seven European Earth System 41 

Models (ESMs), that participated in CMIP6, perform relatively better for climate 42 

sensitivities of GPP than those of τ. This leads to a large spread and bias in Ctotal in both 43 

warm and cold semi-arid and arid regions where only a few models capture the 44 

observed τ-precipitation relationship. The emergence of the hydrological controls, 45 

modulated by aridity, on global carbon cycle implies that the changes in precipitation 46 

may moderate the temperature-driven climate feedback of the global carbon cycle 47 

under climate change.  48 

Introduction 49 

The exchange of carbon between the biosphere and atmosphere represents a key mechanism 50 

controlling the effect of global changes on the carbon cycle 6, as well as on the water and 51 

energy cycles 7. The land ecosystems, at the centre of biosphere-atmosphere interaction, store 52 

carbon by integrating the differences in carbon captured through gross primary productivity 53 

(GPP), and carbon released through decomposition processes. Due to the complex 54 

dependencies of the photosynthesis and decomposition on climate, biomes, and carbon use 55 

efficiency of vegetations 8, the resulting carbon stocks vary significantly across space and 56 

time. The differences in modelling these complex climate-biosphere dependencies, therefore, 57 

lead to large differences in Earth system model (ESM) predictions of carbon stocks 9,10 that 58 

are prevalent under the current climate and exacerbate under future climate change scenarios. 59 
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The ecosystem turnover and associated carbon losses and stocks, thus, represent major 60 

sources of uncertainties regarding carbon cycle – climate feedbacks 11,12 and the projections 61 

of future carbon budgets 5,13,14, and modelling and constraining them with observations still 62 

pose a significant challenge to ESMs 2–4. 63 

Various studies have, therefore, investigated the relationship between land carbon stocks and 64 

their climate drivers. For example, the uncertainties in soil organic carbon and their responses 65 

to climate change have been extensively studied 15, but mostly focused on temperature, as the 66 

first principles dictate the key role of temperature in determining the current and future 67 

carbon cycle dynamics 16. The studies focusing only on energy-limited humid and cold 68 

regions, understandably, have shown strong associations of spatial variations of carbon stocks 69 

and temperature 17. When other climatic regions globally are considered, though, temperature 70 

alone only explains ~10% of the total spatial variation of the observation-based soil organic 71 

carbon 10 suggesting a larger influence of additional environmental factors. In particular, 72 

precipitation, which is the primary source of moisture for all land processes, is potentially a 73 

strong driver of spatial variation of turnover times, the τ 18, as demonstrated by the 74 

significance of moisture effects on decomposition 19 and the observation-based linkages 75 

between water and carbon cycles 20. The moisture availability is especially critical in arid to 76 

semi-arid regions, which cover ~39% of the global vegetated land, and substantially influence 77 

the interannual variabilities of global biosphere-atmosphere carbon exchange 21–23, but the 78 

effects on modelled τ has been largely ignored 24.  79 

In an ecosystem under a steady state, the temporal variations in total ecosystem carbon 80 

storage (hereafter Ctotal) become negligible as the net input (GPP) and output (total ecosystem 81 

respiration) carbon fluxes balance each other. The spatial variations of Ctotal across 82 

ecosystems are, then, essentially defined by the differences in GPP and the carbon loss 83 

determined by decomposition rates and τ. The climate, though, has differential influences on 84 

and association with GPP and τ, which result in a unique spatial heterogeneity in Ctotal 85 

compared to those of either GPP or τ. It is, therefore, critical that the sensitivities of GPP, τ, 86 

and Ctotal to climatic variations are simultaneously evaluated, especially in ESMs where the 87 

uncertainties in Ctotal may be related to not only GPP 2 but to both τ and GPP 9.  88 

Here, based on observation-based estimates of the carbon cycle, we first evaluate the 89 

apparent spatial sensitivities of climatological mean GPP and τ to two primary climatic 90 

drivers: mean annual air temperature (MAT) and mean annual precipitation (MAP). To infer 91 

effective or apparent climatological τ of an ecosystem, we assume that the ecosystem carbon 92 
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reaches a steady-state over multiple decades, and calculate τ as the ratio of long-term 93 

averages of total ecosystem carbon stock and GPP 17,18,25,26. The apparent spatial sensitivities 94 

of the climatological carbon cycle are assessed in a climate phase-space of temperature and 95 

precipitation for different climatic regions (arid to humid) that are delineated using an aridity 96 

index, defined as the ratio of mean annual precipitation and potential evapotranspiration (see 97 

Methods and Figure A1). While aridity itself is not directly mechanistically connected to 98 

physiological and decomposition processes within an ecosystem, it is a rather clear indicator 99 

of relative availability of limiting moisture and energy resources that define the soil moisture 100 

regime (Figure A2), and consequently, the vegetation responses and patterns 27–29. The 101 

climate sensitivities of τ and GPP are represented using non-linear relationships with 102 

temperature and precipitation (see Methods). The relationships are then used as the basis for 103 

evaluation of the offline carbon cycle model simulations of seven European ESMs from 104 

CRESCENDO project (see Methods), which participated in the Sixth Phase of Coupled 105 

Model Intercomparison Project (CMIP6). 106 

Observation-based climate sensitivities 107 

Both τ and GPP exhibit unique sensitivities to the spatial variabilities of precipitation and 108 

temperature in all climatic regions despite large heterogeneity within a climatic region 109 

(Figure 1, Table A4). First, τ varies strongly across both temperature and precipitation 110 

gradients in all climatic regions. The sensitivity of τ to temperature is well-documented for 111 

humid regions 17. Interestingly, there is a significant offset in τ as the climate gets drier with 112 

the longest τ in arid regions (τ=178 years at 0°C) compared to humid regions (76 years). In 113 

fact, for any given temperature, τ is longer in the arid regions compared to humid regions, 114 

suggesting an influence of, or covariation with, precipitation across climatic regions. The 115 

sensitivities to temperature, i.e., the slope of the fitted lines in Figure 1a, are all within ~17% 116 

across different climatic regions (Table A3). It should be noted that a significant number of 117 

grid cells, with a mean temperature less than 0°C, have longer τ than under warmer 118 

temperatures within the same climatic region. Yet, the non-linear increase in temperature 119 

sensitivity with decreasing temperature is not as strong as reported previously for τ of soil 120 

organic carbon 17 and the linear coefficients dominate the non-linear coefficients in different 121 

climatic regions (inset of Figure 1, and Table A3). While several factors may lead to such 122 

differences (e.g., differences in observed data, methodology, etc.), one key reason may also 123 

be the selection of climatic regions. For instance, in regions with temperature >10°C, 124 
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ignoring arid to semi-arid regions with a systematically longer τ than humid region would 125 

skew the overall distribution of τ, which would then lead to a hyper-logarithmically nonlinear 126 

τ- temperature relationship.  127 

The apparent sensitivity of τ to precipitation is large when the precipitation is lower than 128 

~1000 mm/year across all climatic regions (Figure 1b). Only within 0-1000 mm/year range 129 

of precipitation, τ varies by more than an order of magnitude. Contrasting to temperature, the 130 

τ-precipitation relationship saturates at higher precipitation (>1000 mm/year) in all regions 131 

except arid regions where precipitation never crosses the threshold. The overall apparent 132 

sensitivity of τ to precipitation is, therefore, hyper-logarithmically nonlinear, as indicated by a 133 

clear positive curvature. While the functional relationship of precipitation is almost the same 134 

for all but energy-limited humid regions, the sensitivity of τ to precipitation is smaller for 135 

humid regions compared to arid regions, indicating a saturation of the precipitation effect on 136 

τ. The difference of τ across different climatic regions is the smallest in the lowest 137 

precipitation ranges. Similar to the τ-temperature relationship, though, there is still a large 138 

variability of τ for given precipitation within all climatic regions (as indicated by low r2 and 139 

higher rmad of fitted relationships in Figure 1 and Table A4). 140 

GPP also has a clear relationship with temperature, the strength of which is dependent on the 141 

climatic region (Figure 1c). The temperature sensitivity is the largest in humid and the 142 

smallest in arid climatic region. In the humid region, GPP sensitivity to temperature increases 143 

with temperature. The GPP increases steadily for increasing precipitation with very small 144 

differences across different climatic regions (Figure 1d). The increase in GPP with 145 

precipitation is quasi-linear in all climates, as GPP saturates at the highest precipitation 146 

values, especially in the humid regions. This, again, suggests that precipitation plays an 147 

important role in determining GPP when the vegetation activities are likely to be limited by 148 

moisture. While a strong relationship of GPP with precipitation has been shown previously 149 

30–32, the minimal difference of GPP across different climatic regions for given precipitation 150 

shows that the spatial variation of GPP is mainly related to precipitation alone. 151 
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 152 

Figure 1. Relationship between observation-based ecosystem turnover time of carbon (τ, 153 

years) and gross primary productivity (GPP, kgC/m2/year) with climate. In the top row, 154 

the relationship of τ with a) mean annual temperature (MAT, °C) and b) precipitation (MAP, 155 

mm/year) are plotted. The bottom row shows the same for GPP (c and d).  The different 156 

colours indicate different climatic regions defined by the aridity index, and individual grid-157 

cells are plotted as dots. The lines show a non-linear least square fit (see Methods) for the 158 

variation of τ and GPP with MAT and MAP within each climatic region. The inset text shows 159 

the parameters of the fit (non-linear coefficient | linear coefficient | constant) while the fitting 160 

performances are provided in Table A4. Note the logarithmic vertical axis for τ in a and b. 161 

Climate sensitivities in Carbon Cycle models 162 

In the CRESCENDDO model simulations, the apparent sensitivities of τ to climate have 163 

larger biases than those of GPP to climate, when compared against respective observation-164 

based sensitivities (Figure 2). First, the comparison of the τ-temperature relationship reveals 165 

that all models, except CLM4.5 and SURFEX, have a shorter τ than observation across all 166 

climatic regions while the linear correlation between the model and observation-based 167 
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relationships are generally high (first column, Figure 2). This is accompanied by a large bias 168 

in τ with most models, except CLM4.5, showing a clear underestimation. The differences 169 

between models and observation and among models also remain fairly similar across all 170 

climates. For example, the model with the longest τ in the arid region also has the longest τ in 171 

other climatic regions. This suggests that the temperature dependence of τ in a given model 172 

remains fairly consistent across different climatic regions. Of the models, only CLM5 shows 173 

a stronger sensitivity of τ to temperature with a hyper-logarithmically nonlinear increase in τ 174 

when the temperature decreases below 0°C (Figure 2e). 175 

Similar to observation, the models also exhibit a tendency of non-linear increase in τ for 176 

decreasing precipitation, with the largest sensitivity in arid regions and the smallest 177 

sensitivity in humid regions (second column of Figure 2). Most models, though, show a 178 

smaller sensitivity to precipitation than the observation with a consistent underestimation bias 179 

across all climate, with the largest difference in the arid regions. In fact, only CLM4.5 and 180 

SURFEX show a significant increase of τ in the lower precipitation range that is akin to the 181 

observation.  182 

For GPP, the models show increased sensitivity to temperature from arid to humid climatic 183 

regions (third column of Figure 2) except for CLM4.5 (Figure 2c), which shows a smaller 184 

increase in GPP at a higher temperature in all but the humid region, and LPJ-GUESS (Figure 185 

2s) with much larger GPP in arid regions. In general, all models represent the sensitivity of 186 

GPP to temperature fairly well with a relatively smaller biases than the same of τ. The 187 

sensitivity of GPP to precipitation also shows a small spread among the models (fourth 188 

column of Figure 2). Only in the humid regions, a large number of models, e.g., CLM4.5 and 189 

JSBACH, over-predict GPP in the highest precipitation range, where the observation-based 190 

GPP shows a saturating tendency. 191 
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 192 

Figure 2. Evaluation of sensitivities of climatological carbon cycle dynamics to climate 193 

in CRESCENDO models. In the first and second columns, the relationships between 194 

ecosystem turnover time of carbon (τ, years) versus mean annual temperature (MAT) and 195 

precipitation (MAP) are presented, followed by those for gross primary productivity (GPP, 196 

kgC/m2/year) in the third and fourth columns. Along the row, the comparisons for different 197 

models against the observation are presented. The different colours indicate different climatic 198 

regions defined by the aridity index. The dotted lines indicate the observation-based 199 

relationship, and the solid lines indicate relationship from the model simulations. The inset 200 

text shows coefficient of determination (r2) and mean relative bias between the fitted 201 

relationships from the models and observation. Note the logarithmic vertical axis for τ in the 202 

first and second columns. 203 
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Partial correlations with climate 204 

To elucidate the regional variations of τ, GPP and the resulting Ctotal, and eliminate 205 

collinearity between precipitation and climate, here, we evaluate the zonal variations and 206 

their partial associations with precipitation and temperature. 207 

In general, the large-scale zonal distribution of τ follows temperature, and that of GPP 208 

follows precipitation (first column of Figure 3, and Figure A4). The τ is the shortest in 209 

tropical regions with the highest temperature and the longest in high latitudes with the lowest 210 

temperature (Figure 3a). Similarly, GPP is the largest in the wettest tropical regions with the 211 

highest precipitation (Figure 3d). The zonal distribution of Ctotal reveals a smaller variation 212 

across the latitude compared to τ and GPP (Figure 3g). Nonetheless, the largest Ctotal occur in 213 

either the humid tropics with the largest GPP or in the high latitudes with the longest τ. In 214 

general, the CRESCENDO models produce zonal variations similar to observation-based 215 

estimates, with the smallest bias for GPP, and a consistent underestimation bias of τ and Ctotal 216 

across the latitude. 217 

The observation-based τ has a stronger negative correlation with temperature in the energy-218 

limited regions such as the tropics and high latitudes of both hemispheres compared to the 219 

moisture-limited regions (Figure 3b). In general, the latitudinal variation of τ-temperature 220 

correlation is much stronger in the models than in the observation. This is especially true for 221 

sub-tropical mid-latitudes (40ºS to 40ºN) except the humid tropical regions. In the same 222 

regions, the local variation of τ has a stronger correlation with precipitation than with 223 

temperature (Figure 3c). The τ-precipitation relationships in the models have a larger spread, 224 

and most models have a weaker τ-precipitation correlation than in the observation. This is 225 

especially clear in the subtropical southern hemisphere and temperate northern hemisphere. 226 

This weaker τ-precipitation correlation is concurrent with a stronger τ-temperature correlation 227 

in the models suggesting a dominant temperature control on carbon cycle sensitivity to 228 

climate. In these regions, only SURFEX shows a strong local-scale τ-precipitation correlation 229 

that is consistently stronger than the observation, but it also exhibits a stronger bias in the 230 

high latitudes. 231 

Further, both the observations and models show a much stronger correlation of GPP with 232 

precipitation (Figure 3f) than with temperature (Figure 3e) across most of the latitudes. Only 233 

in the northern high latitudes over ~50ºN (with MAT < 0ºC), GPP has a stronger correlation 234 

with temperature than with precipitation. In fact, in these regions, the low winter temperature 235 
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affects the MAT significantly, and correcting for winter reveals a clearer role of temperature 236 

in the high latitudes (see Figure A6). The model spread is also relatively smaller for the 237 

correlation of GPP with climate than of τ with climate. This shows that the models, in 238 

general, reproduce both the global and local responses of GPP to temperature and 239 

precipitation much better than those of τ. 240 

Further, as expected, the observation-based relationship of Ctotal and climate is a complex 241 

amalgam of those of GPP and τ. For example, Ctotal-temperature correlation is relatively 242 

small in magnitude (Figure 3h) due to the opposing τ-temperature (negative) and GPP-243 

temperature (positive) correlations. The Ctotal-precipitation correlation follows the same zonal 244 

variation as that of GPP but with a lower magnitude (Figure 3i) due to predominantly 245 

negative τ-precipitation correlation. The CRESCENDO models generally exhibit a stronger 246 

positive correlation of Ctotal with climate than in the observation. This strong Ctotal-247 

precipitation correlation in the models is due to a strong correlation between Ctotal and GPP 248 

(see Figure A6). 249 
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 250 

Figure 3. Zonal distribution of ecosystem turnover time of carbon (τ, years), gross 251 

primary productivity (GPP, kgC/m2/year), and total ecosystem carbon stock (Ctotal, 252 

kgC/m2) and their relationships with climate.  The zonal means are plotted in the left 253 

column, and the correlations with temperature and precipitation are plotted in the centre and 254 

right column, respectively. The correlation with precipitation is controlled for temperature 255 

and vice-versa. The Pearson’s correlation coefficient for each latitude is calculated for a 256 

moving window of 10 grid cells along the latitude (5°). Only the coefficients that are 257 

statistically significant at 5% significance level are shown. The individual models are plotted 258 

in coloured thin lines, and the multimodel ensemble in thick blue lines. In the correlation 259 

plots, the thick dashed blue lines show the normalized mean correlation of all models with 260 

shades indicating variation within one standard deviation. The observation is plotted as a 261 

thick black line with shade indicating the range within the 5th and 95th percentiles. 262 
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 263 

Model biases and agreement 264 

 265 

Figure 4. Global distributions of ecosystem turnover time of carbon (τ, years), gross 266 

primary productivity (GPP, kgC/m2/year), and total ecosystem carbon stock (Ctotal, 267 

kgC/m2) and their biases. The multimodel ensemble, observation-based estimate, and the 268 

bias and agreement are presented in the first, second, and third row, respectively. Multimodel 269 

ensemble is calculated as the median of the seven CRESCENDO models. The bias is 270 

calculated as the ratio between multimodel ensemble and the corresponding observation. In 271 

the global maps of bias (third row), stippling indicates the regions where only two or fewer 272 

models fall within the range of observational uncertainties (5th and 95th percentiles). 273 

Spatially, the CRESCENDO multi-model ensembles exhibit similar global distributions 274 

compared to the corresponding observation-based estimates of τ (Figure 4a, b), GPP (Figure 275 

4d, e), and Ctotal (Figure 4g, h). Globally, the observation-based τ is the shortest in tropical 276 

regions with high GPP as well as a relatively high Ctotal, and the longest in high latitude 277 

regions with a relatively lower GPP but high Ctotal. The longer τ is also prevalent in cold and 278 

dry arid regions, such as the surroundings of the Gobi Deserts, where both GPP and Ctotal are 279 

lower than other regions. The observation-based Ctotal shows a pattern of large carbon 280 

storages in either a region with high GPP or a longer τ. Additionally, larger Ctotal are also 281 

evident in the Arctic North America and Boreal Eurasia characterized by occurrences of peat. 282 
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On a broad scale, the CRESCENDO multimodel ensemble τ also exhibits a similar spatial 283 

gradient with shorter τ in the tropics and longer τ in the northern high latitudes. Such spatial 284 

gradients are reproduced by individual models as well (Figure A8). Despite the similarity in 285 

spatial variability, the multimodel ensemble τ still has a substantial underestimation bias in 286 

the semiarid regions (sub-Saharan Sahel, central Asia, northern Australia, and western United 287 

States), where the multimodel ensemble is ~5 times shorter than the observation (Figure 4c). 288 

The models tend to agree with each other more in the northern high latitudes and the humid 289 

tropics than they do in the arid and semi-arid regions with large biases, as also shown 290 

previously for CMIP5 models (Carvalhais et al., 2014). Moreover, fewer than two models are 291 

within the observational uncertainty (hereafter referred to as low agreement) in ~22% of the 292 

total grid cells.  In the semi-arid region, the underestimation of τ (the overestimation of 293 

turnover rate) is prevalent in all but three models (CLM4.5, JULES and SURFEX in Figure 294 

A7).  295 

Both the spatial variability and magnitude of GPP in CRESCENDO models compare better 296 

with the corresponding observation than in the case of τ (see Figure A9 as well). In the 297 

tropical humid and semi-arid regions, the GPP bias is small in relative terms (Figure 4f). In 298 

semi-arid regions of south America and Australia, the relative bias in GPP is high due to 299 

relatively lower GPP values in the observation. But the largest overestimation bias can be 300 

seen in the northern high latitudes which have low GPP. The models also agree less in the 301 

regions with the largest bias with almost ~35% of global grid cells having a low model 302 

agreement. Note that such low agreement is also due to small uncertainty range in the 303 

ensemble of GPP observations (bar charts in Figure A7b). When the global and regional 304 

GPP are compared, almost all models are within the observational uncertainty globally due to 305 

better performance in the humid and sub-humid climate compared to other regions (Figure 306 

A7b). 307 

Lastly, the spatial variability of Ctotal in most CRESCENDO models is similar to that from 308 

observation-based estimate (Figure A10), even though the distinctly large storage in 309 

peatlands is not reproduced by most models. The bias in Ctotal bears a striking similarity to the 310 

spatial pattern of bias of τ. There are, however, also regions where the opposing biases in τ 311 

and GPP lead to unbiased Ctotal. For example, in the Iberian Peninsula and Hudson Bay, the 312 

overestimation of GPP is compensated by an underestimation of τ (overestimation of 313 

turnover rate) resulting in a relatively unbiased Ctotal. Due to such compounding effects, there 314 

is even more widespread occurrence of low model agreement for Ctotal (~40% of global grid 315 
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cells), and biases, mostly similar with those of τ, are widespread across different climatic 316 

regions (Figure A7c). 317 

To attribute the bias in Ctotal, we compare the biases in GPP, Ctotal, and τ in each 318 

CRESCENDO model (Figure 5). Note that an ideal model would have low biases in all GPP, 319 

τ and Ctotal. The contrast between the biases in GPP and Ctotal reveals a dominant control of τ 320 

on the Ctotal bias. The JSBACH, LPJ-GUESS, and ORCHIDEE models show consistently 321 

lower Ctotal than observation-based estimate, that is likely associated with an underestimation 322 

of τ, as the biases in GPP are relatively lower than those in Ctotal (larger density of points 323 

along the axis of no bias in GPP). Other models perform better for both GPP and τ in all but 324 

arid climatic region. Only CLM4.5 and SURFEX show a good agreement of τ in arid region 325 

(red lines close to 1:1 line). CLM4.5, though, also has a slight overestimation bias in Ctotal in 326 

all other climatic regions arising from overestimation of τ. In fact, in CLM5, the biases in τ 327 

are reduced across all climatic regions. Only JULES and SURFEX produce a larger density 328 

of grid cells where biases are low for GPP, τ, and Ctotal. In JULES, τ and Ctotal are 329 

underestimated mainly in the arid and humid region. Globally, only CLM4.5 has larger range 330 

of spatial variability than in the observation (the slope of the fitted global line greater than 1).  331 
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 332 

Figure 5. Relationship of biases in gross primary productivity (GPP) and total 333 

ecosystem carbon stock (Ctotal) in CRESCENDO model simulations. The different colours 334 

indicate different climate defined by the aridity classes, and individual grid-cells are plotted 335 

as dots. The percentage values in the parenthesis of the title shows the fraction of the global 336 

grid cells that are within the range of bias between 0.1 and 4. The dashed vertical line shows 337 

the axis of no bias in GPP (ratio of GPP from model to that from observation = 1), the same 338 

for Ctotal is shown by a horizontal dashed line. The grey solid line indicates the axis along 339 

which there is no bias in τ. An ideal point of no biases in GPP, Ctotal, and τ is indicated by a 340 

cross ‘x’. The coloured lines indicate the main axis of variations of biases in GPP and Ctotal 341 

(linearly fitted lines that passes through origin). The white contour lines indicate the density 342 

of grid cells, with higher density of lines showing larger occurrence of grid cells. 343 
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Conclusions and discussion 344 

Adding to a well-established association of carbon cycle with temperature, we show that 345 

precipitation also plays a key role in defining primary climate controls on spatial variabilities 346 

of GPP and carbon turnover times. The moisture control results in an emergent association of 347 

turnover time with aridity (Figure 1) that encompasses a wide range of precipitation and 348 

temperature regimes. Aridity regulates the moisture availability and, thus, modulates the 349 

apparent climate sensitivities of climatological carbon cycle dynamics. Despite uncertainties 350 

in the observation-based data, the presented observation-based climate sensitivities of carbon 351 

cycle are robust across full factorial of the latest estimates of GPP, soil and vegetation carbon 352 

stocks (Figure A11). We note that the apparent sensitivities presented here only reveals the 353 

primary controls, which is also indicated by a large spread within a climatic region (Figure 354 

1). The additional heterogeneities may be associated with differences in soil and land 355 

properties, along with differences in secondary moisture effects such as photodegradation and 356 

pulsing of microbial activity from rainfall, drought-related mortality 33, disturbances and fire 357 

regimes 34,35, etc.  358 

We found that the offline simulations of the latest generation of Earth System Models from 359 

CRESCENDO project reproduce well the association of GPP with climate, but fall short for 360 

turnover times, especially in semiarid and arid regions leading to large uncertainties in 361 

simulated carbon stocks. The models with relatively lower biases in turnover time and carbon 362 

stock in arid and semiarid regions produce a better zonal variation of τ-precipitation 363 

relationship, while the poorer model performance is characterized by biases in τ-temperature 364 

relationship. This implies an insufficient model representation of moisture control on 365 

climatological carbon cycle dynamics even though all models include the moisture effects on 366 

both GPP and decomposition rates (Table A2).  367 

The identification of exact mechanisms of moisture control on carbon cycle, especially 368 

without an observation-based soil moisture that extends beyond top few centimetres of soil, is 369 

still challenging. For example, we cannot clarify if the modelled soil moisture is itself biased 370 

or if the response of carbon cycle to soil moisture is misrepresented. Nevertheless, an 371 

evaluation of evapotranspiration shows a very consistent performance across models in all 372 

climatic regions (Figure A12), which should lead to a consistent soil moisture across models. 373 

Yet, the spatial covariation of carbon fluxes-moisture-temperature reveals diverse moisture-374 

temperature relationships across different models (Figure A13). The temperature responses 375 

of GPP and respiration are highly consistent, but the moisture responses differ significantly 376 
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across different models. The model performing better in arid and semi-arid regions (e.g., 377 

SURFEX) has contrasting responses than the models with poorer performance providing 378 

secondary evidence of the potential weakness in the model representation of moisture 379 

controls. Factorial experiments of each model are necessary to identify the reasons behind, 380 

and to bridge the differences between, the apparent moisture controls presented in this study. 381 

Lastly, the weaker performance of precipitation-turnover relationships leads to large 382 

uncertainties of carbon stocks especially in arid and semi-arid climatic regions, as the biases 383 

in Ctotal are largely associated with biases in turnover time rather than those in GPP. 384 

Additionally, we found that biases of GPP and turnover time manifest to a larger bias in 385 

Ctotal. This has serious implications in the predictions of changes in carbon stock under 386 

climate change, as the changes in precipitation, temperature, and thus aridity 36 will have a 387 

non-negligible influence. The reduction of uncertainties in modelled carbon stock under 388 

global changes is, therefore, not a carbon-cycle only challenge and it must be addressed with 389 

a broader scope of improving the hydrological influences on the terrestrial carbon cycle. 390 

  391 
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Methods 392 

Ecosystem carbon turnover time: 393 

A turnover rate of a storage is broadly defined as the rate of fractional loss of storage per unit 394 

time. For an ecosystem under natural condition, the turnover time, an inverse of turnover rate, 395 

is, therefore, the time duration carbon stays in the ecosystem between carbon assimilation 396 

through photosynthesis and loss to atmosphere through respiration and decomposition 397 

processes. Under steady state assumption, the output carbon fluxes equilibrate with the input 398 

primary productivity, and temporal changes in carbon storage become small. Thus, the 399 

steady-state turnover time of an ecosystem can be effectively calculated as the ratio of carbon 400 

storage and the input flux to the ecosystem as, 401 

																																										𝜏 =
!"#$%&

'((
        (1), 402 

where, τ is the ecosystem turnover time (years), Ctotal is the long-term average total ecosystem 403 

carbon storage per unit area (kgC/m2) and GPP is the annual mean gross primary productivity 404 

(kgC/m2/year). As stated and used in previous studies 17,18,25,26, the τ in Eqn (1) is under the 405 

assumption of a steady state ecosystem and represents the apparent or effective turnover time 406 

of the whole ecosystem carbon storage. It emerges as the diagnostic property of an 407 

ecosystem, rather than the intrinsic property of decomposition processes that explicitly 408 

controls Ctotal. 409 

Observation-based datasets: 410 

Due to potential uncertainties in the global observation-based estimates, we used an ensemble 411 

of six GPP datasets, four soil carbon (Csoil) and four vegetation carbon (Cveg) stock datasets. 412 

The data ensembles, spanning a wide range of sources and methods, represent the current 413 

state-of-the-art of global observation-based estimates of the carbon cycle components and, 414 

likely, cover the full range of observational uncertainties. As we use only a single ensemble 415 

estimate from each product, we assume that the differences and uncertainties are larger across 416 

the datasets than within a single dataset.  417 

The GPP ensemble includes Model Tree Ensembles (MTE) (Jung et al., 2011) and its recent 418 

successors from FLUXCOM based on remote sensing and that with additional meteorological 419 

forcing 38, solar-induced fluorescence (SIF) based GOSIF GPP 39,  light use efficiency based 420 

GPP from vegetation photosynthesis model (VPM) 40, and lastly, an independent machine 421 

learning prediction from FluxSat 41 that uses corrected satellite-based reflectance. All GPP 422 

products are either upscaled from or extensively evaluated against eddy covariance 423 
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observations of carbon fluxes from FLUXNET (www.fluxdata.org) sites (Baldocchi et al., 424 

2001). For example, the MTE, FLUXCOM, and FluxSat products use different combinations 425 

and corrections of training data and drivers from satellite remote sensing and meteorological 426 

dataset to upscale site-level observation to the global scale using different machine learning 427 

algorithms. VPM, a light use efficiency model, is similar to MODIS GPP but with an 428 

additional validation for FLUXNET sites, and GOSIF GPP uses a set of GPP-SIF 429 

relationships to produce an ensemble of high resolution global GPP fields that are 430 

independent of reflectance-based remote sensing products. While the spatial variability of the 431 

mean GPP is one of the most robust features when comparing different observation-based 432 

GPP products, it is desirable to use an ensemble as no single data is superior to all others 433 

universally 43.  434 

For Csoil, we use the full depth soil organic carbon estimates including a data that combines 435 

inventories from Harmonized World Soil Database 44 with the Northern Circumpolar Soil 436 

Carbon Database 45 extrapolated to full depth 18; from SoilGrids that uses machine learning 437 

method to upscale soil profile measurements with land and climate characteristics as 438 

predictors46; and from Sanderman et al. that corrects for land use and forest cover 47. Due to 439 

differences in number and locations of observed soil profiles used, predictors, and prediction 440 

methods, the soil carbon estimates are uncertain, especially in high latitude regions, with a 441 

large Csoil but a relatively fewer measurement profile. Nonetheless, the global distributions of 442 

Csoil in these products are robust 48, and their differences reflect potential uncertainties across 443 

all observation-based global estimates. We note that the SoilGrids data has been recently 444 

updated, but the new version of the data, the LANDGIS, has not been used in this analysis 445 

owing to lack of extensive validation and potential over-estimation issue in the northern high 446 

latitudes 48,49. It should here be noted that using the LANDGIS instead of SoilGrids does not 447 

significantly affect the main findings of this study (see Figure 1 and Figure A3).  448 

The Cveg ensemble includes four different RADAR and LIDAR satellite-based estimates of 449 

aboveground biomass with a corresponding estimate for belowground biomass 48. As 450 

different data are based on different satellites and algorithms, and have been validated with 451 

observations whenever and wherever available, they are indicative of global vegetation 452 

biomass and associated uncertainties in observation-based estimates. 453 

An ensemble of observation-based τ was then obtained using Eqn (1) for a full factorial 454 

combination of all Csoil, Cveg, and GPP products resulting in 96 different τ maps.  455 
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In this study, for GPP, Ctotal and τ, the ensemble median across data products was used as the 456 

representative observation-based estimate, and the 5th and 95th percentiles were used as 457 

uncertainty range. 458 

Lastly, for an additional evaluation of CRESCENDO models, the ensemble estimates of 459 

evapotranspiration from FLUXCOM remote sensing products 50 was used. 460 

Climatic regions based on aridity index: 461 

The aridity index, calculated as the ratio of mean precipitation and potential 462 

evapotranspiration (PET), is used to delineate different climatic regions based on relative 463 

availability of moisture and energy. For consistency, the CRU-NCEP precipitation, used to 464 

force the CRESCENDO model simulations, is also used for calculating the aridity index. The 465 

PET data is based on an estimate from the latest climate datasets at a high resolution 51. 466 

Different climatic regions were then delineated based on the aridity index ranges suggested 467 

by UNEP 52 as: arid (<0.2), semi-arid, sub-humid, and humid (see Figure A1). The average 468 

annual precipitation (temperature) varies from 245 mm/year (7.6°C) in arid regions to 880.3 469 

mm/year (0.9°C) in humid regions. These regions constitute 8.2%, 24.3%, 15.1%, and 52.4% 470 

of the total area considered in this study. In relative terms, the arid and semiarid regions 471 

contribute ~18% of the global GPP and hold ~24% of the global carbon stock (Table A1). 472 

Combined, these regions have a τ of ~43 years, which is ~34% longer than the global τ of ~32 473 

years. 474 

Climate sensitivities: 475 

The overarching aim of this study is to investigate the climate sensitivities of climatological 476 

mean carbon cycle dynamics across all major climatic regions globally and assess the 477 

apparent sensitivities of spatial covariations of carbon cycle with climate. Under humid 478 

climate, spatial sensitivity of τ is itself dependent on temperature 17. But, to what extent the 479 

same applies to other climatic regions and carbon cycle variables is unclear. This is especially 480 

critical with regard to precipitation that represents the potential moisture supply for an 481 

ecosystem that determines both the carbon assimilation and decomposition processes. 482 

Further, we hypothesize that the relative availability of moisture (supplied by precipitation) 483 

and energy (determined by temperature) plays a central role in defining the carbon cycle 484 

dynamics across spatiotemporal scales. We, therefore, investigate the relationships between 485 

the carbon turnover time and GPP with precipitation and temperature across different 486 
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climatic regions characterized by an aridity index. We assume that the relationship between 487 

τ/GPP and climate are non-linear and assume it to be of a second-degree polynomial form as, 488 

																																														𝑦	 = 	𝑎𝑥) + 𝑏𝑥 + 𝑐       (2), 489 

where, y is the response/dependent variable, x is the independent variable, and a, b and c are 490 

the parameters of the quadratic equation. The terms a and b are the coefficients of the non-491 

linear and linear terms, respectively, and c is the constant term that defines the 492 

offset/intercept when the independent variable is zero. As τ is expected to have a non-linear 493 

exponential relationship with temperature, we log-normalize it and use log(τ) as the 494 

dependent variable.  495 

The parameters of Eqn (2) for each climatic region are estimated using a robust non-linear 496 

least square regression with Huber loss function 53 that is less sensitive to outliers in the data. 497 

CRESCENDO model simulations: 498 

We use the observation-based climate sensitivities to evaluate the process representations in 499 

land surface schemes of (used in) the ESMs from seven different European research 500 

institutes. The stand-alone offline land simulations were carried out as a part of the 501 

CRESCENDO project (https://ukesm.ac.uk/crescendo/) to understand and evaluate the carbon 502 

and nitrogen cycle processes in the current state-of-the-art ESMs. The same land surface 503 

schemes were used in the ESM simulations for the sixth phase of coupled model 504 

intercomparison project (CMIP6). Following the TRENDY protocol 54, the models were 505 

forced by CRUNCEP v7 55 forcing dataset 506 

(https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.ht507 

ml), observed atmospheric CO2 concentration, nitrogen deposition, and annual land-use 508 

changes. The offline simulations forced with an observation-based dataset are suitable for 509 

evaluating the response of the land carbon cycle processes to the climate forcing, as they are 510 

less prone to biases and uncertainties arising from differences in carbon-climate feedbacks in 511 

the coupled simulations of ESM. 512 

The data of CRESCENDO model simulations were last accessed in January, 2019. While the 513 

simulations are available for longer time period, the simulation results from 2001 to 2010 514 

inclusive, consistent with the time period across different observation-based estimates of 515 

carbon cycle variables, were used for evaluations in this study. The Ctotal was calculated as a 516 

sum of all the carbon pools respiring to the atmosphere. Similar to the observation, τ was 517 

calculated as the ratio of Ctotal and GPP.  518 
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All models were forced in an offline mode with the same meteorological drivers, but at a 519 

different resolution with a different experimental and process setup (see Table A2 for an 520 

overview). Regarding carbon cycle spinup, all models except JULES were initialized with 521 

zero carbo stock, and forced by the repeated meteorological data of the first few years for a 522 

total of 500-10000 years. It should be noted that, in essence, irrespective of the initial 523 

condition, the JULES model produces a consistent model state at the end of spinup period 56, 524 

and, in general, by definition, the spin-up and initial condition are not systematically related 525 

to the biases in the model states. There are further differences in soil physics and model 526 

structure therein. For example, CLM5, JULES, and SURFEX have a finer discretization of 527 

soil layers and/or represent soil physics with freeze-thaw dynamics.   528 

CLM4.5, the terrestrial component of the CMCC coupled model version 2 57 within CMIP6, 529 

was used in its Biogeochemical (BGC) configuration 58,59 for the CRESCENDO simulations. 530 

CLM4.5 describes photosynthetic, hydrologic, and decomposition processes. Photosynthesis 531 

is based on Ball-Berry model, and hydrology includes soil moisture and groundwater 532 

processes. The decomposition rates are dependent on soil temperature, soil moisture, oxygen 533 

and depth.  534 

CLM5, the terrestrial component of NorESM, builds on CLM4.5, with major updates on soil 535 

hydrology and carbon coupling 60. Soil hydrology is based on variable soil thickness with 536 

high resolution layers and spatially varying root profile. Photosynthesis is based on the 537 

Medlyn-model and includes nitrogen limitation using optimality principles. The 538 

representation of the decomposition process is updated with a new metric for the apparent 539 

soil carbon turnover 17 in which the temperature affects the moisture limitation of 540 

decomposition through freezing of liquid water.  541 

JSBACH version 3.2 61 is the terrestrial component of MPI-ESM1.2. As compared to its 542 

predecessor, it includes novel components of soil carbon, nitrogen limitation, a five-layer 543 

hydrology scheme, the wildfire model SPITFIRE, as well as improved land use 544 

representations 62. The soil carbon decomposition processes are based on the YASSO model 545 

63 and include five different soil carbon pools according to the chemical quality of the organic 546 

matter, each for woody and non-woody litter.  The vertical distribution of soil carbon is not 547 

resolved and permafrost is not considered in the applied version. Decomposition rates depend 548 

on air temperature and precipitation, due to the foundation of YASSO on observed litter 549 

decomposition rates. 550 
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JULES 56, the land component of UKESM1, includes the improvements in parameterization 551 

of the vegetation dynamics, canopy structural properties, and the parameters affecting the 552 

photosynthesis and respiration fluxes 64.  The nutrient availability limits the photosynthesis 553 

indirectly by controlling the biomass and leaf area index. The litter and exudate fluxes 554 

convert to the soil organic carbon through controls of nitrogen availability, and the soil 555 

decomposition process are controlled further by temperature and moisture. 556 

LPJ-GUESS 65 is the dynamic vegetation model of EC-Earth used in CMIP6. LPJ-GUESS 557 

employs a two-layer leaky bucket soil hydrology scheme with percolation between layers and 558 

deep drainage. Photosynthesis is controlled by nitrogen limitation following whole plant 559 

optimal nitrogen content. The soil organic matter dynamics are based on the CENTURY soil 560 

model in which the decay rates depend on the moisture content of the top soil layer, soil 561 

temperature, texture, lignin fractions, tillage and nitrogen limitation.  562 

ORCHIDEE, the land surface scheme of the IPSL-CM5 ESM, consists of a multi-layer soil 563 

that accounts for transport of water by diffusion and deep drainage, and of heat with 564 

improved thermodynamics and conduction process 66. The resulting soil moisture and 565 

temperature are used for analytically solving soil organic matter dynamic that guarantees 566 

steady-state conditions. Photosynthesis is based on the Farquhar-model and is limited by the 567 

leaf nitrogen. The soil heterotrophic respiration is independent of the nitrogen content of soil 568 

organic matter. 569 

SURFEX/ISBA-CTRIP, the land surface scheme of the CNRM-ESM2-1 in CMIP6 67,68 570 

solves the energy and water balance of one vegetation canopy, 12 snow layers, and up to 14 571 

soil layers in deep soils and permafrost. Soil texture, albedo and carbon content determine the 572 

thermal and hydraulic properties of the soil. The litter and soil organic matter processes are 573 

based on the soil carbon part of the CENTURY model, and the soil heterotrophic respiration 574 

is limited under high soil moisture. The nitrogen limitation leaf growth is empirically based 575 

on a meta-analysis of CO2 enrichment experiments that limit leaf nitrogen content and 576 

specific leaf area.  577 

 578 

Zonal variations and correlation: 579 

The zonal variations and correlations are computed using a moving window of 10 grid cells 580 

along the latitude (5° coverage). The zonal means of the GPP and Ctotal are weighted by the 581 

area of the grid cell which vary along the latitude, and the zonal mean of τ was estimated as 582 
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the ratio of zonal Ctotal and GPP, and not as a zonal mean of τ in different grid cells. The 583 

observational uncertainty band for the zonal means are calculated as 5th and 95th percentiles 584 

of the zonal value using different data products.  585 

The correlations between τ or GPP or Ctotal and temperature or precipitation were calculated 586 

as the partial Pearson’s correlation coefficient controlling for the other. To accommodate for 587 

the influence of the extreme cold winter temperature on the mean annual temperature in high 588 

latitude regions, the monthly temperature below -5°C were considered physiologically (for 589 

photosynthesis) and metabolically (for respiration) irrelevant, and these values were set to -590 

5°C while calculating the mean annual temperature. Note that the processing is only relevant 591 

for high latitude regions where the duration of and temperature in winter vary significantly 592 

within a moving window (see Figure 3 and Figure A1. 593 

Within a moving window, one percent grid cells were discarded to minimize the effects of 594 

outliers on the correlation coefficient. Unless otherwise mentioned in the captions, the 595 

uncertainty band around the observation are the ranges within 5th and 95th percentile of the 596 

values calculated from different data products. The partial correlation coefficients were tested 597 

for statistical significance at 5% level of significance, and all insignificant correlations are 598 

masked out when plotting. 599 

  600 
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Extended Tables 621 

 622 

Table A1. Summary of the median and the range of observation-based gross primary 623 

productivity (GPP in pgC/year), total carbon storage (Ctotal in pgC) and turnover time (τ in 624 

years) globally, and in different climatic regions. The median is calculated from the ensemble 625 

members of the observation-based data. The range indicates the values within 5th and 95th 626 

percentile of the ensemble members. 627 

 

Global Arid Semi-arid Sub-humid Humid 

GPP 109.5  

(98.3-119.6) 

2.7  

(2.3-3.1) 

16.8  

(14.8-19.3) 

12.8  

(11.1-13.6) 

77.6  

(69.0-85.3) 
Ctotal 3482.9  

(2245.0-4804.8) 
149.2  

(105.3-162.4) 
680.3  

(424.7-811.5) 
493.9  

(289.3-698.0) 
2150.4  

(1418.0-3151.5) 
τ 31.9  

(18.9-47.4) 

52.9  

(35.1-73.2) 

39.7  

(22.9-54.1) 

38.8  

(21.4-62.1) 

27.7  

(16.8-44.3) 

 628 
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 629 

Table A2. An overview of the CRESCENDO models, the major processes therein, and the simulation setup. Human activities include human 630 

need-driven processes that affects the vegetation carbon stock such as crop harvest (H), pasture (P), wood harvest (W), deforestation (D), land 631 

use changes (LUC), and nitrogen deposition (NDep). All models include carbon losses from heterotrophic respiration (RH), and some models 632 

include the carbon losses from soil due to leaching of dissolved organic carbon (DOC).  633 

SN 

Model 

Name 

(LSM/ES

M) 

Institution 
Spinup 

(years) 

Initial 

carbon 

stock 

Forcing for 

spinup 

(repeat 

years) 

Native 

spatial 

resolution 

(° latitude x 

° longitude) 

Dynamic 

vegetatio

n process 

Human 

activitie

s 

Soil physics (number 

of layers, total depth) 

Soil carbon 

sink terms 

1 
CLM4.5/
CMCC-
ESM 

Euro Mediterranean Centre 
on Climate Change 
(CMCC) Foundation 

1020 
accelerated 
+ 300 non-
accelerated  

0 30 years 
1.25°x0.937
5°  

no 
LUC, 
W, D 

15 layers, 35.1776 m RH 

2 
CLM5/No
rESM 

NORCE Norwegian 
Research Centre, Bergen, 
Norway 

1526 0 30 years 0.5°x0.5°  no 
LUC, 
W, D 

20 layers, 8.5 m 
RH; carbon cost 
for nutrient 
processes 

3 
JSBACH/
MPI-ESM 

Max Planck Institute for 
Meteorology 

> 10000 

C stock 
from 
TRENDY 
v6 
simulation 

20 years 
~1.875°x1.8
75° (T63) 

not 
activated 

LUC, 
NDep, 
W, H 

Soil physics: 5 layers, 
9.834 m; soil carbon: 1 
layer 

RH 

4 
JULES/U

KESM 

Met Office Hadley Centre, 

UK NERC 
10000 

C stock 
from 

independent 
simulation 

20 years 
~1.25°x1.87

5° (N96) 
yes 

LUC, 
NDep, 
H 

4 layers, 3 m RH 

5 
LPJ-
GUESS/E
C-Earth 

Department of Physical 
Geography and Ecosystem 
Science, Lund University 

Soil: 40500; 
Vegetation: 
500 

0 
30 years, no 
IAV of 
temperature 

0.5°x0.5°  yes 
LUC, 
NDep, 
H, P 

Soil moisture: 2 layers, 
1.5 m; 
soil carbon: 1 layer 

RH; DOC 

6 
ORCHID
EE/IPSL-
CM5 

Institut Pierre Simon 

Laplace (IPSL), France 

340 for 
litter input; 

cSoil: until 
steady state 

0 30 years 0.5°x0.5°  no 
LUC, 

W, H, D  

Soil moisture: 11 
layers, 2 m; soil carbon: 
1 layer 

RH 

7 
SURFEX/
CNRM-
CM5 

CNRM, Meteo-
France/CNRS/Université 
Fédérale de Toulouse 

Soil: 8875; 
Vegetation: 
470 

0 20 years 1°x1°  no LUC 

Soil temperature: 14 
layers, 12 m; soil 
moisture: 14 layers, till 
rooting depth (1m for 
grasses, 8m for tropical 
forests) 

RH; DOC 
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 634 

Table A3. Summary of the parameters of the non-linear least square fitting of the relationships between τ and GPP and climate: a: coefficient for 635 

the quadratic term, b: coefficient for the linear term, and c: constant.  636 

 
Arid Semi-arid Sub-humid Humid 

a b c a b c a b c a b c 

τ
-M

A
T

 

Obs-based 2.61E-05 -3.45E-02 2.25 1.01E-04 -3.34E-02 1.97 1.33E-12 -3.01E-02 1.84 2.38E-04 -3.60E-02 1.88 

CLM4.5 9.51E-04 -5.23E-02 2.13 1.36E-04 -3.48E-02 1.96 7.23E-16 -3.33E-02 1.92 1.92E-04 -3.32E-02 1.82 

CLM5 1.01E-03 -6.36E-02 1.86 9.70E-04 -5.82E-02 1.53 4.41E-04 -3.96E-02 1.40 7.31E-04 -3.93E-02 1.44 

JSBACH 1.04E-20 -1.62E-02 0.91 5.00E-04 -3.55E-02 1.00 1.56E-04 -3.11E-02 1.16 2.06E-05 -2.53E-02 1.29 

JULES 3.94E-04 -2.56E-02 1.45 9.43E-20 -1.50E-02 1.54 1.52E-18 -1.11E-02 1.51 7.76E-16 -1.44E-02 1.43 

LPJ-GUESS 5.86E-04 -3.81E-02 1.41 2.84E-04 -2.81E-02 1.41 1.70E-04 -2.36E-02 1.39 2.16E-04 -2.67E-02 1.42 

ORCHIDEE 5.55E-04 -3.32E-02 1.21 4.82E-04 -2.49E-02 1.07 4.93E-04 -2.01E-02 1.00 1.05E-04 -1.50E-02 1.15 

SURFEX 3.31E-14 -3.37E-02 2.23 1.48E-17 -2.98E-02 1.95 5.78E-20 -2.54E-02 1.75 2.85E-17 -2.84E-02 1.72 

τ
-M

A
P

 

Obs-based 1.05E-06 -2.64E-03 2.40 2.30E-06 -4.19E-03 3.05 1.11E-06 -2.86E-03 2.91 2.65E-07 -1.31E-03 2.60 

CLM4.5 9.25E-07 -2.26E-03 2.19 2.03E-06 -3.90E-03 2.96 8.09E-07 -2.57E-03 2.93 2.63E-07 -1.27E-03 2.52 

CLM5 1.54E-06 -3.44E-03 2.01 3.97E-06 -6.45E-03 3.20 2.00E-06 -4.32E-03 3.00 2.74E-07 -1.24E-03 2.18 

JSBACH 2.86E-07 -6.45E-04 0.84 1.79E-06 -3.21E-03 1.83 1.22E-06 -2.99E-03 2.28 2.20E-07 -1.05E-03 1.84 

JULES 7.30E-08 -1.87E-04 1.25 4.86E-07 -1.16E-03 1.81 1.80E-31 -4.95E-04 1.76 7.74E-08 -5.02E-04 1.72 

LPJ-GUESS 4.23E-07 -1.02E-03 1.28 2.19E-06 -3.50E-03 2.28 9.63E-07 -2.25E-03 2.23 1.79E-07 -8.92E-04 1.92 

ORCHIDEE 5.30E-07 -1.15E-03 1.18 1.65E-06 -2.61E-03 1.74 9.30E-07 -1.84E-03 1.68 9.53E-08 -4.91E-04 1.41 

SURFEX 9.71E-07 -2.51E-03 2.38 9.44E-07 -2.69E-03 2.69 2.63E-07 -1.50E-03 2.41 1.76E-07 -1.01E-03 2.27 

G
P

P
-M

A
T

 

Obs-based 3.97E-04 1.09E-03 0.17 2.88E-04 1.54E-02 0.41 3.87E-21 3.22E-02 0.69 7.24E-04 4.83E-02 0.69 

CLM4.5 1.35E-04 2.77E-04 0.15 3.68E-15 5.76E-03 0.38 3.85E-34 1.35E-02 0.59 4.17E-04 5.60E-02 0.90 

CLM5 5.20E-04 -2.19E-03 0.14 5.74E-04 3.08E-03 0.38 4.42E-05 1.66E-02 0.73 6.07E-04 3.89E-02 1.00 

JSBACH 3.57E-04 -6.90E-04 0.11 7.05E-04 6.56E-03 0.24 7.18E-04 1.97E-02 0.49 1.89E-03 3.95E-02 0.66 

JULES 4.85E-15 4.02E-03 0.10 4.40E-04 1.50E-02 0.18 4.03E-04 3.02E-02 0.48 2.07E-04 5.62E-02 0.90 

LPJ-GUESS 2.12E-18 1.97E-02 0.36 1.06E-15 1.80E-02 0.61 6.14E-22 1.87E-02 0.83 4.63E-15 4.74E-02 1.07 

ORCHIDEE 4.04E-04 3.40E-03 0.05 6.45E-04 1.67E-02 0.26 1.54E-04 3.36E-02 0.66 8.37E-04 5.06E-02 0.78 

SURFEX 2.61E-04 2.62E-03 0.07 5.66E-04 1.27E-02 0.24 5.08E-04 2.57E-02 0.49 1.64E-03 4.20E-02 0.51 

G
P

P
-M

A
P

 

Obs-based -8.84E-08 1.09E-03 0.00 -1.87E-07 1.43E-03 0.00 -2.45E-07 1.61E-03 0.00 -1.58E-07 1.46E-03 0.00 

CLM4.5 3.30E-07 5.79E-04 0.00 -7.28E-07 1.33E-03 0.00 -9.64E-07 1.84E-03 0.00 -1.01E-07 1.48E-03 0.00 

CLM5 8.81E-08 9.87E-04 0.00 -2.28E-07 1.31E-03 0.00 -8.16E-07 1.96E-03 0.00 -2.27E-07 1.68E-03 0.00 

JSBACH 2.44E-07 6.05E-04 0.00 6.06E-07 6.19E-04 0.00 3.00E-07 9.70E-04 0.00 -1.31E-08 1.40E-03 0.00 

JULES 3.77E-07 4.79E-04 0.00 9.44E-07 3.75E-04 0.00 5.15E-07 8.24E-04 0.00 -2.40E-07 1.73E-03 0.00 

LPJ-GUESS -9.69E-07 2.55E-03 0.00 -1.33E-06 2.42E-03 0.00 -1.23E-06 2.47E-03 0.00 -2.34E-07 1.70E-03 0.00 

ORCHIDEE 1.74E-07 7.45E-04 0.00 7.27E-07 8.20E-04 0.00 -4.85E-08 1.48E-03 0.00 -1.77E-07 1.62E-03 0.00 

SURFEX 3.38E-08 6.52E-04 0.00 7.23E-07 6.34E-04 0.00 3.42E-07 9.49E-04 0.00 -1.09E-07 1.42E-03 0.00 
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Table A4. Performance metrics for least square regression of the relationship between τ, GPP, and climate: r2: coefficient of determination. rmad: 637 

relative median absolute deviation calculated as the median of absolute deviation normalized by the interquartile range of the observation.  638 

 639  
MAT MAP 

Arid Semi-arid Sub-humid Humid Arid Semi-arid Sub-humid Humid 

r2 rmad r2 rmad r2 rmad r2 rmad r2 rmad r2 rmad r2 rmad r2 rmad 

τ
 

Obs-based 0.06 0.25 0.45 0.14 0.44 0.14 0.37 0.13 0.00 0.27 0.58 0.14 0.57 0.14 0.00 0.18 

CLM4.5 0.00 0.32 0.00 0.11 0.31 0.10 0.00 0.11 0.00 0.48 0.00 0.16 0.32 0.10 0.00 0.18 

CLM5 0.00 0.36 0.00 0.18 0.00 0.25 0.00 0.24 0.00 0.37 0.00 0.30 0.01 0.26 0.00 0.35 

JSBACH 0.23 0.42 0.40 0.22 0.34 0.14 0.65 0.16 0.01 0.44 0.40 0.29 0.48 0.15 0.62 0.20 

JULES 0.00 0.39 0.00 0.31 0.01 0.30 0.20 0.17 0.00 0.49 0.00 0.38 0.01 0.32 0.22 0.17 

LPJ-GUESS 0.17 0.31 0.10 0.19 0.23 0.14 0.11 0.14 0.00 0.47 0.11 0.22 0.25 0.14 0.00 0.19 

ORCHIDEE 0.51 0.40 0.66 0.22 0.67 0.22 0.66 0.19 0.01 0.45 0.00 0.25 0.04 0.26 0.47 0.24 

SURFEX 0.14 0.22 0.49 0.14 0.68 0.16 0.86 0.07 0.00 0.29 0.60 0.16 0.74 0.14 0.00 0.12 

G
P

P
 

Obs-based 0.22 0.41 0.51 0.32 0.77 0.20 0.84 0.13 0.52 0.32 0.60 0.24 0.73 0.20 0.80 0.18 

CLM4.5 0.03 0.47 0.11 0.54 0.23 0.51 0.54 0.30 0.69 0.32 0.23 0.47 0.29 0.48 0.69 0.31 

CLM5 0.19 0.37 0.36 0.37 0.33 0.42 0.63 0.26 0.74 0.31 0.44 0.31 0.33 0.43 0.70 0.25 

JSBACH 0.14 0.49 0.43 0.45 0.63 0.27 0.74 0.16 0.70 0.39 0.59 0.36 0.68 0.28 0.83 0.15 

JULES 0.02 0.71 0.49 0.26 0.77 0.23 0.84 0.18 0.69 0.52 0.82 0.16 0.89 0.18 0.90 0.14 

LPJ-GUESS 0.39 0.37 0.38 0.40 0.29 0.40 0.46 0.36 0.33 0.35 0.43 0.36 0.36 0.37 0.49 0.36 

ORCHIDEE 0.23 0.37 0.59 0.25 0.73 0.21 0.82 0.12 0.60 0.43 0.71 0.20 0.71 0.22 0.79 0.17 

SURFEX 0.19 0.34 0.61 0.24 0.79 0.19 0.85 0.10 0.57 0.33 0.78 0.17 0.80 0.13 0.78 0.17 

640 
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Extended Figures 

 

Figure A1. Global distribution of climatic regions. The climatic regions are defined using 

the ranges of aridity index, which is calculated as the ratio of mean annual precipitation and 

potential evapotranspiration. The ranges of aridity (in square brackets) that define different 

climate regions are taken from UNEP (United Nations Environment, 1992). From the original 

UNEP classification, the hyper-arid climate was merged into arid climate because it only 

comprised 0.1% of grid cells after excluding the desert regions. The percentage values (in 

parenthesis) indicate the fraction of the valid grid cells with the climate. 
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Figure A2. Covariation of climate and moisture. Mean annual precipitation (MAP, 

mm/year), mean annual temperature (MAT, °C) and water availability index (WAI, -) 50 are 

plotted in X, Y and Z axes respectively. The different colours indicate different climatic 

regions defined by aridity index, and individual grid-cells are plotted as dots. The WAI is a 

proxy for soil moisture content based on the water balance concept, and it varies between 0 

(dry) and 1 (wet). 
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Figure A3. Same and Figure 1, but using the LANDGIS 69 instead of SoilGrids 47 dataset in 

the observation-based ensemble of soil organic carbon estimates. 
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Figure A4. Zonal distributions of mean annual precipitation (mm/year) and mean air 

temperature (℃). The values for each latitude are calculated as mean within a moving 

window of 10 grid cells along the latitude (5°). The shaded region indicates the 5th and 95th 

percentiles within the latitudinal moving window. 
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Figure A5. Same as Figure 3 but using the average temperature that is corrected for low 

winter temperature below freezing point. For the correction, the temperature of months below 

0°C are set at 0°C before calculating the mean annual temperature, which results in an 

estimate that only includes physiologically relevant months while considering the duration of 

the period with below freezing temperature. 
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Figure A6. Zonal correlation between total ecosystem carbon stock (Ctotal, kgC/m2) and 

gross primary productivity (GPP, kgC/m2/year). In a) correlation between Ctotal and GPP, 

b) controlled for precipitation, and c) controlled for temperature are presented. The Pearson’s 

correlation coefficient for each latitude is calculated for a moving window of 10 grid cells 

along the latitude (5°). The thick dashed blue lines show the normalized mean correlation of 

all models with shades indicating variation within 1 standard deviation. The observation is 

plotted as a thick black line with shade indicating the range within the 5th and 95th percentiles. 

 

 

Figure A7. Evaluation of a) ecosystem turnover time (τ, years), b) gross primary 

productivity (GPP, pgC/year), and c) total carbon storage (Ctotal, pgC) over different 

climatic regions. In the bar charts, the observation and their uncertainties (5th and 95th 

percentiles) are plotted. In the colourmap matrix, horizontal axis shows different climatic 

regions and the global values, and the vertical axis shows different models or model 

ensembles. The colour indicates the bias, calculated as the ratio of modelled and observed 

values. The inset text shows τ or GPP or Ctotal for a given model and climate. The colour of 
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the text indicates whether the modelled values are within the range of observational 

uncertainty with green for those within and orange for those outside. 
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Figure A8. Comparison of the global distribution of ecosystem turnover times of carbon (τ, years) from observation-based estimate and 

CRESCENDO model simulations. Along the diagonal, the maps of τ from observation and model simulations are plotted. Above the diagonal, 

the biases (ratio of observation/model in column to observation/model along row) are plotted. Below the diagonal, density scatter plots are 

plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and r indicate the spatial Pearson’s and 

Spearman’s correlation coefficient, respectively. 
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Figure A9. Comparison of the global distribution of gross primary productivity (GPP, kgC/m2/year) from observation-based estimate 

and CRESCENDO model simulations. Along the diagonal, the maps of GPP from observation and model simulations are plotted. Above the 

diagonal, the biases (ratio of observation/model along column to observation/model along row) are plotted. Below the diagonal, density scatter 

plots are plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and r indicate the spatial 

Pearson’s and Spearman’s correlation coefficient, respectively. 
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Figure A10. Comparison of the global distribution of total ecosystem carbon storage (Ctotal, kgC/m2) from observation-based estimate 

and CRESCENDO model simulations. Along the diagonal, the maps of Ctotal from observation and model simulations are plotted. Above the 

diagonal, the biases (ratio of observation/model along column to observation/model along row) are plotted. Below the diagonal, density scatter 

plots are plotted with darker colour indicating larger density of points. The thin black line shows the 1:1 line, r and r indicate the spatial 

Pearson’s and Spearman’s correlation coefficient, respectively.
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Figure A11. Same as Figure 1 of the main text but using the state-of-the-art observation-

based datasets of soil carbon (cSoil) and vegetation carbon (cVeg) stocks, and gross primary 

productivity (GPP). In total, 3 different soil carbon datasets, 4 different vegetation carbon 

datasets, and 6 different GPP estimations were used (see Methods). In the first row, a full 

factorial of all datasets generating 72 members were used. The second, third and fourth rows 

consider the influence of using different cSoils (3), cVeg (4), and GPP (6), respectively, 

while the other two variables are set at the ensemble medians. The thick lines and shaded 

regions around them indicate the median and interquartile range of all fitted relationships, 

respectively. Different colours indicate different climatic regions. Note the logarithmic axis 

for τ in the first and second columns. 
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Figure A12. Evaluation of sensitivities of evapotranspiration to climate in 

CRESCENDO models. The relationships between total evapotranspiration (ET, in mm/day) 

versus mean annual temperature (MAT) and precipitation (MAP) are presented in the first 

and second column, respectively. Along the row, the comparisons for different models 

against the observation 50 are presented. The different colours indicate different climatic 

regions defined by the aridity index. The solid lines indicate the observation-based 

relationship, and the broken lines indicate relationship from the model simulations. The inset 

text shows the ratio between the linear coefficients and constants from the least square fits for 

the model and observation for each climatic region. Note that for ET-MAP relationship, the 

constant/intercept term is always 0. 
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Figure A13. Spatial sensitivities of climatological total soil moisture state and carbon 

fluxes in CRESCENDO model simulations. In the first column, the relationship between 

the spatial variability of mean annual temperature (MAT) and total soil moisture (q) is 

presented. In the second, third and fourth columns, the relationships of spatial variabilities of 

heterotrophic respiration (Rh), autotrophic respiration (Ra), and gross primary productivity 

(GPP) with MAT are, respectively, presented. The fifth, sixth and seventh columns repeat the 

same but with q. The different colours indicate different climatic regions defined by the 

aridity index. The lines are the least square fits for each climatic region. Along the row, the 

comparisons for different models against the observation are presented. For a consistent 

comparison across different variables and differences in sizes of soil column in different 

models, all variables are scaled by the 98th percentile within each climate region so that the 

spatial variability is roughly normalized between 0 and 1. 
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