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Abstract We present SPECS, a SystemC-based tool for fast, fs-accurate large-scale photonic circuit
simulation. Through its event-driven nature, SPECS excels in sparse activity applications like neuromor-
phic computing. Even in unfavorable scenarios, it is faster than other simulators by orders of magnitude.
©2023 The Author(s)

Introduction
As photonic technology takes on an increasingly
significant role in various applications in telecom-
munications, sensing, and computing[1],[2], accu-
rate and efficient simulation tools become essen-
tial for designing, verifying, and optimizing pho-
tonic components and systems[3].

Photonic simulations rely on a multi-level ab-
straction methodology similar to the one preva-
lent in electronics[4], and in fact re-purposes many
tools from the electronic design automation (EDA)
portfolio[5]–[7]. At the device level, 2D/3D electro-
magnetic simulations provide detailed information
about the behavior of individual components. This
information, crossed with device measurements,
is used to create simplified device models for use
in circuit simulators such as LumericalTM Inter-
connect[8], Luceda Caphe (now part of the IPKISS
framework)[9], or Photontorch[10]. Finally, sys-
tem designers can simplify circuit behavior into
system-level metrics (e.g., bandwidth, latency...)
to perform very large-scale analyses[11]. These
methods have been proven useful, but result in
prohibitive computational costs (at circuit level) or
modelling efforts (at system level) when design-
ing large-scale photonic circuits, calling for an in-
termediate abstraction level between circuit and
system, still inexistent in photonics[12].

In electronics, industry standards for hardware
description languages (HDL)[13] were instrumen-
tal to enabling the design of large systems. These
standards were further improved with analog and
mixed-signal (AMS) extensions to provide both
continuous-time and event-driven modeling prim-
itives in a single package[14]. In event-driven
solvers, components are simulated only when
necessary, significantly reducing computational

costs and enabling more efficient analysis of
large-scale systems, without degrading tempo-
ral accuracy. This approach seems particularly
well-suited for optical systems, which often ex-
hibit temporally and/or spatially sparse activity[15],
owing to the scale difference between the speed
of signals and the bandwidth of supporting elec-
tronics. While there are priors for event-driven
simulation of photonic circuits[16]–[18], they focus
on the interconnect layer and abstracted system-
level metrics.

In this contribution, we introduce SPECS (Scal-
able Photonic Event-driven Circuit Simulator)[19],
an open-source simulation tool that leverages the
event-driven paradigm to overcome performance
limitations of traditional time-driven simulation
methods. We first present the rationale between
our approach and brief implementation details of
SPECS. We then demonstrate the effectiveness
of SPECS by studying a Coupled-Resonator Op-
tical Waveguide (CROW) circuit and compare it
with Interconnect and Photontorch (PT).

Proposed Approach
SPECS is built upon the SystemC framework,
a widely adopted hardware description language
(HDL) and simulation library for system-level de-
sign[20]. By utilizing SystemC, we facilitate the in-
tegration of SPECS with other system-level de-
sign tools and enable efficient co-simulation of
photonic and electronic subsystems.

For circuit description, SPECS employs SPICE-
like netlists, standard in electronic circuit simula-
tors. This choice ensures ease of integration with
a broad range of existing EDA tools and allows
designers to leverage their knowledge and expe-
rience. Furthermore, this approach enables hier-
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Fig. 1: Example design and simulation flow: (a) schematic description of the circuit, (b) the corresponding SPECS netlist, (c)
frequency- and time-domain simulations of the circuit.

archical descriptions of photonic circuits, simpli-
fying the design process and facilitating the co-
simulation of complex systems.

While the current implementation of SPECS fo-
cuses on event-driven simulation, the framework
can be extended to support mixed-mode simula-
tions for cases where non-linear effects impose
a more detailed analysis or, inversely, used to
extend existing time-driven frameworks. Mixed-
mode simulations would enable a more compre-
hensive coverage of various photonic circuit sce-
narios while still benefiting from the efficiency ad-
vantages of event-driven simulations.

A typical use of SPECS is shown in Figure 1.
Existing tools, here KiCAD[21], can be adapted
to edit circuit schematics and generate a SPECS
netlist, which can be used to perform frequency-
or time-domain simulations.

Implementation Details
SPECS, like other photonic circuit simulators,
adopts a ”baseband” approach and represents
optical signals by a complex field amplitude E(t)
and a carrier wavelength λ0. Waveforms are re-
duced to a sequence of square pulses which in
turn are decomposed into at most two ”events”,
as shown in Figure 2a. It should be noted that
event-driven simulation is naturally more suited to
digital waveforms than continuously varying ones.
When a circuit component receives an event, it
calculates the corresponding outputs and sched-
ules their emission based on component-specific
delays as illustrated in Figure 2b.

SPECS defines many basic components, such
as waveguides, couplers, phase-shifters, generic
S-matrix devices, as well as arbitrary sources and
probes. The implementation of these compo-
nents is straightforward and functionally equiva-
lent to other circuit simulators[10]. New compo-
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Fig. 2: (a) Digital signals are inefficiently represented
in time-driven (top) simulators compared to event-driven

(bottom) ones and (b) architecture of a unidirectional
2-port device in SPECS.

nents can be added by modifying the C++ source
code or using a generic Python module for fast
prototyping.

For purely feedforward circuits with digital in-
puts, SPECS approaches the optimal simulation
time by design. For circuits involving feedback, it
can still perform very well, provided that the bal-
ance between accuracy and runtime is chosen
wisely. Several cursors are available for a user
to tune the accuracy of simulations:
• Temporal resolution — sets the precision with

which events are resolved. Decreasing resolu-
tion can greatly reduce simulation time, but will
lower the precision of the final waveforms by
masking what happens between events.

• Absolute and Relative tolerance — relax preci-
sion constraints by specifying a threshold below
which small changes do not need to be emitted
by devices. Without them, events represent-
ing infinitesimal changes in field values could
propagate indefinitely in circuits with feedback.
These should not be conflated with similarly
named settings of time-driven simulators which,
even though they share similar goals, typically
control the time-step of the solver.

Lastly, both frequency-domain simulation and
impulse-response calculation constitute special
use-cases of SPECS and can be performed eas-
ily and efficiently without external software.
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Fig. 3: Benchmark results (a) architecture of the CROW circuit used for benchmarking, (b) time-domain results for the same
CROW (N = 3) on all simulators, at 100 fs and 1 fs (c) single-threaded CROW simulation times at 100 fs.

Results and Discussion
To evaluate the performance of SPECS, we stud-
ied a CROW circuit, shown in Figure 3a, made
up of N chained ring resonators. This circuit
is composed of one source emitting 1mW, 1 ns

pulses at 500MHz, 2N waveguides with lengths
Li = (33.2± 5.0)µm sampled from a normal dis-
tribution, and N + 1 directional couplers with
κ = 0.15 power cross-coupling ratio. Simulations
were run on a single thread using a modern
laptop powered by an Intel i7-1165G7 2.8GHz

CPU and 16GB of RAM. Interconnect, PT and
SPECS were all used as-is, with no platform-
specific or circuit-specific tuning. SPECS’ abso-
lute and relative tolerances were respectively set
to 10−8 Vm−1 (0.1 fW) and 0.01%.

We first verify our benchmarking environment
by comparing the through response for N = 3

and very long delays (L ≈ 350µm). Results, pre-
sented in Fig. 3, show that Interconnect surpris-
ingly did not match the response yielded by both
PT and SPECS at 100 fs resolution. At 1 fs reso-
lution, all simulations yielded nearly identical re-
sults, with pair-wise root-mean-square errors be-
low ∼ 3µW, although SPECS was 6290× (resp.
5090×) faster than PT (resp. Interconnect).

Finally, we turn to CROW circuits with up to
N = 512 rings. In PT and Lumerical, we simulate
for a duration of 3 ns (30000 timesteps at 100 fs). In
SPECS, we instead simulate 10 equally-spaced
1 ns pulses (20 ns) and normalize the results to
accurately capture the effect of events continu-
ing to propagate beyond the initial duration and
accumulating with subsequent pulses. Execution
times for 3000 timesteps (300 ps), averaged over
100 runs for SPECS, are shown in Figure 3c.
The whiskers in Figure 3c show the extrema
measured for SPECS, due to the random sam-
pling of waveguide lengths, illustrating the circuit-
dependent variability in simulation times.

Although CROWs constitute an unfavorable

scenario for event-driven simulators, SPECS’ per-
formance remained order of magnitudes better
than PT and Interconnect, in part because be-
yond N ∼ 20, simulation time saturates around
40ms due to losses preventing any meaningful
signal (according to SPECS’ tolerances) to propa-
gate too far in the CROW. This native input depen-
dent optimization is precisely what sets it apart
from the state of the art.

We were not able to independently run a GPU-
accelerated version of PT, but reported perfor-
mances for this use-case[10] are still an order of
magnitude slower than SPECS running on a sin-
gle thread.

Conclusions
Event-driven photonic simulation can be a pow-
erful tool, and likely the next step for simulat-
ing large photonic circuits driven by digital wave-
forms, or exhibiting sparse activity.

We showed that our implementation outper-
forms off-the-shelf tools by a significant margin
in terms of simulation speed while offering func-
tionally similar accuracy. In particular, its perfor-
mances scale very well with circuit size due to its
naturally frugal simulation approach.

It is important to note that different simulators
serve different purposes. For example, SPECS
cannot efficiently optimize circuits through back-
propagation like Photontorch does. Addition-
ally, mixed-mode simulations will be necessary to
cover more complex circuits.

Finally, through SystemC and a versatile netlist
interface, SPECS can enable co-simulation of
computing cores and photonic accelerators, or be
integrated into other simulation platforms.
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