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Let us consider the following continuous-time system

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rnin , (1)

ξ = h(x) , ξ ∈ Rnout , (2)

where f(x), g(x) and h(x) are sufficiently smooth vector functions.
Linear system i.e. f(x) = Ax, g(x) = B and h(x) = Cx, there exists
an observability condition:
The linear system is observable if and only if
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For nonlinear systems, the observability depends on the input, is local
and there are no stopping criteria. Besides, there exist several
definitions of observability as local [5], generic [3] etc. In a very
simplified way, we can refer to the implicit functions theorem and find
out on which order the output function ξ must be derived with
respect to time. This leads to the simple test:

Rank



dξ
dξ(1)

...
dξ(n)

...

 = n (4)

where ξ(j) denotes the ith derivative of ξ with respect to time and
d• := ( ∂•

∂x1
, ..., ∂•

∂xn
).
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Let us consider the well-known Rossler dynamics [11]:

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2 (5)

ẋ3 = b+ x3(x1 − c)

If we consider ξ = x1 as output, then (4) becomes

Rank

 dξ
dξ(1)

dξ(2)

 = Rank

 1 0 0
0 −1 −1

−(1 + x3) −a −(x1 − c)


which has a state singularity in x1 = a+ c due to the nonlinearity.
Now, if we consider ξ = x2 as output, then (4) becomes

Rank

 dξ
dξ(1)

dξ(2)

 = Rank

 0 1 0
1 a 0
a 1− a2 −1

 .
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Flatness

Since the seminal work of Fliess and co-authors [4], the flatness
concept is used in many applications.
Definition 1:
The dynamic (1) with x ∈ Rn and u ∈ Rnin , is zero-flat if there
locally exist nout = nin smooth functions hi = hi(x), where
1 ≤ i ≤ nout having the following property:
there exist an integer q and smooth functions γi, 1 ≤ i ≤ n, and δj ,
1 ≤ j ≤ nin, such that locally

xi = γi(h, ḣ, . . . , h
(q−1)) and uj = δj(h, ḣ, . . . , h

(q)), (6)

The function h = (h1, . . . , hnout)
T is called a flat output.
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Flatness

Example, let us consider again the Rossler dynamic (7) with ξ = x2

and add an input that appears linearly in the equation describing the
time derivative of x3. The resulting controlled system reads:

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2 (7)

ẋ3 = b+ x3(x1 − c) + u

ξ = x2

It holds that ∂ξ
∂u = 0, ∂ξ(1)

∂u = 0, ∂ξ(2)

∂u = 0 and ∂ξ(3)

∂u = −1. All the
properties like observability, controllability, input-output link hold
without state singularity as it would hold for a linear system. In
[10, 9]... a symbolic algorithm is proposed to check whether a system
is flat or not along with an assessment of the quality of flatness.
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Let us now consider the invariant discrete-time system

x+ = G(x, u) , x ∈ Rn, u ∈ Rnin (8)

ξ = h(x) , ξ ∈ Rnout . (9)

where x+ stands for x(k + 1) and x stands for x(k). Moreover, we
consider discrete-time dynamic with nonlinearity in u, because the
composition of functions generally kills the input linearity e.g.
x+
1 = x2

2 and x+
2 = u give x++

1 = u2.
Definition 2: The invariant discrete system (8)-(9) is globally
universally causally observable, if ∀x ∈ Rn and ∀u ∈ Rnin there exists
l ∈ R∗ and a function F such that

x−l = F (ξ, ξ−, ..., ξ−l, u, u−, ..., u−(l−1)) (10)

where •− stands for •(k − 1) and •−l stands for •(k − l).
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Definition 3:
The invariant discrete system (8)-(9) is locally universally causally
observable at x0 := x(0), if ∀u ∈ Rnin , there exist Vx0

a neighborhood
of x0, l ∈ R∗ and a function Fx0

such that ∀x ∈ VX0

x−l = Fx0
(ξ, ξ−, ..., ξ−l, u, u−, ..., u−(l−1)) (11)

Proposition:
The pair ⌈G, ξ⌉ is locally universally observable at x0 if and only if
there exists l > 0 such that ∀u ∈ Rnin the observability matrix

Oξl(x0) =

∣∣∣∣∣∣∣∣∣∣
d(h(x0))

d(h ◦G(x0, u))

...

d(h ◦G◦l(x0, u)) ,

(12)

is of rank n where G◦2(x0, u) is equal to G(G(x0, u), u
+),

G◦3(x0, u) = G(G(G(x0, u), u
+), u++), and so on.
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Flatness

As a discrete-time counterpart of flatness for continous-time systems
(let us recall [4]), the definition of a zero-flat nonlinear discrete-time
system was given in [7]:
Definition 4:
The nonlinear discrete-time input-output system (8)-(9) is zero-flat if

1 There exists an integer k and a function Fstate, such that, the
state x can be rewritten as a function of the output, that is
x = Fstate(ξ, ξ

+, ..., ξ+k)

2 There exists an integer k and a function Fin, such that, the
control input can be rewritten as a function of the output that is
u = Fin(ξ, ξ

+, ..., ξ+(k+1)).
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Flatness

The discrete-time nonlinear canonical form given in [8] makes a
connection between controllabilty, observability and flatness [7, 2]:

x+
1 = x2 + a1(x1)

x+
2 = x3 + a2(x1, x2)

... =
... (13)

x+
n−1 = xn + an−1(x1, x2, ..., xn−1)

x+
n = an(x1, x2, ..., xn, u)

Systems (13) with an(x1, x2, ..., xn, u) = a(x1, x2, ..., xn) + bu and x1

as output ξ are zero-flat. In fact x1 = ξ, x2 =+
i −a1(ξ),

x3 = ξ++ − a1(ξ
+)− a2(ξ, ξ

+ − a1(ξ)) and so on recursively.
Consequently, from the fact that every xi is function of y, y+, ...yi+

and that x+
n = an(x1, ..., xn) + bu, there exists a function

Fin(ξ, ξ
+, ..., ξ(n+1)+) such that u = Fin(ξ, ξ

+, ..., ξ(n+1)+).
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Flatness

Let us consider the nonlinear discrete-time system:

x+
1 = x1 + x2

2

x+
2 = u (14)

ξ = x1

The change of coordinates ζ1 = ξ and ζ2 = ξ + x2
2 gives

ζ+1 = ζ2

ζ+2 = ζ2 + u2 (15)

ξ = ζ1

This coordinate change is not a global diffeomorphism, the singularity
is at x2 = 0. Thus, even if the system (15) is observable the system
(14) is not observable. Moreover, there is also a commandability in
both system representations (i.e. (14) and (15) where x2 respectively
ζ2 can only increase.
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The aim is to propose a graph-based methodology [6, 1] in order to
verify that for a given discrete map (1) with u = 0 (autonomous
system), the controlled system with input u ∈ Rnin and measurement
ξξξ ∈ Rnin admits ξξξ as a flat output. This approach is restricted to
discrete-time systems that can be written in the controlled form:

Σ :

{
x+ = Ax+Bu,
ξξξ = Cx

(16)

where the entries of matrices A ∈ Rn×n and B ∈ Rn×nin may be non
constant but may depend on the output ξξξ ∈ {x1, x2, ..., xn}.
Proposition
Consider the structured linear discrete-time system Σ described by
(16). The output denoted by ξξξ ∈ {x1, x2, ..., xn}, associated to set of
vertices Ξ, is generically a flat output if and only if, in the associated
digraph G(Σ), the following three conditions hold:

1 η(U,Ξ) = nin.
2 All the maximum U-Ξ linkings have the same length.
3 Every cycle in the digraph G(Σ) covers at least an element of

Vess(U,Ξ).
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Let us consider the Henon map described by

x+
1 = 1− ax2

1 + x2

x+
2 = bx1 (17)

ξξξ = x1

where a and b are real numbers. When applying a control input u on
the second component x2, the resulting dynamics can be rewritten
like x+ = Ax+Bu+ f(ξξξ) with

A =

[
−aξξξ 1
b 0

]
, B =

[
0
1

]
.

x x
1 2

u
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x1 = ξ = Fstate,1(ξ)

x2 = ξ+ − 1 + aξ2 = Fstate,2(ξ, ξ
+)

u = ξξξ++ − 1 + aξξξ++ − bξ = Fin(ξ, ξ
+, ξ++)
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A. Kaldmäe and U. Kotta.
On flatness of discrete-time nonlinear systems.
9th IFAC Symposium on Nonlinear Control Systems, Toulouse,
France, pages 588–593, 2013.

U. Kotta.
Controller and controllability canonical forms for discrete-time
non-linear systems.
5th IFAC Symposium on Nonlinear Control Systems, St
Pertesburg, Russia, pages 391–395, 2001.

C. Letellier and J.-P. Barbot.
Optimal flatness placement of sensors and actuators for
controlling chaotic systems.

J-P Barbot et a. Toulouse, France, October 2023 17 / 17



Continuous-time systems analysis Discrete-time system analysis Graph-based approach for discrete-time systems

Chaos, 31(10):103–114, 2021.

Christophe Letellier, I. Leyva, and I. Sendiña Nadal.
Dynamical complexity measure to distinguish organized from
disorganized dynamics.
Physical Review E, 101(2):022204, 2020.

O. E. Rössler.
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