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Abstract
Hardware spiking neural networks hold the promise of realizing artificial intelligence with high
energy efficiency. In this context, solid-state and scalable memristors can be used to mimic
biological neuron characteristics. However, these devices show limited neuronal behaviors and
have to be integrated in more complex circuits to implement the rich dynamics of biological
neurons. Here we studied a NbOx memristor neuron that is capable of emulating numerous
neuronal dynamics, including tonic spiking, stochastic spiking, leaky-integrate-and-fire features,
spike latency, temporal integration. The device also exhibits phasic bursting, a property that has
scarcely been observed and studied in solid-state nano-neurons. We show that we can reproduce
and understand this particular response through simulations using non-linear dynamics. These
results show that a single NbOx device is sufficient to emulate a collection of rich neuronal
dynamics that paves a path forward for realizing scalable and energy-efficient neuromorphic
computing paradigms.

1. Introduction

As the interest in artificial intelligence (AI) grows, spiking neural networks offer an energy-efficient, hardware-
compatible, and event-driven alternative to conventional artificial neural networks [1], particularly adapted
for processing sensory and dynamical data. Hardware spiking neurons can be realized solely using comple-
mentary metal oxide semiconductor (CMOS) technology, but this type of implementation suffers from a lack
of scalability [2]. This limitation explains the growing interest in the realization of new devices that feature
neuronal behavior and that can be scaled easily [3, 4]. However, researchers face the choice between single,
scalable nanodevices that exhibit a limited range of neuronal responses and more complex neurons that offer
more diverse behavior but limited scalability. Having more diverse behavior provides the potential of repro-
ducing the brain’s computational power to its full extent. Biological neurons may indeed exhibit different types
of spiking responses, as well as bursting responses, where a neuron produces multiple spikes in response to an
input pulse. A neuron implementing a highly simplified response will fail to provide the complexity required to
emulate neurobiology. For example, the bursting response is believed to be of importance for ensuring reliable
communication and synchronization between neurons [5, 6]. Therefore, considerable effort has been devoted
to realizing new scalable devices with diverse neuronal characteristics [5, 7–12].

A leading idea to engineer this new type of devices is to exploit the intrinsic physics of nanoscale materials
to implement neurons [13–17]. A large number of devices have been studied for their neuronal applications
[18–20]: phase change neuron [21], valence change neuron [22, 23], electrochemical metallization neuron
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[24], diffusive neuron [25], Mott insulator neuron [26], and spintronic neuron [27]. Within these exam-
ples, metal/insulator/metal structures based on transition metal oxides such as VOx and NbOx are particularly
promising candidates, as they exhibit reliable threshold switching (TS) and current-controlled negative differ-
ential resistance (NDR) characteristics. NbOx memristor neurons feature high endurance [28] and have been
shown to be capable of leaky integrate-and-fire, all-or-nothing spiking and chaotic oscillations [29]. This type
of device has also been used to implement dynamic, logic, and multiplicative gain modulation [30]. However,
the behavior of a single device is nowhere near as complex as a real biological neuron. To obtain more sophis-
ticated behaviors, complex devices featuring multiple electrophysical processes have to be created [8], which
can be challenging to model and control precisely. Alternatively, several neuronal devices can be used together
in appropriately engineered circuits [7].

In this work, we fabricate and characterize memristor neurons based on a simple Pt/Nb2O5/Ti/Pt stack
with current inputs and output voltage shapes that are close to the shape of a biological action potential, thanks
to the effect of an inductance. These devices are straightforward to model with physics equations, and simul-
taneously, feature multiple computational properties such as tonic spiking, stochastic spiking, spike latency,
leaky-and-fire integration (LIF), all-or-nothing firing, and phasic bursting. These neuron-like dynamics can
be modelled and understood through physical equations and standard non-linear dynamics.

2. Fabrication and method

NbOx memristors, comprising 5 × 5 μm2 cross-point structures, were fabricated by successive film deposi-
tion and patterning. A 4 nm Ti adhesion layer and a 25 nm thick Pt layer were first deposited on a SiO2/Si
substrate by electron-beam evaporation. These layers were subsequently patterned using optical lithography
and ion-beam etching to define the bottom electrodes. A 30 nm Nb2O5 layer was then deposited onto the bot-
tom electrodes using radio-frequency sputtering from a Nb2O5 target at room temperature in an Ar ambient.
The metal-oxide-metal device was completed by adding a top electrode (10 nm Ti–25 nm Pt) deposited by
electron beam evaporation. The top view of the resulting devices is presented in the supplementary material,
figure 6.

For electrical measurements, the bottom electrode was connected to ground and the source applied to
the top electrode. I–V characteristics were measured with a Keysight B1500A semiconductor device analyzer
after current-controlled electroforming with a positive polarity. Pulse measurements were performed using
an Agilent 81160A pulse generator and a voltage-pulse to current-pulse converter (see supplementary mate-
rial figure 5 for the exact structure). The spiking behavior was monitored on a 2 GHz-bandwidth Keysight
MSOS204A oscilloscope. All measurements were performed with a DC probe station.

Before the electroforming process, the resistance of the device was about 4 MΩ at 0.3 V. Electroforming
was achieved by the application of a current ramp from 0 to 0.5 mA to the device (see supplementary material
figure 7). After this step, the device resistance was reduced to 93 kΩ at 0.3 V.

The energy consumption was estimated by integrating the power over a period of time and dividing the
resulting energy by the number of corresponding spikes. We derive a value of about 80 pJ/spike, which is
comparable to the value found in other papers for NbOx devices [31, 32]. In the future, reducing the exter-
nal capacitance (here parasitic) could drastically reduce the energy consumption. Simulations using a model
detailed below indeed show that with a parasitic of 10 pF the energy is close to 8 pJ/spike whereas for the 200 pF
capacitance, the results are close to 80 pJ/spike.

Three different batches of samples have been realized, all showing devices with the same type of behaviors
as the one reported in the present article, with a significant device-to-device variation.

The simulations presented in figure 1 were computed with LTSpice using the electrical circuit presented
in figure 1(a) based on the Newton law of cooling and the Poole–Frenkel effect (see equations (1) and (2)
below), with a 5 ns time step. The values of all parameters used in these simulations are listed in supplemen-
tary material table 1. The temperature evolution was implemented in LTSpice following guidelines described
in the supporting information of [33]. The simulations shown in figure 4 were executed in Python with a
Runge–Kutta solver of order 5 and a timestep of 50 ps using equations (1) and (2).

3. Results

The quasistatic I–V characteristics of our device are shown in figure 1(a), highlighting the current-controlled
S-shaped NDR response, characteristic of a voltage-controlled TS. Two characteristic values are included on
the graph. The first one is the TS point (called TS in figure 1(a)), where the slope of the current-controlled
I–V characteristic goes from positive to negative. This point also coincides with the abrupt transition from
a high-resistance state to a low-resistance state under voltage controlled transitions. The second is the hold
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Figure 1. (a) Measured (square symbols) and simulated (dots) I –V characteristics. The V sweep and I sweep correspond
respectively to the voltage-controlled and current-controlled I –V characteristics. The hold point H is indicated in green and the
TS point TS in red. The inset shows a sketch of the structure of the device. (b) Circuit diagram of the integrated NbOx spiking
neuron where Cext and Lext are respectively a parasitic capacitance and inductance. (c) Measurement of a single spike of a NbOx

neuron, with the four stages of an action potential indicated. (d) Simulated spiking dynamics of the NbOx neuron temperature Td

(colored curve) and current Id (dots) for a constant input current of 180 μA. (e) Simulation of the output voltage shape with
respect to the value of the circuit inductance for a constant input current of 180 μA.

point H, where the differential resistance becomes positive again. The slight cycle-to-cycle variations of the
I–V characteristics of the device are shown in figure 8 of the supplementary material.

The physical basis of this behavior has been under debate but is generally understood to arise from an
increase in the oxide electrical conductivity due to local Joule heating. Indeed, Gibson [34] has shown that
the NDR response can arise from any mechanism that gives rise to a superlinear increase in conductivity with
temperature. In the case of NbOx, some authors initially attributed it to a characteristic insulator-to-metal tran-
sition in NbO2 [35], but it is now generally accepted that it arises from a trap-assisted transport mechanism,
such as Poole–Frenkel conduction [36, 37].

In the case of the Poole–Frenkel effect, a filament of oxygen vacancies connects both electrodes after elec-
troforming. The oxygen vacancies act as potential traps for electrons. If an electric field is applied to the device,
the energy profile of the conduction band in the oxide around the traps becomes asymmetric. Trapped elec-
trons are then able to be thermally injected into the conduction band, leading to the traditional Poole–Frenkel
equation for the device resistance Rd as a function of the temperature Td and the voltage Vd across the device:

Rd = R0 exp

⎛
⎝Ea − q

√
qVd

πε0εrd

kBTd

⎞
⎠, (1)

where Ea is the activation energy associated with the carrier trap level, ε0 the vacuum permittivity, εr the relative
permittivity of NbOx, q the elementary charge, and d the thickness of the oxide film. Vd is the device voltage
and Td is the temperature of the active device volume [36]. The occurrence of electrical current through the
filament results in a positive feedback, where Joule heating raises the local temperature Td, reducing the device
resistance further [38, 39]. This phenomenon can be modeled from a lumped element model of the device,
where the Newton’s cooling law is used to describe the evolution of the temperature,

dTd

dt
=

V2
d

RdCth
− Td − Tamb

CthRth
(2)

where Tamb is the room temperature, and Cth and Rth are respectively the thermal capacitor and resistor. We
simulated the I–V curve of our device using these equations (see methods). The simulation results presented
with a dotted line in figure 1(a) show that the model reproduces the experimental data.

Figure 1(b) presents the simple experimental setup used to measure the spiking behavior of neurons. In
this circuit, Rd is the device resistance described by equation (1) and Cd is the intrinsic device capacitance
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arising from its metal/insulator/metal structure. Cext and Lext respectively account for parasitic capacitance
and inductance of the measurement set-up. Rout is an external resistor of 25 Ohms across which the output
voltage is measured. The input of the circuit is a current, and the output is a voltage, in line with the biological
configuration. Figure 1(c) shows an experimentally measured spike, observed by applying a constant 150 μA
current input to the circuit. The shape of the output spike strongly resembles that of a biological neuron,
with an initial depolarization followed by hyperpolarization: starting from a resting phase, the output voltage
increases rapidly during the activation phase, and then decreases to become negative before rising again to the
resting phase.

To understand this behavior, figure 1(d) shows simulations of the current Id flowing through the device
(dots) and the simulated temperature Td of the active device volume (colored curve) during a spike, using the
LTSpice model of our experiment and a current input of 180 μA (see methods). These responses are clearly
correlated, with both curves exhibiting a rapid increase and a slower decrease, which can be explained as fol-
lows. The device is initially in an insulating state. When a constant current is applied, the capacitance Cext

charges and the voltage across the device increases until it approaches the threshold voltage, at which point
the device resistance drops, producing the increase in current and temperature evident in figure 1(d). This
discharges the capacitor, reducing the device voltage to the point where the memristor reverts to its subthresh-
old resistance. The transition to a high resistance state causes a reduction in current and temperature, ending
the spike response. Note that without the external capacitance Cext the neuron would not spike. In a hard-
ware implementation involving NbOx neurons, capacitors would have to be added. The restoration part of the
neuron-like voltage spike is seen in the output voltage but not in the current and temperature curves; this is
due to the presence of a parasitic inductance (see figure 1(b)). The device intrinsic capacitance Cd is small, as
is the current in that branch. Therefore, the current going through the inductance Lext and the output resis-
tor Rout (figure 1(d)), is close to that going through the neuron Rd. Because the voltage across the inductance
opposes the variations of the current, it is first positive and then negative. The output voltage is the sum of two
terms, Vout = Routiout + Lext

diout
dt : if the inductance is large enough, the output voltage is first positive (during

the activation part) and then decreases until it becomes negative (during the cooling and restoration parts).
This mechanism explains the results shown in figure 1(e), where the evolution of the shape of the pulse with
respect to the circuit inductance is simulated. When the inductance is smaller than 100 nH, it has a negligi-
ble impact on the output voltage (showed in figure 1(c)); for higher inductance values, a restoration phase is
observed.

Having analyzed the NbOx neuron spike shape, we now explore its computational properties. Figure 2(a)
shows the neuron behavior when a current ramp is applied at its input. For low currents the neuron does
not spike, as the NDR behavior needed for spike generation does not appear until the current reaches the
TS point in figure 1(a). Above this threshold current, the neuron spikes with increasing frequency until the
current exceeds the hold value (H) of figure 1(a), above which the NDR disappears as well as the related spiking
behavior. This characteristic is reproduced in simulations in supplementary material figure 9.

When the input is constant and lies between the threshold current and the hold current, the neuron spikes
with a constant frequency, a behavior called tonic spiking for biological neurons, as shown in figure 2(b) (and
reproduced in simulations in supplementary material figure 10). Close to the threshold current, the behavior is
stochastic, as shown in figure 2(c), as can be expected from a thermally-driven process, but with a non-random
occurrence of spiking events, that can be described by quiet periods followed by bursts of spikes with constant
frequency. Due to input current noise, the neuron output indeed fluctuates between its below-threshold behav-
ior (no spikes) and its above-threshold behavior (spikes with a constant frequency). This stochastic bursting
behavior is reminiscent of biological neuron bursting and could be exploited for computations and learning
in hardware circuits [6].

The neuron also exhibits spike latency, as evidenced in figure 2(d) for a 1 μs-duration pulse applied to the
device. During the whole duration of the input, the output voltage does not show any significant response.
However, once the pulse is back to zero, the neuron spikes. This effect can be explained naturally within the
context of the above model. Indeed, when the current pulse is applied long enough for the temperature to
activate the Poole–Frenkel effect, the positive feedback mechanism starts and the temperature keeps increasing
even as the source stops, giving rise to spike latency. This behavior is simulated in supplementary material
figure 11.

Moreover, the neuron may exhibit all-or-nothing behavior. In figure 2(e), two pulses with the same dura-
tion of 1 μs are applied to the neuron with different current input values: 0.13 mA for the left figure and
0.17 mA for the right one. The first pulse is not sufficient to make the neuron spike, but a slight variation of
the output voltage can be observed. The second pulse is high enough to make the neuron spike, as the value of
the current has been increased. In the context of a spiking neural network, this all-or-nothing behavior allows
triggering a neuron only when a sufficient number of spikes (with below-threshold amplitude) arrives simul-
taneously at its input, thus filtering meaningful signal only, a behavior akin to spatial summation. Indeed, in a
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Figure 2. (a) NbOx neuron output as a function of input current amplitude. A 99 μs current ramp from 0 to 0.46 mA and 1 μs
fall time is applied to the device. (b) Tonic spiking. The neuron receives a constant input current of 0.2 mA. (c) Stochastic spiking
obtained with a current of 0.109 mA. (d) Spike latency. A pulse with a duration of 1 μs, a rise time and fall time of both 100 ns
and an amplitude of 0.131 mA is applied to the neuron. (e) Spatial integration. Comparison between two figures where a pulse of
duration of 1 μs with a rise time and fall time of both 100 ns are applied to the neuron. The input current value is 0.13 mA on the
left and 0.17 mA on the right. (f) Temporal integration. Three pulses of duration of 1 μs with a rise time and fall time of both
100 ns and of amplitude 0.110 mA are applied to the neuron. The frequency is 0.35 MHz on the left and 0.7 MHz on the right.

biological neuron, spatial summation corresponds to the possible trigger of an action potential when multiple
inputs arrive simultaneously. Therefore, the spatial information can be encoded in the current amplitude. This
all-or-nothing behavior is reproduced with simulations in supplementary material figure 12.

Finally, figure 2(f) displays a different situation where three pulses of identical duration (1 μs) and peak
current (0.11 mA) are applied. On the left, the input frequency of 0.35 MHz is not high enough for the neuron
to spike, contrary to the right panel in which the frequency is increased to 0.7 MHz, allowing it to spike. This
behavior indicates a frequency-dependent temporal summation by the neuron, reproduced with simulations
in supplementary material figure 13. This typical leaky-integrate-and-fire behavior is particularly adapted for
spiking neural networks where frequency encodes the information.

While most of the spiking features presented in figure 2 have been reported for various types of solid-state
neurons [8, 22, 24, 26], figure 3 shows that our simple NbOx neuron exhibits a behavior observed in biological
neurons and scarcely investigated in memristive systems, named phasic bursting [8]. In this case, for a constant
input current just above the hold point (see figure 1(a)), the neuron starts to spike before stopping abruptly, as
shown in figure 3(a). This situation differs from figure 2(a), where a current ramp was applied. In figure 2(a),
the neuron stopped spiking near the end of the input ramp, because the input current ended well above the
Hold current (H point in figure 1). In figure 3(a), the input is now constant and the neuron still spikes before
stopping abruptly. The amplitude of the spikes appears constant, before sharply decreasing until completely
disappearing. Once the neuron stops spiking, it does not start spiking again if the input does not change. Our
measurements indicate that, if pulses of the right current values are applied successively, the neuron will start
spiking each time before eventually stopping. However, the duration of phasic bursting is not always the same
even if the input is identical.

In order to quantify the effect, a statistical study of phasic bursting as a function of input current is pre-
sented in figure 3(b). A current pulse is applied to the neuron, its output is recorded on the oscilloscope, and
the average frequency during the pulse duration is then computed for each point. When the phenomenon
of phasic bursting occurs, spikes stop during a fraction of the total duration of the pulse, which decreases
the average frequency. Despite the apparent stochastic behavior, a clear trend in the mean frequency evo-
lution as a function of input emerges. For low currents, there is at first almost no phasic bursting, and the
median frequency is almost equal to the maximum frequencies observed. Then as the input current increases,
the proportion of phasic events increases and the median frequency decreases until no phasic bursting
occurs.

We now present a theoretical analysis to determine the origin of the experimentally-observed phasic burst-
ing. We model our system with the circuit of figure 1(b), neglecting the parasitic inductance and the intrinsic
capacitance, that do not impact the qualitative neuron dynamics, in order to gain in simplicity and generality.
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Figure 3. (a) Example of phasic bursting of the output voltage as a function of time. A current input of amplitude 0.47 mA is
applied. The right panel zooms on the end of the phasic bursting. (b) Left: variation of the average frequency as a function of the
input current. Right: zoom on the phasic bursting regime, in order to get a statistical understanding of the phenomenon. In blue,
the median frequency computed from the different average frequencies (grey dots) is plotted.

The system is then simplified to two coupled first-order differential equations that link the voltage Vd across
the device and the temperature Td inside the active volume of the device. The first equation reads

dVd

dt
=

Is

Cext
− Vd

RdCext
, (3)

where Is is the input current and Rd is the Poole–Frenkel resistance defined in equation (1). The second
equation is the Newton law of cooling (equation (2)).

Equations (2) and (3) can be solved numerically, leading to the different trajectories plotted in blue in
figures 4(b)–(d) for the input current values Is of 0.9, 0.96702 and 1.1 mA respectively. The system null-
clines are also shown in dotted lines. These curves correspond to the zero values of the right-hand side of
equations (2) and (3). Their intersection in the two-dimensional phase space (Td, Vd) corresponds to points
for which the derivatives of Td and Vd are zero, and therefore gives the fixed point of the system for each input
current.

Consistent with equation (2), the temperature nullcline does not depend on the input current IS and is
therefore identical in figures 4(b)–(d) (orange curve). On the other hand, increasing the input current verti-
cally shifts the voltage nullcline to the top of the phase space. The current-dependent fixed points can therefore
be obtained by following the temperature nullcline. For each of these points the Poole–Frenkel resistance can

be computed, and by plotting the input current Is as the function of the voltage Vd

(
thanks to the equilibrium

relation Is =
Vd
Rd

)
the simulated quasistatic curve of figure 1(a) is obtained.

The analysis of figure 4 shows that phasic bursting is a particular situation that occurs around the hold
point. The occurrence of this behavior is simply controlled by the constant source current applied to the
device. Below the hold point, the fixed point is not stable, and the trajectory therefore reaches a limit cycle:
this is what happens in figure 4(b). At the hold point, the system undergoes a supercritical Hopf bifurcation,
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Figure 4. (a) Simulations of the device current oscillations as a function of time for a current input Is of 0.96702 mA. (b)–(d)
Simulation of the trajectory (in blue) and the nullclines (in orange for Ṫ = 0 and in green for V̇ = 0) for different input currents
Is of value 0.9, 0.96702 and 1.1 mA for each figure. The y-axis corresponds to the temperature Td in the active volume of the device
while the x-axis represents the voltage of the device Vd. The black arrows indicate the direction of the gradient at each point.

where the limit cycle becomes a stable equilibrium point (as seen in figure 4(d)). Just above the transition
(figure 4(c)), the system reaches a stable equilibrium point, but the convergence of the trajectory is quite
slow (see figure 4(a)). This dynamic naturally gives rise to the phasic bursting phenomenon of figure 4(a),
where an apparently stable train of spike unexpectedly fades out then stops. Interestingly, in the experiments,
the current input range where the phasic bursting happens (ΔI = 0.04 mA) is about ten times larger than
in the simulations (ΔI = 0.003 mA). The noise inherent to physical devices and to the input current (close
to 0.018 mA in our experiments) explains the experimentally observed stochasticity of phasic bursting and
expands the phasic bursting range. Indeed, even if the bias conditions of the device are set outside of the
narrow range where phasic bursting is predicted in the absence of noise, fluctuations will enable the system
to reach it and initiate the bifurcation, a phenomenon akin to stochastic resonance observed in biological
neurons [40]. Other factors can also impact the details of the phasic bursting behavior. Simulations indicate
that its corresponding current range ΔI could be increased for possible applications by lowering the value
of the external capacitance (see figure 14 in the supplementary material). An experimental study would be
needed to confirm this trend. In the model, the thermal resistance is considered constant for simplicity, but
this is not true in a real device, as shown in reference [41]. However, both measurements and adequate mod-
els are still lacking for temperatures higher than 450 K to include this dependency in the phasic bursting
simulations.

4. Conclusion

Volatile NbOx memristors are excellent neuron candidates as they are scalable, present reliable TS, and are
compatible with memristive synapses such as HfO2 metal–insulator–metal structures. We have shown that
the Pt/Nb2O5/Ti/Pt stack presents well-suited I–V characteristics: a current-controlled S-shaped NDR, which
can be modeled by assuming Poole–Frenkel conduction. This type of devices is able to spike and the resulting
shape is very close to the one of a biological neuron with initial depolarization followed by hyperpolariza-
tion due to an inductance. We demonstrated that this device presents multiple computational properties such
as leaky-integrate-and-fire (LIF) characteristics, all-or-nothing-firing, and phasic bursting. We also inves-
tigated the origin of phasic bursting through the analysis of the physical equations of the devices. This
phenomenon comes from the bifurcation between an unstable fixed point (limit cycle) and a stable fixed
point (equilibrium) driven by Poole–Frenkel dynamics. These results pave the way to easily-scalable neurons
that can be easily modelled and simulated but still show a complex behavior in order to mimic biological
computations.
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