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This paper deals with the description of the modulation at large scale of high frequency acoustic

waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore

scale and therefore absence of scale separation in the usual sense of homogenization. However,

although the pressure is spatially varying in the pores (according to periodic eigenmodes), the

mode amplitude can present a large scale modulation, thereby introducing another type of scale

separation to which the asymptotic multi-scale procedure applies. The approach is first presented

on a periodic network of inter-connected Helmholtz resonators. The equations governing the

modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are

derived. The number of cells on which the carrying periodic mode is defined is therefore a parame-

ter of the modeling. In a second part, the asymptotic approach is developed for periodic porous

media saturated by a perfect gas. Using the “multicells” periodic condition, one obtains the family

of equations governing the amplitude modulation at large scale of high frequency waves. The

significant difference between modulations of simple and multiple mode are evidenced and

discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4763553]
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I. INTRODUCTION

This paper investigates the occurrence and modeling of

modulation at large scale of high frequency acoustic waves

in gas saturated periodic porous media. The interest of

understanding this phenomenon lies in the fact that despite

the short acoustic wavelengths, the acoustic field presents

large correlation lengths.

High frequencies mean local dynamics at the pores scale

and therefore absence of scale separation in the usual sense

of homogenization1–3 because the pressure is varying spa-

tially in the periodic microstructure. However, focusing on

dynamics associated with eigenmodes defined on periodic

domains (that will be specified later on), the mode amplitude

can vary at large scale while the scale separation disappears

for the pressure. This situation introduces another type of

scale separation on which the multi-scale asymptotic method

can be performed. It is remarkable that this mathematical

method based on double scale, asymptotic expansions, perio-

dicity, variational formulation, and Fredholm alternative

also applies here despite the differences in the physical

meaning. This idea is in the same spirit as the study proposed

by Craster et al.4 in the context of composite elastic media

with some difference in the theoretical implementation.

Clearly, acoustics in porous media may be seen as a pe-

culiar case of waves in heterogeneous media. It presents

nevertheless specificities that are generally not met in other

media:

(1) The solid phase is motionless because of its large stiff-

ness and density (compared to the gas).

(2) The gas phase is homogeneous and described by the sca-

lar field of pressure.

This situation reduces the “technical” complexity

involved in the general study of waves in periodic media (in-

homogeneous phases in motion described by a vector field of

displacement) without missing the physical insight. Simulta-

neously, it enables investigation of, in a simple (but non-triv-

ial) manner, the main three-dimensional (3D) phenomena

occurring in such periodic media. This permits pointing out

the similarities and dissimilarities with the reference case of

the 1D mass-spring chain.

It is also worth mentioning that a porous media consist-

ing of a periodic network of interconnected Helmholtz reso-

nators is a simple physical model (may be the simplest) that

actually matches in practice the theoretical assumptions of

mass-spring models with short range interactions. Conse-

quently, those media may be indeed excellent candidates to

perform experiments either in view of validating theory or

for engineering applications of the theoretical results.

In the first part, the physical principle of this approach is

introduced on a 1D network of interconnected Helmholtz

resonators. Equations governing modulations carried by a

given eigenmode, at frequencies close to its eigenfrequency,

are derived. As the local dynamic state is involved through

the periodic eigenmode, the number of cells constituting the

domain of definition of the periodic mode becomes a param-

eter of the modeling.

In the second part, the same question is addressed

regarding periodic porous media saturated by a perfect gas.

a)Author to whom correspondence should be addressed. Electronic mail:

claude.boutin@entpe.fr

3622 J. Acoust. Soc. Am. 132 (6), December 2012 0001-4966/2012/132(6)/3622/15/$30.00 VC 2012 Acoustical Society of America

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y

mailto:claude.boutin@entpe.fr


The asymptotic approach enables us to derive the governing

equation of modulation, valid in a narrow frequency band

centered around each eigenfrequency. It is established that

the nature of the modulation differs significantly whether

simple or multiple modes. Further, the whole periodic con-

figurations of cells (number and distribution) have to be con-

sidered. The use of the periodicity condition on “multi”-cells

provides the whole family of large modulation phenomena.

II. PERIODIC NETWORK OF HELMHOLTZ
RESONATORS

As an introduction to the topic, consider an idealized

periodic porous medium the channels of which being consti-

tuted by interconnected Helmholtz resonators. Each resona-

tor is made of a “chamber” connected to a much smaller

duct. For the sake of simplicity, all the resonators are

assumed to be identical, and their connections are actually in

a single direction (see Fig. 1). Hence the medium consists of

unidirectional identical and parallel channels of periodic

shape, and each channel appears as a periodic chain of large

pores (chamber of length l0 and volume V) linked by small

constricted ducts (of section s, volume v, and negligible

length compared to l0). Thus it is sufficient to focus on a sin-

gle channel to derive the description of the propagation of

acoustic wave through the whole medium.

Acoustics of this medium can be described by the usual

equivalent fluid (or dynamic permeability) approach of po-

rous media, provided that the scale separation assumption is

satisfied.3,5,6 This latter applies for large wavelengths, corre-

sponding to frequencies significantly lower than the eigen-

frequency of the resonator f0. In the sequel, we focus on the

frequency range O(f0), where the usual approach becomes

irrelevant.

According to the classic simplified analysis of Helm-

holtz resonators, (i) the thermal and viscous dissipation

effects are neglected, (ii) the gas in the chamber is com-

pressed adiabatically and quasistatically (thus the investi-

gated frequency range is restricted by an upper limit), and

(iii) the gas in the duct suffer negligible compression. Con-

veniently, to describe perturbations from the equilibrium

state (Pe and qe are the ambient pressure and gas density at

equilibrium), the motion u of the gas at the aperture of the

chamber (and in the duct) is taken as acoustic variable. With

these assumptions, a channel may be sketched by a line of

mass-less spring K of length l0 alternating with rigid point

mass M (see Fig. 1). The actuator mass of the resonator is

the mass of the gas in the duct, M¼ qev. The resonator

spring K is defined from the adiabatic compressibility of the

gas box: When the mass M moves of u, a volume us is

injected in the chamber and the perturbation of pressure is

P¼ cPeus/V. Hence the mass undergoes a force Ps, from

which we deduce the equivalent spring of the gas chamber

K ¼ Ps

u
¼ cPes2

V
:

The resonance frequency of a single resonator results from

the interaction between the chamber compressibility and the

duct inertia. Denoting by C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cPe=qe

p
the sound velocity,

f0 is given by

x0 ¼ 2pf0 ¼
ffiffiffiffiffiffi
K
M

r
¼

ffiffiffiffiffiffiffi
cPe

qe

s ffiffiffiffiffiffi
s2

Vv

r
¼ C

ffiffiffiffiffiffi
s2

Vv

r
:

For the purpose of this section, we focus on 1D “Helmholtz

chains.” However, using the same principles, 2D or 3D

“Helmholtz periodic networks” made of identical or differ-

ent resonators (i.e., chambers and/or ducts) can be described

by spring-mass lattices. The dynamics of these systems

involves richest phenomena, and one may refer to Craster

et al.7 in whose study the description of such lattices is

addressed.

A. Harmonic dynamics of a chain of resonators

Wave propagation in 1D spring-mass system has been

widely studied in the literature since Brillouin and Parodi,8

see a recent review.9 Owing to the simple 1D discrete and

periodic geometry, an exact dispersion equation (relating

wave number and frequency) is available whatever the fre-

quency range. However, the dispersion can be established in

different manners, either considering the irreducible period

X0 (of size l0 and constituted by one spring one mass), or the

double cells period X2 ¼ X0 [ X0 or the multiple (e.g., p)

cells period Xp ¼ [pX0. Those different but equivalent for-

mulations make use of an analogue of the Born–von Karman

(BvK) periodic boundary conditions. Such approaches are

well-known in mathematics10 and physics.11

1. Dispersion relation deduced from the irreducible
period X0

In the purpose of studying harmonic wave propagation

at the frequency x, the motion un of nth mass, i.e., the mass

of the nth cell X0, is written in the following form:
FIG. 1. (a) Unit Helmholtz resonator; (b) porous media made of 1-D inter-

connected resonators; (c) equivalent 1-D spring-mass chain.
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un ¼ U0 exp ði ðxt� j1 n l0ÞÞ; (1)

where j1(x) is the wave number. Note that any value

j1l0þ 2qp, q integer, would lead to identical motions un.

Hence, j1l0 is defined modulo-2p, and it is sufficient to focus

on the first Brillouin zone defined by Reðj1l0Þ 2 ½�p; p�
[moreover, the discrete nature of the system with massless

springs avoids waves of wavelength shorter than l0/2 (cf. Shan-

non’s theorem)]. The balance of forces on the nth mass, reads

Kðunþ1 � unÞ � Kðun � un�1Þ ¼ �Mx2un: (2)

Then replacing un by its expression (1) and dividing by Kun

yields

e�ij1l0 � 2þ eij1l0 ¼ � x
x0

� �2

:

This relation defines the exact dispersion relation, valid for

any frequency:

4sin2 j1ðxÞl0

2

� �
¼ x

x0

� �2

; Reðj1l0Þ 2 ½�p; p�: (3)

From Eq. (1), large wavelengths correspond to j1l0 ’ 0, and

according to Eq. (3), this situation is reached at low fre-

quency, i.e., x� x0. Expanding Eq. (3) near zero provides

jj1jl0 ¼
x
x0

1þ 1

6

x
2x0

� �2

þ � � �
 !

when
x
x0

! 0:

(4)

Considering the first term only, jj1j ’ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl20=M

p
when

x� x0. Thus the dispersion relation matches the usual

description of long wave propagation in a 1D medium of lineic

elastic modulus Kl0 and lineic massM/l0. In particular Eq. (1)

indicates that unþ1 ¼ une�ij1l0 ¼ unð1� ij1 l0 þ � � �Þ, so suc-

cessive masses follow almost the same motion as expected

from the usual scale separation assumption. The x2-corrector

in Eq. (4) traduces the weak dynamic effect at cell scale and is

consistent with the usual description of Rayleigh scattering.

Dispersion equation (3) also implies that the wave

number j1 increases as x increases, until x ¼ 2x0, for

which j1ð2x0Þ ¼ p = l0. In that case, Eq. (1) indicates that

unþ1 ¼ une�ij1l0 ¼ �un, thus successive masses experience

opposite motions. Obviously, this does not fit in the frame-

work of usual scale separation assumption.

For x > 2x0, j1ðxÞ becomes imaginary, then the

dynamic phenomena are attenuated and confined in a length

of the order or smaller (as x increases) than l0. In the sequel

of this section, only frequencies x � 2x0 will be considered.

2. Double cells period X2

Reconsider now the wave propagation problem set on

the double cells period X2 constituted of two masses, two

springs, thus of length l ¼ 2l0. Denote by un and vn, the

motions of the two successive masses of the nth period X2

(see Fig. 2). By convention, the mass at the left extremity on

the nth period is chosen as leading node, and its motion un is

the leading variable, while the motion vn of the “inner” mass

(inner node of X2) involves the internal dynamic in the pe-

riod. Using the double cells as reference period leads us to

consider un under the form (as in the preceding text, the first

Brillouin zone is sufficient for a comprehensive analysis)

un ¼U0 exp ði ðx t�j2 n ð2l0ÞÞÞ; Re ð2j2l0Þ 2 ½�p; p�:
(5)

The dynamic equilibrium of the inner mass experiencing

motion vn reads

Kðunþ1 � vnÞ � Kðvn � unÞ ¼ �Mx2 vn;

therefore,

vn ¼
unþ1 þ un

2� ðx=x0Þ2
: (6)

Similarly, the dynamic equilibrium of the mass at the nth

leading node experiencing the motion un gives the following

relation:

ðvn � 2 un þ vn�1Þ ¼ � ðx =x0Þ2 un; (7)

and substituting vn by its expression in function of un and

unþ1, we get

ðunþ1 � 2un þ un�1Þ ¼
x
x0

� �2 x
x0

� �2

� 4

 !
un: (8)

Then replacing un by its expression (5) and dividing by un

provides the dispersion relation for j2ðxÞ:

4 sin2ðj2ðxÞl0Þ ¼ X ð4� XÞ; X ¼ ðx=x0Þ2;

Reð2j2l0Þ 2 ½�p; p�: (9)

Because the same mechanical systems are described by X0

and X2, both descriptions must be identical. Therefore as the

nth leading node of the X2-chain coincides with the 2nth

node of the X2-chain, the identification of motions un (X2 pe-

riod) and u2n (X0 period) gives

ðj2 � j1Þ ð2l0Þ ¼ 2qp; q integer:

Now, considering the restricted intervals of variation of j1

and j2 defined by the first Brillouin zones, we obtain

FIG. 2. Definition of variables for simple and multiple cells period. (a) Irre-

ducible period X0, (b) double cells period X2, (c) triple cells period X3.
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j2 ¼ j1 when jj1jl0 � p = 2;

jj2j ¼ jj1j � p = l0 when p = 2 � jj1j l0 � p:

This result is consistent with the dispersion equations (3) and

(9) governing j1 and j2, respectively. Indeed it is easy to

check that if 4 sin2ðhÞ ¼ a then 4 sin2ð2hÞ ¼ a ða� 4Þ.
Large scale evolution of the motions of the leading nodes

correspond to j2l0 ’ 0, see Eq. (5). Dispersion equation (9)

shows that such situations arise in two frequency ranges:

(1) x� x0, hence j2¼ j1. This is the low frequency case

already encountered in the description based on X0.

(2) x ’ 2x0, hence jj1j ’ p = l0 thus jj2j ¼ jj1j � p = l0.

Expanding eq. (9) around 2x0 gives

ðj2l0Þ2 ’ 4� x
x0

� �2

when x! 2x0: (10)

From Eq. (5), unþ1 ¼ unð1� ij2ð2l0Þ þ…Þ, so that suc-

cessive leading masses follow almost the same motion,

while Eq. (7) indicates vn ’ �ðun þ unþ1Þ = 2, meaning

that the motions of the inner and the leading masses are

almost opposite.

As expected, we find again the same description using X0 or

X2. However, the double cells approach enables us to identify

a large scale phenomenon at high frequency, included but
masked in the simple cell approach. The interpretation lies in

the fact that 2x0 is the eigenfrequency of the double cells

period X2 with periodic boundary conditions [this becomes

obvious by setting un ¼ unþ1 in Eq. (6) and vn ¼ vnþ1 in Eq.

(7), the eigenmode shape being defined by vn ¼ �un]. There-

fore the large scale phenomenon driven by j2ðx ’ 2x0Þ
corresponds to large modulations carried by the periodic

eigenmode. This means that the scale separation concerns the

amplitude of the mode instead of the amplitude of the variable

itself, as thought usually. For this reason, the situation of large

modulation of high frequency waves departs from the usual

sense given to the scale separation assumption.

3. Multicells period Xp

The same analysis is carried on with multiple cells pe-

riod Xp made of p masses and p springs of length l ¼ pl0.

The nth period contains the leading node (of motion un), and

p� 1 inner nodes (see Fig. 2 with p¼ 3). Following the

same method, we write

un ¼U0 exp ði ðx t�jpn ðpl0ÞÞÞ; Re ðpjp l0Þ 2 ½�p; p�:

From the balance equations of the p nodes, we deduce the

following dispersion relation:

4sin2 jp ðxÞ pl0

2

� �
¼ �ðb�p=2 � bp=2Þ2 ;

b ¼ �
2� x

x0

� �2

þ i
x
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x

x0

� �2
s

2
; jbj ¼ 1:

(11)

The usual long wave propagation is obtained for jppl0 ’ 0

and x� x0.

The modulation situations correspond to jp ’ 0 for

higher frequencies bands. To identify those bands, note from

Eq. (11) that jp vanishes for bp ¼ 1, i.e., for bJ ¼ e6i2pJ=p,

0 � J � p=2. From the expression of b, we deduce that

jpðxJÞ ¼ 0 for the series of frequency xJ defined by:

ReðbJÞ ¼ cosð2pJ=pÞ ¼ 1� 1

2

xJ

x0

� �2

;

i:e:; 4 sin2ðpJ=pÞ ¼ xJ

x0

� �2

: (12)

In other words, coming back to the X0-based dispersion

equation (3):

jpðxJÞ ¼ 0 for
xJ

x0

� �2

¼ 4 sin2ðpJ=pÞ means

j1ðxJÞ ¼ 6
p
l0

2J

p
; 0 � J � p=2:

For these specific values of j1ðxJÞ, according to Eq. (1), the

motions in the chain are Xp periodic. Therefore frequencies

xJ are the eigenfrequency of the period Xp (with periodic

conditions) and the motions of the inner nodes define the

eigenmodes. Note also that xJ ¼ x�J , and therefore all the

modes are double except when p is even, the simple mode at

xp=2 ¼ 2x0.

Remark: In this specific 1D case, the periodic boundary

conditions applied to Xp for the modes J result in a

“e6i2pJ=ðpl0Þ-phase shifted” boundary condition between two

successive nodes of X0. For instance, the periodic eigen-

mode of X2 corresponds to “antiperiodic” conditions in X0.

As an example of application, consider the triple cell

period X3 ðp ¼ 3; l ¼ 3l0Þ. It exists only a double mode

(J¼ 1) at the frequency: x1 =x0 ¼ 2 sin2ðp=3Þ ¼
ffiffiffi
3
p

(the

normalized mode shapes are, with evident notations for the

three mass period, ð2=
ffiffiffi
3
p

;�1=
ffiffiffi
6
p

;�1=
ffiffiffi
6
p

;Þ and ð0; 1=
ffiffiffi
2
p

;
�1=

ffiffiffi
2
p
Þ. Therefore when x! x1, j3ðxÞ ! 0, bðxÞ ! b1

¼ ei2p=3. Then expanding Eq. (11) around x1 gives

ðj3ðxÞ 3l0Þ2 ¼ �ðb�3ðxÞ � 2þ b3ðxÞÞ

’ �9
bðxÞ
b1

� 1

� �2

:

Furthermore, from the expression of b:

bðxÞ
b1

� 1 ’ 2i
x� x1

x0

;

and finally the modulation length of this mode reads

ðj3l0Þ2 ’ 4
x
x0

�
ffiffiffi
3
p� �2

when x! x1 ¼
ffiffiffi
3
p

x0:

(13)

Figure 3 displays the fundamental dispersion curve

established for single cell X0 i.e., j1(x), and the dispersion
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curve related to double and triple cells, X2 and X3, i.e.,

j2ðxÞ, j3ðxÞ. According to the folding rule,10,11 the disper-

sion j2ðxÞ matches the fundamental dispersion curve for

j2‘0=p � 1=2 and its specular reflection with respect to the

axis j1‘0 =p ¼ 1= 2. The dispersion j3(x) matches (i) the

fundamental dispersion curve, (ii) its specular reflection with

respect to the axis j1‘0 =p ¼ 1 = 3, and (iii) a direct transla-

tion of the fundamental dispersion curve. By construction,

the folding of the fundamental dispersion curve results in

zero valued modulation numbers jp, p 6¼ 1 at the eigen fre-

quencies of Xp. Consequently, in the vicinity of these fre-

quencies, large-scale modulations occur.

Those results evidence the possibility of large modula-

tion of high frequency waves in frequency bands centered

around the periodic eigenmodes frequencies arising in the

multicell period. The existence of two different scales,

related to the modes and modulation lengths, suggests the

use of upscaling method. This aspect is addressed in the next

section.

B. Large modulation of high frequency waves
in a periodic network of resonators

The scale separation between the multicells period Xp

of length l ¼ pl0, and the modulation length L naturally

introduces the scale ratio e ¼ l =L ¼ pl0 = L ¼ pe0. Here-

after, a macroscopic description is derived using the asymp-

totic approach of discrete periodic media12,13 adapted to

multicells period and high frequencies. The method is briefly

summarized in the following paragraph.

1. Discrete homogenization method

Following the previous analysis, among the p masses of

nth period Xp, the motion un of the left extremity is arbitrarily

chosen as leading variable located at the leading node (the

motions of the p� 1 other masses are related to the leading

variables through the local balances in Xp) (cf. Fig. 2). The

modulations of the mode amplitude (denoted by A) at large

scale are evidenced on the leading variables. These latter var-

iables match the values taken at the leading nodes by a con-

tinuous function of the macroscopic variable x. Assuming the

convergence when e tends to zero, the leading motions

“carrying” the modulations are expanded in powers of e,

un ¼ uðx¼ nlÞ ¼ Að0ÞðnlÞ þ eAð1ÞðnlÞþ e2 Að2ÞðnlÞ þ � � � :
(14)

The frequency is expanded around the eigenfrequency of

one among the periodic eigenmodes of Xp (say Kth mode),

x ¼ xK þ exð1Þ þ e2xð2Þ þ � � � :

As the size of the period is small compared with the modula-

tion length, the difference of the motions between neighbor-

ing leading nodes is expressed using Taylor’s series, which

introduces the macroscopic derivatives. For instance

(00 stands for double spatial derivative),

unþ1 � 2un þ un�1

l2
¼ u00ðx ¼ nlÞ þ O ðl2u0000 ðx ¼ nlÞÞ:

As the motions of the inner masses are related to those of the

leading masses, it only remains to express the balance equa-

tions at the leading nodes. Then introducing in these latter,

the expansions and the Taylor series of variables un, leads to

a series of equations at different powers of e that are resolved

until the macroscopic description is obtained (the present

study focuses on the leading order only). This procedure is

FIG. 3. Dispersion relations determined by considering X0 (in plain), X2 (in dotted), and X3 (in dashed) in the first fundamental Brillouin zone. For each con-

sidered period, the large scale modulation phenomena occurs in hatches frequency bands corresponding to vanishing values jp, p 6¼ 1.
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presented hereafter for periods constituted by one, two, and

three cells.

2. Macroscopic description based on irreducible
period X0

For irreducible period X0 ðp ¼ 1Þ, begin with the bal-

ance equation (2):

Kðunþ1 � 2un þ un�1Þ ¼ �Mx2un:

Substituting the discrete values un by the continuous func-

tion u(x), gives on each node x¼ nl:

ðu00ðxÞ þ Oðl2u0000ðxÞÞÞ l2 ¼ � x
x0

� �2

uðxÞ: (15)

Now because of the scale separation, u slowly varies

according to the macroscopic scale, and therefore Oðu00Þ
¼ Oðu=L2Þ, Oðu0000Þ ¼ Oðu=L4Þ. Then the balance of both

terms of Eq. (15) implies that

O
u

L2
l2

� �
¼ O

x
x0

� �2

u

 !
hence x ¼ Oðex0Þ:

Consequently, the expansion of the frequency takes the form

x ¼ exð1Þ þ e2xð2Þ þ…. Then introducing the expansion

(14) in (15) and separating e-power, we obtain at the leading

e2 order:

ðAð0ÞðxÞÞ00 L2 ¼ � xð1Þ

x0

 !2

Að0ÞðxÞ:

This leading order result matches the classic wave propaga-

tion equation (A stands for A(0), and coincides with u in this

case):

K l20 A00ðxÞ þMx2 AðxÞ ¼ 0: (16)

Note that the scale separation only applies at low frequency

because X0 does not present eigenmode except the

“degenerated” mode displaying a uniform motion at zero

frequency.

3. Macroscopic description for double-cell period X2

Double cells period X2ðp ¼ 2; l ¼ 2l0Þ presents a

unique and simple periodic mode at the eigenfrequency 2x0.

In the previous section, the study of the balance of inner and

leading nodes provided Eqs. (6) and (8), which can be

rewritten with the continuous variables in the form:

vðxÞ ¼ 2uðxÞ þ Oðl u0ðxÞÞ

2� x
x0

� �2
; (17)

ðu00ðxÞ þ Oðl2u0000ðxÞÞÞl2 ¼ x
x0

� �2 x
x0

� �2

� 4

 !
uðxÞ:

(18)

The assumed scale separation imposes once again that

Oðu00l2Þ ¼ Oðe2uÞ, Oðu0000l4Þ ¼ Oðe4uÞ, so that the balance of

elastic and inertial terms implies

x
x0

� �2 x
x0

� �2

� 4

 !
¼ O ðe2Þ:

Focusing on high frequency, the asymptotic expansion pro-

cedure requires that x ¼ 2x0 þ e2xð2Þ, which specifies a

narrow frequency band Oðe2x0Þ centered on the eigenfre-

quency of X2. Then introducing the expansions (14) in Eqs.

(17) and (18) and separating e-powers, we obtain at the lead-

ing orders:

vð0ÞðxÞ ¼�Að0ÞðxÞ;

ðAð0ÞðxÞÞ00L2 ¼ 16
xð2Þx0

x2
0

� �
Að0ÞðxÞ:

Therefore the motions of the inner node and the leading node

are opposite, and the modulation A (that stands here for A(0))

of the X2-eigenmode, at the leading order, is governed by

Kl2
0A00 þM

�
�x2 þ ð2x0Þ2

�
A ¼ 0: (19)

4. Macroscopic description for triple-cell period X3

Triple cells period p ¼ 3 X2 ðp ¼ 3; l ¼ 3l0Þ presents a

double periodic mode at the eigenfrequency x ¼
ffiffiffi
3
p

x0 [cf.

Eq. (12) with J¼ 1, p¼ 3] (this latter mode, derived with

periodic conditions on X3 could not be derived with antiperi-

odic conditions on X0). The balance equations of both inner

nodes, the motions of which are vn and wn (see Fig. 2), reads��Mx2vn ¼ Kðun � 2vn þ wnÞ
�Mx2wn ¼ Kðvn � 2wn þ unþ1Þ:

(20)

Solving the system (20) yields the motions vn and wn in

function of the leading nodes un and unþ1 (note that the

eigenfrequency of the double periodic mode is a root of the

denominator)

vn ¼
un

1� ðx=x0Þ2
þ unþ1 � un�

1� ðx=x0Þ2
��

3� ðx=x0Þ2
�

wn ¼
unþ1

1� ðx=x0Þ2
� unþ1 � un�

1� ðx=x0Þ2
��

3� ðx=x0Þ2
� :

8>>>><
>>>>:

(21)

Moreover, the balance equation of the leading node reads

�Mx2un ¼ Kðwn�1 � 2un þ vnÞ: (22)

Substituting the expressions of inner nodes motions (21)

and introducing the continuous variables u(x) gives

ðu00ðxÞþOðl2u0000ðxÞÞÞl2¼� x
x0

� �2 x
x0

� �2

�3

 !2

uðxÞ:
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As in the preceding cases, Oðu00l2Þ ¼ Oðe2uÞ, and the asymp-

totic expansion procedure at high frequency requires that

x ¼
ffiffiffi
3
p

x0 þ exð1Þ, which corresponds to a frequency band

Oðex0Þ centered on the eigenfrequency of the double peri-

odic eigenmode of X3. Then introducing the expansions (14)

in Eqs. (21) and (22) and separating e-powers, we obtain (i)

the expression of the inner motions at the leading order (con-

trary to the simple periodic mode in X2, the frequency still

appears in the inner nodes motions at the leading order):

vð0ÞðxÞ ¼ � 1

2
Að0ÞðxÞ �

ffiffiffi
3
p

2
l0

x0

ðx�
ffiffiffi
3
p

x0Þ

�
Að0ÞðxÞ

�0 !

wð0ÞðxÞ ¼ � 1

2
Að0ÞðxÞ þ

ffiffiffi
3
p

2
l0

x0

ðx�
ffiffiffi
3
p

x0Þ

�
Að0ÞðxÞ

�0 !
;

8>>>>><
>>>>>:
and (ii) the equation of modulation (below, A stands for A(0))

of this double periodic mode that occurs at frequencies lower

than the edge of the Brillouin zone (i.e., 2x0):

Kl2
0 A00 þ 4Mðx�

ffiffiffi
3
p

x0Þ2 A ¼ 0: (23)

Finally, looking for solution of Eqs. (16), (19), and (23) in

the form

AðxÞ ¼ U0 exp ðiðx t� jpðxÞxÞÞ

gives, respectively, at the leading order

ðj1ðxÞl0Þ2 ¼
x
x0

� �2

for x� x0;

ðj2ðxÞl0Þ2 ¼ 4� x
x0

� �2

for x ’ 2x0;

ðj3ðxÞl0Þ2 ¼ 4
x
x0

�
ffiffiffi
3
p� �2

for x ’
ffiffiffi
3
p

x0:

These leading order expressions coincide with Eqs. (4), (10),

and (13), derived from the general dispersion equation (11)

when jp ’ 0. Note the essential differences in the fre-

quency terms in the three cases.

Low frequency description matches the usual wave phe-

nomena. The high frequency descriptions give the equations

of modulation phenomena, that differ in nature if the mode

is simple or double (these feature are discussed in details in

Secs. III C and III D).

Hence the exact description of modulation phenomena

can be approached independently via an asymptotic

method. An illustration is given on Fig. 4, where the spatial

modulation at the frequency x ¼ ð
ffiffiffi
3
p
� 0:01Þx0 is deter-

mined on a system of 160 resonators. In the next section,

the general principles of this approach developed for 1D

discrete systems (with a single degree of freedom in the ir-

reducible cell), are transposed to 3D continuous porous

media (where the irreducible cell presents an infinity of

degree of freedom).

III. LARGE MODULATION OF HIGH FREQUENCY
WAVES IN PERIODIC POROUS MEDIA

Let us now consider the case of a periodic 3D porous

medium. The period X of characteristic size l contains a pore

domain Xf of boundary @Xf ¼ C [ Cf , where C is the fluid/

solid boundary of normal
�
n and Cf the fluid boundary of X.

The porosity / equals jXf j=jXj (Fig. 5). We focus on small

acoustic perturbations in the high frequency range where the

local dynamics induce the loss of scale separation for the

pressure. In a first approach, we neglect the thermal and vis-

cous dissipation effects as in the previous section. In order of

magnitude, this is physically justified by the fact that for

most of sound absorbing materials, the first eigenfrequency

of the irreducible period occurs with weak visco-thermal dis-

sipation compared with the compresso-inertial effects (cf.

Ref. 14). Nevertheless the dissipation effects (confined in

viscous and thermal “skins” in the range of the first eigenfre-

quency) certainly influence the modulation phenomena, but

a detailed analysis of these effects is beyond the scope of

this paper.

Then we consider that the local description within the

pores is that of a perfect gas in adiabatic dynamic linear re-

gime governed by the following constitutive and balance

equations (by linearity, the harmonic time dependence

exp(ixt) is skipped):

FIG. 4. Modulation at x ¼ ð
ffiffiffi
3
p
� 0:01Þ x0 calculated on a system consti-

tuted by 160 Helmholtz resonators. The amplitude A of the mode

ð2=
ffiffiffi
6
p

; �1=
ffiffiffi
6
p

;�1=
ffiffiffi
6
p
Þ is imposed null at both extremities. Note the

coexistence of the mode ð0; 1=
ffiffiffi
2
p

;�1=
ffiffiffi
2
p
Þ with maximum amplitude at

the extremities and zero amplitude in the center when grad(A)¼ 0.

FIG. 5. Description of the irreducible period X0 and multiple cells period X
of a periodic porous media. Notations.
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P ¼ �cPedivð
�
uÞ; �gradðPÞ þ qex2

�
u ¼

�
0 ;

where
�
u is the gas motion and P the pressure perturbation.

Introducing the differential operator F , the impenetrability

conditions on C and the periodic condition on Cf , the local

problem reads:

C2Fð
�
uÞ þ x2

�
u ¼

�
0; on Xf ; Fð

�
uÞ ¼ gradðdivð

�
uÞÞ

�
u:

�
n ¼ 0; on C;

�
u X� periodic:

8<
:

(24)

Following Courant and Hilbert,15 the problem (24) has a

discrete and positive spectrum (conversely to spring-mass

chains, there is no high frequency limitation because the

mass is here continuously distributed)

0 � x2
1 � x2

2 � x2
3 � � � � :

Each eigenvalue x2
J is associated with eigenmode

�
UJ (both

denoted with capital subscripts). The xJ ¼ 2pfJ , J integer,

corresponds to the resonance frequencies of the gas in the per-

iodic porous matrix (hence the periodic boundary conditions).

In other words, the series of solutions fx2
J ;

�
UJg satisfy

C2Fð
�
UJÞ þ x2

J �
UJ ¼

�
0; on Xf

�
UJ:

�
n ¼ 0; on C;

�
UJX� periodic:

(

Recall that the series of normalized eigenmodes f
�
UJg (of

zero mean value by periodicity) constitute an orthonormal ba-

sis for the X- periodic motions
�
u defined in Xf , with

�
u:

�
n ¼ 0

on C. Thus:

�
u ¼

X1
J¼1

uJ

�
UJ; with h

�
UI:

�
UJi ¼ dIJ and h

�
UJi ¼ 0

where d is the Kronecker symbol, and the mean values and

local norm are denoted by

hai ¼ 1

Xf

ð
Xf

a dv; j
�
Uj2 ¼

�
U:

�
U :

Remark: A given eigenvalue xJ generally corresponds

to a single mode
�
UJ . However, it happens, especially in peri-

odic media, several orthonormal modes constituting the sub-

vectorial space denoted f
�
UgJ

are associated with the same

eigenvalue xJ . To lighten the equations, we do not distin-

guish in the notations the situations of single from those of

multiple modes, writing
�
UJ (instead of the orthonormal

mode of f
�
UgJ

). In the sequel, simple multiple modes will be

specified when necessary.

Before going further, it is necessary to clarify the notion

of period used in the sequel.

A. Irreducible period and selected period

A periodic media is generally defined by its irreducible

period X0. However, any integer combination (p, q, r) in

the three directions of space of X0 define another period

X ¼ [p;q;rX0 of the media with jXj ¼ p� q� r � jX0j. In

the usual homogenization approach, the periodic problems

(and solutions) at the local scale are shown to be independ-

ent of the definition of the period. This results from the

quasi-static regime at the local scale.

Now when considering dynamics at the local scale, the

modes necessarily depend on the definition of the volume

(the period X) to which the periodic boundary conditions

apply (on @X). Indeed, the “family” of mode increases as the

number of irreducible periods included in the period X
grows. For instance, the series of modes of double period,

X ¼ [2;1;1X0, includes the X0 modes (“duplicated” along the

first direction) and the new modes specific to the double pe-

riod. These latter modes respect the periodicity condition on

@X but not on the internal boundary defined by @X0.

Therefore we have to specify the period X on which the

periodic mode is defined: Contrary to low frequency classic

homogenization, the selected period X becomes a parameter

of the description. This is implicitly included in sequel, where

the analysis is performed for any type of X ¼ [p;q;rX0.

This procedure guarantees that the whole family of large

modulation phenomena, associated to modes existing in the

collection of periods, will be reached.

Notice that a subgroup of X-modes can be determined by

using specific boundary condition on the irreducible period

X0 as proposed by Craster et al.4 For instance, a subgroup of

modes of double cell period, X ¼ [2;1;1X0 can be obtained

from an antiperiodic condition on X0 (in the first direction),

and periodicity on X0 (in the two other directions). Similarly,

for X ¼ [p;1;2X0, a subgroup of modes can be derived apply-

ing on X0, a “e6i2pJ=ðpl0Þ-phase shifted” condition in the first

direction, the periodic condition in the second direction, the

antiperiodic condition in the third direction, etc. These condi-

tions will be also obtained in the classical Floquet–Bloch

framework, for rational Bloch parameter kB ¼ 62pJ=ðpl0Þ.
Remark also that if the modes of the multicells period X con-

tain the modes of another multicells period X0, the first eigen-

frequency of X is lower than the one of X0 (and therefore than

the one of the irreducible cell X0).

B. Modulation and asymptotic method

Choose a period X and select for example the Kth mode,

i.e., the couple ðxK;
�
UKÞ. By construction, mode

�
UK

repeated X-periodically, gives rise to a high frequency wave

of constant modal amplitude or equivalently to a high fre-

quency wave of infinite modulation length. Contrary to infi-

nite length, a large modulation length implies (i) a non-

constant amplitude (of the mode
�
UK) varying at a scale L

much larger than the period l and (ii) a frequency x distinct

but nevertheless close to the eigenfrequency xK because

e ¼ l=L! 0, when x! xK .

To describe the situation of modulated Kth mode when

the modulation to period scale ratio is small, i.e., e� 1, we

apply the multi-scale asymptotic method well established in

the framework of homogenization1 of periodic media.

The physics introduces two dimensionless space variables,

x=l ¼ y� and x=L ¼ x� associated, respectively, to the varia-

tions at the period and modulation scales, where x stands for
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the usual space variable. Equivalently, two space variables,

y ¼ ly� ¼ x and x ¼ lx� ¼ ey ¼ ex will be used, the usual

derivative being therefore changed into @=@yþ e@=@x. Con-

sequently, the differential operator F becomes

F ! F y2 þ eF yx þ e2F x2

F y2ð
�
uÞ ¼ grad

y
ðdivyð

�
uÞÞ

F yxð�uÞ ¼ grad
y
ðdivxð

�
uÞÞ þ grad

x
ðdivyð

�
uÞÞ

F x2ð
�
uÞ ¼ grad

x
ðdivxð

�
uÞÞ:

8>>>>><
>>>>>:

The motion
�
u is expanded in power of e, each term (specified

by exponents in brackets) being X periodic, and the fre-

quency is also expanded in e-power around xK:

�
uð

�
x;

�
yÞ ¼

X1
0

ei

�
uðiÞð

�
x;

�
yÞ x ¼ xK þ

X1
1

eixðiÞ:

The process, similar to Craster et al.4 is achieved as in usual

homogenization:1,3 The expansions are introduced in Eq.

(24) rewritten with the two-scale derivatives, then the terms

of the same power in e are identified, and the problems

obtained in series are solved until the equation governing the

large scale modulation at the leading order is obtained.

C. Modulation of a simple mode

We focus here on the case where the considered mode

�
UK is simple (double and multiple modes are addressed in

Secs. III D and III E, respectively).

1. Leading order

The problem encountered at the leading order reads

C2F y2ð
�
uð0ÞÞ þ x2

K�
uð0Þ ¼

�
0; on Xf

�
uð0Þ:

�
n ¼ 0; on C;

�
uð0ÞX� periodic:

8<
:

(25)

Mode
�
UK being simple, the solution is in the form

�
uð0Þð

�
x;

�
yÞ ¼ Að

�
xÞ

�
UK ð

�
yÞ;

where Að
�
xÞ is the slow varying amplitude of mode

�
UK .

2. First order

The following problem, governing
�
uð1Þ, takes the form

of the previous eigenvalue problem with an additional source

term
�
Sð1Þ induced by the field

�
uð0Þ:

C2F y2

�
�
uð1Þ
�
þ x2

K�
uð1Þ þ

�
Sð1Þ
�

�
uð0Þ
�
¼

�
0; on Xf

�
Sð1Þ
�

�
uð0Þ
�
¼ C2F yx

�
�
uð0Þ
�
þ xð1Þð2xK

�
uð0ÞÞ

�
uð1Þ:

�
n ¼ 0; on C;

�
uð1ÞX� periodic:

8>>>>><
>>>>>:

(26)

To handle this problem, let us first establish that, following

the Fredholm alternative, we have

�
Sð1Þ
�

�
uð0Þ
�
:
�
uð0Þ

D E
¼ 0: (27)

In this aim, notice that from the divergence theorem, the

impenetrability condition (on C) and the periodic condition

(on Cf ):

F y2

�
uð1Þ
� �

:
�
uð0Þ

D E
¼ � divy

�
�
uð1Þ
�
:divy

�
�
uð0Þ
�� 	

¼ F y2

�
�
uð0Þ
�
:
�
uð1Þ

� 	
:

Then take the scalar product of Eq. (26) by
�
uð0Þ and of Eq.

(25) by
�
uð1Þ, integrating on Xf and subtracting provides

equality (27), which can be rewritten as

C2 F yx �
uð0Þ
� �

:
�
uð0Þ

D E
þ xð1Þ

�
2xKhj

�
uð0Þj2i

�
¼ 0:

The first term in brackets can further be simplified. Indeed

F yxð�u
ð0ÞÞ:

�
uð0Þ

D E

¼Að
�
xÞ
*


grad
y

�
divx

�
�
uð0Þ
��
þgrad

x

�
divy

�
�
uð0Þ
���

:
�
UK

+

¼Að
�
xÞ
D
UK

j;yi
UK

i þ �
UK

i;yi �
UK

j

E
A;xj

;

and from the divergence theorem with the impenetrability on

C and periodic conditions on Cf (usual subscripts stand for

3D-space directions), we have

jXf j F yx

�
�
uð0Þ
�
:
�
uð0Þ

� 	

¼ Að
�
xÞ
ð
@Xf

UK
j UK

i þ UK
i UK

j

� �
A;xjnids

¼ 2 Að
�
xÞ grad

x
ðAÞ �


ð
@Xf

ð
�
UK 	

�
UKÞ:

�
nds

�
¼ 0:

Consequently, Eq. (27) simply reduces to

xð1Þ2xKðAð
�
xÞÞ2 ¼ 0 thus xð1Þ ¼ 0

which means that the the corrector of frequency is necessar-

ily of the second order. Because, with this result,

�
Sð1Þ
�

�
uð0Þ
�
¼ C2F yxðAð�xÞ�U

KÞ;

the set (26) is a dynamic problem with a forcing term line-

arly dependent on the components of grad
x
ðAÞ. By linearity,

considering the specific solutions
�
nað

�
yÞ, a ¼ 1; 2; 3 corre-

sponding to unit grad
x
ðAÞ in the three spatial directions (i.e.,

grad
x
ðAÞ ¼ dia

�
ei), we deduce that

�
uð1Þ ¼ BðxÞ

�
UK þ

�
nað

�
yÞA;xa :

The solutions
�
nað

�
yÞ can be expressed using the fact that

f
�
UJg forms an orthonormal basis. In this aim, rewrite

�
uð1Þ as
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a linear combination (depending on the macrovariable
�
x) of

the
�
UJ:

�
uð1Þð

�
x;

�
yÞ ¼ Bð

�
xÞ

�
UKð

�
yÞ þ

X
J 6¼K

aJð
�
xÞ

�
UJð

�
yÞ:

Using a basic result of modal analysis (see the Appendix),

Bð
�
xÞ is undetermined, while the coefficients aJð

�
xÞ are given

by

aJð
�
xÞ ¼ �

�
Sð1Þ

�
uð0Þ
� �

:
�
UJ

D E 1

x2
K � x2

J

¼ � F yx

�
Að

�
xÞ

�
UK
�
:
�
UJ

D E C2

x2
K � x2

J

:

The term in brackets is given as

F yxðAð�xÞ�U
KÞ:

�
UJ

D E
¼ UK

j;yi
UJ

i þ divyð
�
UKÞUK

j

D E
A;xj

¼ �UK
j divy

�
�
UJ
�
þ divy

�
�
UK
�
UJ

j

D E
A;xj

þ
�
UK

j UJ
i

�
;yi

� 	
A;xj

:

Moreover, from the divergence theorem, the impenetrability

on C and the periodic condition on Cf , we have�
UK

j UJ
i

�
;yi

� 	
¼
ð
@Xf

UK
j ð�U

J:
�
nÞ ds ¼ 0:

Introducing the following notation for the combined vector

built on two vectors
�
U and

�
W:

�
U

�
W

z}|{
¼ h

�
Udivyð

�
WÞ �

�
Wdivyð

�
UÞi ¼ �

�
W

�
U

z}|{
;

we derive

F yxðAð�xÞ�U
KÞ:

�
UJ

D E
¼ grad

x
ðAÞ:

�
UJ

�
UK

zfflffl}|fflffl{
; (28)

which gives

�
uð1Þ ¼ Bð

�
xÞ

�
UK �

X
J 6¼K

C2

x2
K � x2

J

�
grad

x
ðAÞ:

�
UJ

�
UK

zfflffl}|fflffl{ �
�
UJ;

and by identification,

�
na ¼ �

X
J 6¼K

C2

x2
K � x2

J

�
�
UJ

�
UK

zfflffl}|fflffl{ �
a �

UJ: (29)

The presence of the modes J 6¼ K in
�
uð1Þ, means that the per-

turbation generated by the modulation of the amplitude of

the mode
�
UK , expressed by grad

x
ðAÞ, is balanced by the

other modes of the same cell X. Expanding
�
na in eigenmodes

provides a clear physical insight of the nature of energy

transfer related to the modulation of amplitude. Indeed from

their definition, vectors
�
U

�
W

z}|{
express (up to the compressibil-

ity modulus Pe) the energy transferred from a mode to an

other. Further, it may help the numerical computation of
�
na

through relevant truncation in the series (around the eigen-

frequency xK).

3. Second order

Owing to the fact that xð1Þ ¼ 0, the problem at the sec-

ond order reads

C2F y2


�
uð2Þ
�
þx2

K�
uð2Þ þ

�
Sð1Þ

�
uð1Þ
�
þ

�
Sð2Þ

�
uð0Þ
�
¼

�
0; on Xf

�
Sð1Þ

�
uð1Þ
�
¼ C2F yx


�
uð1Þ
�

�
Sð2Þ

�
uð0Þ
�
¼ C2F xx


�
uð0Þ
�
þxð2Þ2xK

�
uð0Þ

�
uð2Þ:

�
n¼ 0; on C;

�
uð2ÞX� periodic:

8>>>>>>>><
>>>>>>>>:
Following the same reasoning as for the first order, it is

straightforward to establish that

�
Sð2Þ
�

�
uð0Þ
�
þ

�
Sð1Þ
�

�
uð1Þ
�h i
:
�
uð0Þ

D E
¼ 0;

which becomes after introducing the expressions of
�
uð0Þ and

�
uð1Þ: �

h
�
Sð2ÞðAð

�
xÞ

�
UKÞ :

�
UKi þ

X
J 6¼K

D
�
Sð1ÞðaJðxÞ

�
UJÞ :

�
UK
E

þ
D

�
Sð1ÞðBð

�
xÞ

�
UKÞ :

�
UK
E�

Að
�
xÞ ¼ 0:

The amplitude Að
�
xÞ can be simplified, and each term in

brackets can be calculated. As in Eq. (27), we have

h
�
Sð1ÞðBð

�
xÞ

�
UKÞ :

�
UKi ¼ 0. Further, each h

�
Sð1ÞðaJð

�
xÞ

�
UJÞ :

�
UKi

is determined similarly as the term h
�
Sð1ÞðAð

�
xÞ

�
UKÞ :

�
UKi, see

Eq. (28):

�
Sð1ÞðaJð

�
xÞ

�
UJÞ :

�
UK

D E
¼ C2grad

x
ðaJð

�
xÞÞ :

�
UK

�
UJ

zfflffl}|fflffl{
¼ Að

�
xÞ;xpxq

C4

x2
K � x2

J

�
�
UJ

�
UK

zfflffl}|fflffl{ �
p

�
�
UJ

�
UK

zfflffl}|fflffl{ �
q

:

Finally,

�
Sð2ÞðAð

�
xÞ

�
UKÞ :

�
UK

D E
¼ C2 grad

x
ðdivxðAð

�
xÞUKÞÞ :UK

D E
þ xð2Þ2xKAð

�
xÞ

¼ C2 Að
�
xÞ;xpxq

UK
p UK

q

D E
þ xð2Þ2xKAð

�
xÞ:

Thus we obtain the following macroscopic equation driving

Að
�
xÞ:

C2
D
UK

p UK
q

E
þ
X
J 6¼K

C2

x2
K�x2

J

�
�
UJ

�
UK

zfflffl}|fflffl{�
p

�
�
UJ

�
UK

zfflffl}|fflffl{�
q

!
A;xpxq

 

þxð2Þ2xKA¼0:

Which, from expression (29) of
�
na can be rewritten as

C2 hUK
p UK

q i �
�

�
np

�
UK

zffl}|ffl{ �
q

 !
A;xpxq

þ xð2Þ2xKA ¼ 0:
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4. Features of the modulation of a simple mode

The preceding results can be summarized as follows.

Coming back to the usual space variable
�
x ¼

�
x=e, the lead-

ing order governing equation for the modulation at the fre-

quency x ¼ xK þ xð2Þe2 of the simple mode ðxK;
�
UKÞ is in

the form:

C2divx

�
TK:grad

x
ðAð

�
xÞÞ
�
þ ðx2 � x2

KÞAð�xÞ ¼ oðe2Þ;

where we use the oðe2Þ-approximation: x2 � x2
K

¼ xð2Þðe22xKÞ and where the tensor T associated to mode

�
UK is given by

TK ¼ h
�
UK 	

�
UKi þ C2

X
J 6¼K

�
UJ

�
UK

zfflffl}|fflffl{
	

�
UJ

�
UK

zfflffl}|fflffl{
x2

K � x2
J

:

Note that the modulation is driven by a strictly macroscopic

equation. The parameters of this equation are fully determined

by the dynamic properties of the period (eigenmodes) and the

eigenfrequencies, independently of the macroscopic boundary

conditions. These results are consistent with the scale separa-

tion assumption relating the long scale modulation and the

carrying local mode. They constitute a 3D generalization of

the result established in Sec. II on the 1D network of resona-

tors for the modulation of the simple mode.

This description is of the same nature as that established

for elastic composites in Ref. 4, but it is formulated in differ-

ent manner:

(1) Considering multicells X (with periodic conditions)

instead of the irreducible cell X0 solely (with nonperi-

odic conditions) enables a simple and unified synthetic

formalism for all possible situations.

(2) The decomposition of tensor TK on the intrinsic physical

basis made of the periodic modes of the considered cell

X reveals its fundamental nature.

(3) Additionally, in this form the symmetry of TK is trivially

proved, and the parallel with the multiple modes case

(see next sections) is straightforward.

(4) Because of the specificity of porous media—i.e., homo-

geneous scalar elastic property Pe and uniform density

qe—the expression of TK is significantly simplified com-

pared to the general case of elastic composites.

From its expression, the tensor TK is O(1) (by construc-

tion, j
�
UJ

�
UK

zfflffl}|fflffl{
j ¼ Oð2p=kKÞ ¼ OðxK=CÞ, where kK is the

wavelength in air at xK) and symmetric, therefore diago-

nalizable. Thus any 3D modulation of the considered mode

can be decomposed into specific modulations along the three

principal directions of TK . The principal values, denoted TK
a ,

a ¼ 1; 2; 3, may be positive or negative. They are most

likely to be different, which results in an anisotropy of the

modulation phenomena. This was already mentioned and

numerically evidenced for elastic composites in Ref. 4; how-

ever, the origin of the anisotropy could have been attributed

to the vector nature of the displacement field. The poro-

acoustic case, proves that the anisotropy is intrinsically

related to the “geometry of modes” even if they concern a

scalar variable (the pressure).

At the leading order, the amplitude of the modulation in

the a-principal direction is governed by (0 stands for spatial

derivative in the a-direction):

C2TK
a A00 þ ðx2 � x2

KÞ A ¼ 0:

This equation is of the same nature as Eq. (19) established in

the discrete case for the amplitude modulation of the single

mode of X2. The amplitude variation takes the classic form (x

stands here for the macro variable in principal direction a):

AðxÞ ¼ AþexpðþijaxÞ þ A�expð�ijaxÞ;

where the “modulation-number” ja is given up to oðeÞ by

jaðxÞ ¼
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2

K

TK
a

s
¼ xK

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

TK
a

x
xK
� 1

� �s
:

Thus provided that ðx� xKÞTK
a > 0, jaðxÞ is real, the mod-

ulation oscillates and propagates with a “modulation-length”

Ka 
 kK highly dependent on the frequency:

KaðxÞ ¼ kK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TK

a

2

xK

x� xK

s
:

Conversely, when ðx� xKÞTK
a < 0, jaðxÞ is imaginary,

then modulation behaves as “diffuse modulation.” It

presents oscillations with exponential decay, and the pene-

tration depth, of the order of jKaj, is highly frequency

dependent.

Note the drastic change of the modulation behavior

when frequencies move from slightly lower to slightly

higher than the modal frequency xK. At this frequency, the

group velocity ðdja=dxÞ�1
tends to infinity. This situation

corresponds to a border of a frequency band gap that may

be situated either before or after xK according to the sign of

TK . Further, the asymmetric behavior can be inverted for

different principal directions (anisotropy may result in two

principal values of opposite signs). Clearly, propagative

modulations enable long correlation lengths of high fre-

quency waves.

D. Modulation of double modes

We now address the case of double modes at the fre-

quency xK , say
�
UK and

�
WK with h

�
UK:

�
WKi ¼ 0 and hj

�
UKj2i

¼ hj
�
WK j2i ¼ 1.

1. Derivation of the modulation equation

In presence of double modes, the solution of the leading

order problem (25) becomes

�
uð0Þð

�
x;

�
yÞ ¼ Að

�
xÞ

�
UKð

�
yÞ þ Bð

�
xÞ

�
WKð

�
yÞ:

The next problem is identical to Eq. (26) and introduces the

same term
�
Sð1Þð

�
uð0ÞÞ. However, two orthogonality conditions
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are derived from the Fredholm alternative. Taking the scalar

product of Eq. (26) by
�
UK—respectively, by

�
WK —and of

Eq. (25) (with
�
uð0Þ ¼

�
UK , respectively,

�
uð0Þ ¼

�
WK) by

�
uð1Þ,

integrating on Xf and subtracting, provides

�
Sð1Þ
�

�
uð0Þ
�
:
�
UK

D E
¼ 0;

�
Sð1Þ
�

�
uð0Þ
�
:
�
WK

D E
¼ 0 :

As seen in Sec. III C 2:

�
Fyx

�
Að

�
xÞ

�
UK
�
:
�
UK

D E
¼

�
Fyx

�
Bð

�
xÞ

�
WK
�
:
�
WK

D E
¼ 0;

thus, the orthogonality conditions simplify into

h
�
F yxðBð�xÞ �

WKÞ :
�
UKi þ xð1Þ2xKAð

�
xÞ ¼ 0

h
�
F yxðAð�xÞ �

UKÞ :
�
WKi þ xð1Þ2xKBð

�
xÞ ¼ 0

8<
:

which gives the two following coupled equations:

C2grad
x
ðBð

�
xÞÞ:

�
UK

�
WK

zfflfflffl}|fflfflffl{
¼ �xð1Þ2xKAð

�
xÞ

C2grad
x
ðAð

�
xÞÞ:

�
WK

�
UK

zfflfflffl}|fflfflffl{
¼ �xð1Þ2xKBð

�
xÞ:

8>><
>>:

Eliminating B (for example) in the preceding set, yields

C2divx

�
R:grad

x
ðAð

�
xÞÞ
�
þ 4

xð1Þ

�2
Að

�
xÞ ¼ 0;

where the tensor R is defined by (note the parallel—and the

differences—with the tensor TK of simple modes)

R ¼ C
2

x2
K �

UK

�
WK

zfflfflffl}|fflfflffl{
	

�
UK

�
WK

zfflfflffl}|fflfflffl{
: (30)

2. Features of double mode modulation

Using the oðeÞ-approximation: exð1Þ ¼ x� xK , and

coming back to the usual space variable
�
x ¼

�
x=e, we derive

the following leading order set of equations for the modula-

tion at frequency x ¼ xK þ xð1Þe of the double mode

ðxK;
�
UK;

�
WKÞ:

C2divx

�
R:grad

x
ðAð

�
xÞÞ
�
þ 4ðx� xKÞ2 Að

�
xÞ ¼ 0

Bð
�
xÞ ¼ grad

x
ðAð

�
xÞÞ:

�
UK

�
WK

zfflffl}|fflffl{ C2

2xKðx� xKÞ
:

8><
>:

The relation between Bð
�
xÞ and grad

x
ðAðxÞÞ indicates that the

modulation of a double mode necessarily involves the modula-

tion of both modes. This coupling means that the perturbation

induced by the modulation of the amplitude of one mode is bal-

anced by the second mode (and reciprocally). As both modes

interfere at the same eigenfrequency, the characteristics of the

modulation of double and simple modes differ significantly.

Expression (30) of the symmetric tensor R implies that

there is a single non-zero principal value RK associated with

the principal vector
�
UK

�
WK

zfflfflffl}|fflfflffl{
. This latter defines the unique

principal direction of modulation. In this direction, the am-

plitude of the modulation is driven by

C2RK A00 þ 4ðx� xKÞ2 A ¼ 0;

where

RK ¼ C
2

x2
K

��
�
UK

�
WK

zfflfflffl}|fflfflffl{ ��2 > 0; OðRKÞ ¼ 0ð1Þ

This equation is of the same nature as Eq. (23) established

in the discrete case for the modulation of the double mode

in X3. The variations of amplitude of A and B take the

form (x stands here for the macro variable in the principal

direction
�
UK

�
WK

zfflfflffl}|fflfflffl{
):

AðxÞ ¼ AþexpðþijxÞþA�expð�ijxÞ;

BðxÞ ¼ ijðAþexpðþijxÞ�A�expð�ijxÞÞ
C2
��

�
UK

�
WK

zfflfflffl}|fflfflffl{ ��
2xKðx� xKÞ

with the real valued “modulation-number”:

jðxÞ ¼ 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðx� xKÞ2

RK

s
¼ 2

C
jx� xKjffiffiffiffiffiffi

RK
p : (31)

Thus the modulation is always a propagating phenomena. The

modulation-length KK is linked to the frequency by the relation

KKðxÞ ¼ kK

ffiffiffiffiffiffi
RK

4

r
xK

jx� xKj

 kK:

Conversely to simple modes, the modulation behavior is sym-

metric on both sides of the modal frequency xK, and the group

velocity jðdj=dxÞ�1j ¼ C
ffiffiffiffiffiffi
RK
p

=2 remains finite. The modula-

tion length is inversely proportional to the frequency shift jx�
xKj for double mode and to the square root of the frequency

shift
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xK
p

for simple mode. Consequently, the frequency

band of occurrence of double modes modulation is wider than

for simple mode and longer correlation lengths can be expected.

E. Modulation of triple and multiple modes

We carry on the study considering now multiple modes

at the frequency xK , beginning first with the case of triple

modes (say
�
UK ,

�
WK ,

�
HK with the normality and orthogonal-

ity properties).

1. Modulation of triple modes

As for the leading order problem Eq. (25), the solution

reads

�
uð0Þð

�
x;

�
yÞ ¼ Að

�
xÞ

�
UKð

�
yÞ þ Bð

�
xÞ

�
WKð

�
yÞ þ Cð

�
xÞ

�
HKð

�
yÞ:

Again, the next problem is identical to Eq. (26) and introduces

the same term
�
Sð1Þ ð

�
uð0ÞÞ. However, three orthogonality

conditions are now derived from the Fredholm alternative.

Following the same reasoning as in the preceding text, we

derive the three coupled equations (expressed with the

usual variable
�
x and using the oðeÞ-approximation:

exð1Þ2xK ¼ ðx� xKÞ2):
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C2
�

grad
x
ðBÞ:

�
UK

�
WK

zfflfflffl}|fflfflffl{
þ grad

x
ðCÞ:

�
UK

�
HK

zfflfflffl}|fflfflffl{ �
¼ �2ðx� xKÞxKA

C2
�

grad
x
ðAÞ:

�
WK

�
UK

zfflfflffl}|fflfflffl{
þ grad

x
ðCÞ:

�
WK

�
HK

zfflfflffl}|fflfflffl{ �
¼ �2ðx� xKÞxKB

C2
�

grad
x
ðAÞ:

�
HK

�
UK

zfflfflffl}|fflfflffl{
þ grad

x
ðBÞ:

�
HK

�
WK

zfflfflffl}|fflfflffl{ �
¼ �2ðx� xKÞxKC:

8>>>>>>><
>>>>>>>:

Hence the modulation of the three components A, B, C is

governed by an antisymmetric differential set. It is conven-

ient to consider this problem in a vectorial form. For this

purpose, we introduce the vectorial space V of the three

components “vectors” v constituted by the amplitude of each

mode and denote by ei, i¼ 1, 2, 3 the basis of this vectorial

space, i.e., V ¼ fvð
�
xÞ; vð

�
xÞ ¼ Að

�
xÞe1 þ Bð

�
xÞe2 þ Cð

�
xÞe3g.

The features of the modulation are investigated in the spatial

Fourier domain by setting

vð
�
xÞ ¼ v0 expðij

�
x:

�
aÞ; v0 ¼ ðA0e1 þ B0e2 þ C0e3Þ;

j
�
aj ¼ 1;

which corresponds to a “plane” modulation “traveling” in

the direction
�
a with a “modulation”-number jðx;

�
aÞ.

Reporting this expression in the differential set with the fol-

lowing simplified notations:

�
a ¼

�
WK

�
HK

zfflfflffl}|fflfflffl{
;

�
b ¼

�
HK

�
UK

zfflfflffl}|fflfflffl{
;

�
c ¼

�
UK

�
WK

zfflfflffl}|fflfflffl{
leads to the following antisymmetric system of linear equa-

tions expressed in (3� 3) matrix form:

iC2j½M3�:v0 ¼ �2ðx� xKÞxKv0;

½M3� ¼

0
�
c:

�
a �

�
b:

�
a

�
�
c:

�
a 0

�
a:

�
a

�
b:

�
a �a:

�
a 0

0
BB@

1
CCA:

Therefore applying [M3] to the system gives

�ðC2jÞ2½M3�2:v0 ¼ 4ðx� xKÞ2x2
Kv0

½M3�2 ¼ �jp3j
2I þ p3 	 p3

p3ð�aÞ ¼ ð�a:�ae1 þ
�
b:

�
ae2 þ

�
c:

�
ae3Þ:

8>><
>>:

½M3�2 is a symmetric matrix, the principal directions of

which are (i) p3ðaÞ with zero principal value and (ii) any

vector p? orthogonal to p3ð�aÞ with �jp3ð�aÞj
2

as principal

value. Consequently, the modulation “traveling” in the given

direction a presents the following features:

(1) The amplitudes of the three modes are related by

Að
�
xÞ
�

�
a:

�
WK

�
HK

zfflfflffl}|fflfflffl{ �
þ Bð

�
xÞ
�

�
a:

�
HK

�
UK

zfflfflffl}|fflfflffl{ �

þ Cð
�
xÞ
�

�
a:

�
UK

�
WK

zfflfflffl}|fflfflffl{ �
¼ 0:

(2) The common modulation number jðx;
�
aÞ and

modulation-length KK of the three modes are linked to

the frequency and to the direction by

jðx;
�
aÞ¼ 2p

KKðx;
�
aÞ¼

2jx�xK j
C

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

K=C2�
�
a:

�
WK

�
HK

zfflfflffl}|fflfflffl{�2

þ
�

�
a:

�
HK

�
UK

zfflfflffl}|fflfflffl{�2

þ
�

�
a:

�
UK

�
WK

zfflfflffl}|fflfflffl{�2

vuuuut :

Recalling that
��

�
UK

�
WK

zfflfflffl}|fflfflffl{ �� ¼ OðxK=CÞ (and the same for other

modes), the frequency dependence of modulation of triple

modes is of the same nature as for double mode [see Eq.

(31)], in particular the phenomenon is always propagating.

However, modulation can travel in any direction with aniso-

tropic properties.

2. Modulation of multiple modes

Multiple modes (e.g., n modes) and triple modes can be

addressed in a similar manner. The equivalent to the matrix

[M3] is a n� n antisymmetric matrix [Mn]. The diagonaliz-

able matrix [Mn]2 satisfies the relation �ðC2jÞ2½Mn�2:v0

¼ 4ðx� xKÞ2x2
Kv0, where v0 ¼

PM
m¼1 A

m

0em. Hence the

characteristics of multiple mode modulation are defined by n
eigenvectors and their associated eigenvalues.

IV. CONCLUSION

The governing equations describing the modulation at

large scale of high frequency acoustic waves in periodic po-

rous media has been established through the assumption of

scale separation. Indeed, although high frequency implies

that the physical variables vary locally according to periodic

modes, long modulations of the mode amplitude consist of a

particular type of scale separation enabling the application

of asymptotic multi-scale methods.

Due to the specific type of scale separation, the study of

modulation phenomena departs from the classic framework

of homogenization of periodic media. In fact, the scale sepa-

ration is commonly understood in the sense that a physical

variable, relevant for the phenomena (pressure in poro-

acoustics), varies at the macroscale. It follows as essential

consequences that in usual homogenization approaches:

(1) The local regime in the period is quasi-static at the lead-

ing order (or at least in subdomains of the period), which

implies a “low frequency” range of validity.

(2) The relevant physical variable(s) is preserved identical

though the upscaling.
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(3) A unique “equivalent media” description applies to the

whole low frequency range.

(4) The homogenized description is independent of the

selected period (irreducible or not).

(5) The properties of symmetry and coercivity of the physi-

cal tensors at the microscale are preserved at the macro-

scale for the effective tensors.

The derived description of modulation is also a macro-

scale formulation, but it differs significantly in nature with

classic macro-representations:

(1) Through the upscaling process, the type of variable is

changed (from pressure to mode amplitude) in addition

to the change of differential operator.

(2) Contrary to a single description, a family of descriptions

is derived for modulation phenomena.

(3) Each description is attached to a specific eigenmode car-

rying the high frequency modulated wave.

(4) Consequently, a given description depends on the

selected period (irreducible or not) and is valid only in

the vicinity of the considered eigenfrequency.

(5) The property of coercivity of physical tensors, which

exist at the microscale, may be lost for the effective ten-

sors; however, the symmetry properties are preserved at

the macroscale.

(6) Consistently with the macroscopic nature of the descrip-

tion, the parameters of the modulation equation are fully

determined through the knowledge of the considered pe-

riod (namely its eigenmodes).

Despite the differences in the results, the usual homoge-

nization and the modulation approach are nevertheless closely

related when observing that the zero frequency is an eigen-

value of the local problem with uniform pressure as associated

eigenmode. Hence usual homogenization can be seen as a

specific case of modulation (of the uniform pressure at low

frequency) or the modulation appears as the natural extension

of the homogenization (considering eigenmodes at higher fre-

quency). Let us also underscore that the mathematical process

of upscaling is identical for low or high frequencies. Further,

we have seen that the Fredholm alternative plays a determin-

ing role in the modulation approach. This also the case in

usual homogenization either for establishing the leading order

balance equation1 or for investigating Rayleigh scattering

through higher order expansions, e.g., Ref. 16.

These comparative comments concern the asymptotic

multi-scale method itself, hence they should be of general

application, independently of the type of physical phenom-

ena. Actually, elastic waves in composites4 and acoustic

waves in porous media provide two examples of these meth-

odological aspects.

Those principles are implemented by studying two types

of periodic porous media. The academic case of networks of

identical Helmholtz resonators presents the advantage to be

reducible to a 1D-spring-mass system enabling analytical

description of long range modulations. It is shown that these

latter can be recovered independently through a multi-scale

method devoted to periodic discrete media. Then following

the multi-scale asymptotic method in the context of contin-

uum mechanics, we establish the modulation equation for

3D-porous media.

These several cases enable us to identify the general

common features of modulations phenomena and their speci-

ficity attached to the 1D or 3D aspect of the media as well as

its discrete or continuous nature. The derived macroscopic

formulations demonstrate the existence of two types of mod-

ulation according to the simple or multiple nature of the con-

sidered mode with significant difference in terms of

modulation length and width of the frequency band of occur-

rence. In particular, the frequencies of simple modes (of irre-

ducible or multicells period) coincide with the beginning or

the end of frequency band gaps that determine the nature of

the modulation.

In the 3D case, the anisotropic feature of modulation is

evidenced: Simple modes present three principal directions

of modulation, double modes modulations are characterized

by a single (non trivial) principal direction, and multiple

modes travel in any direction with anisotropic characteristics.

Periodicity is a key assumption of the present approach.

As for usual homogenization, from a practical point of view,

the periodicity may actually exists or may be simply a con-

venient mathematical formulation of the statistically invari-

ant representative volume element.3 Conversely, the

periodicity is here required to define the periodic eigenmo-

des. Thus this assumption seems difficult to relax. However,

the analysis should apply to imperfect periodic media (peri-

odic with noise) for a limited number of eigenmodes (pro-

vided that the geometric imperfections remain negligible

compared to the wave length).

The present study disregards the viscous and thermal

dissipation effects. Nevertheless, the integration of dissipa-

tion would be of interest for practical concern. This can be

handled through boundary layer approximations and comple-

mentary developments are in progress on this topic.

Modulation phenomena involve “full” dynamics at the

local scale. This differs from situations of partial inner dy-

namics observed in double porosity media17 (eigenmodes

within the weak permeability domain only), in meta-materials

made of reticulated media18 (eigenmodes within the most de-

formable beams only), or made with highly contrasted com-

posites,19–21 (eigenmodes within the softer constituent only).

Beside, when focusing on the first mode of large multicells

period X, the inertia becomes weak in each of the irreducible

period X0. In this case, the modulation approach and the Ray-

leigh scattering description should tend to identical effects.

“Full” dynamics situation in periodic media can be

described through multi-scattering approaches, e.g., Ref. 22

or by means of the Floquet–Bloch theory.23 The specificity

of the present approach is to extract, from the comprehen-

sive Floquet–Bloch modal space, the particular frequency

bands enabling large modulations, therefore large correla-

tion, of high frequency acoustic perturbations. It also pro-

vides the governing modulation equation. This latter is

expressed in a quite simple form that should provide sim-

plifications in the formulation of high frequency propaga-

tion in periodic systems with reduced cost of calculations.

The extension of this work to other domains of dynamics in

heterogeneous media is underway.
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APPENDIX

Recall some basic properties of the eigenvalue problem:

cPegrad
y
ðdivyð

�
uÞÞ þ qex2

�
u ¼

�
0; on Xf

�
u:

�
n ¼ 0; on C;

�
u X� periodic

(

whose the series of eigenfrequency and eigenmodes

fx2
J ;

�
UJg of which satisfy

cPegrad
y
ðdivyð

�
UJÞÞþqex2

J �
UJ¼

�
0; on Xf

�
UJ:

�
n¼0; on C;

�
UJ X�periodic:

(

(A1)

The normalized eigenmodes f
�
UJg constitute an orthonormal

basis for the X-periodic motions
�
u defined in Xf , with

�
u:

�
n¼ 0 on C. For any field

�
u,

�
w satisfying the periodic and

impenetrability condition on Cf and C, respectively, note the

equality deduced from the divergence theorem:ð
Xf

grad
y
divyð

�
vÞ:

�
wdX¼�

ð
Xf

divyð
�
vÞdivyð

�
wÞdX

¼
ð

Xf

grad
y
ðdivyð

�
wÞÞ:

�
vdX : (A2)

Consider now the problem in presence of a source term
�
S

(that may depend on
�
y):

cPegrad
y
ðdivyð

�
uÞÞþqex2

K�
uþ

�
S¼

�
0; on Xf

�
u:

�
n¼0; on C;

�
u X�periodic:

(

(A3)

Then taking the scalar product of Eq. (A3) by
�
UJðJ 6¼ KÞ

and of Eq. (A1) by
�
u, integrating on Xf and subtracting pro-

vides, using equality (A2):

h
�
S:

�
UJi þ qeðx2

K � x2
JÞ h�u:�U

Ji ¼ 0:

Because fUgJ
constitutes an orthonormal basis on which

�
u

can be decomposed, we derive the expression of the solution:

�
u ¼ h

�
u:

�
UJi

�
UJ þ B

�
UK ¼ �

X
J 6¼K

h
�
S:

�
UJi

qeðx2
K � x2

JÞ �
UJ þ B

�
UK ;

where B is an arbitrary constant.
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