Let us consider the following continuous-time system

ẋ = f (x) + g(x)u, x ∈ R n , u ∈ R nin , (1) 
ξ = h(x) , ξ ∈ R nout , (2) 
where f (x), g(x) and h(x) are sufficiently smooth vector functions. Linear system i.e. f (x) = Ax, g(x) = B and h(x) = Cx, there exists an observability condition:

The linear system is observable if and only if

Rank        C CA . . . CA n-2 CA n-1        = n (3) 
For nonlinear systems, the observability depends on the input, is local and there are no stopping criteria. Besides, there exist several definitions of observability as local [5], generic [3] etc. In a very simplified way, we can refer to the implicit functions theorem and find out on which order the output function ξ must be derived with respect to time. This leads to the simple test: (1) . . .

Rank         dξ dξ
dξ (n) . . .         = n (4)
where ξ (j) denotes the i th derivative of ξ with respect to time and

d• := ( ∂• ∂x1 , ..., ∂• ∂xn ).
Let us consider the well-known Rossler dynamics [11]:

ẋ1 = -x 2 -x 3 ẋ2 = x 1 + ax 2 (5) ẋ3 = b + x 3 (x 1 -c)
If we consider ξ = x 1 as output, then (4) becomes

Rank   dξ dξ (1) dξ (2)   = Rank   1 0 0 0 -1 -1 -(1 + x 3 ) -a -(x 1 -c)  
which has a state singularity in x 1 = a + c due to the nonlinearity. Now, if we consider ξ = x 2 as output, then (4) becomes

Rank   dξ dξ (1) dξ (2)   = Rank   0 1 0 1 a 0 a 1 -a 2 -1   .
Since the seminal work of , the flatness concept is used in many applications. Definition 1:

The dynamic (1) with x ∈ R n and u ∈ R nin , is zero-flat if there locally exist n out = n in smooth functions h i = h i (x), where 1 ≤ i ≤ n out having the following property: there exist an integer q and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ n in , such that locally

x i = γ i (h, ḣ, . . . , h (q-1) ) and u j = δ j (h, ḣ, . . . , h (q) ), (6) 
The function h = (h 1 , . . . , h nout ) T is called a flat output.

Example, let us consider again the Rossler dynamic ( 7) with ξ = x 2 and add an input that appears linearly in the equation describing the time derivative of x 3 . The resulting controlled system reads:

ẋ1 = -x 2 -x 3 ẋ2 = x 1 + ax 2 (7) ẋ3 = b + x 3 (x 1 -c) + u ξ = x 2
It holds that ∂ξ ∂u = 0, ∂ξ (1) ∂u = 0, ∂ξ (2) ∂u = 0 and ∂ξ (3) ∂u = -1. All the properties like observability, controllability, input-output link hold without state singularity as it would hold for a linear system. In [10,9]... a symbolic algorithm is proposed to check whether a system is flat or not along with an assessment of the quality of flatness.
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Let us now consider the invariant discrete-time system

x + = G(x, u) , x ∈ R n , u ∈ R nin (8) ξ = h(x) , ξ ∈ R nout . ( 9 
)
where x + stands for x(k + 1) and x stands for x(k). Moreover, we consider discrete-time dynamic with nonlinearity in u, because the composition of functions generally kills the input linearity e.g.

x + 1 = x 2 2 and x + 2 = u give x ++ 1 = u 2 . Definition 2: The invariant discrete system (8)-( 9) is globally universally causally observable, if ∀x ∈ R n and ∀u ∈ R nin there exists l ∈ R * and a function F such that

x -l = F (ξ, ξ -, ..., ξ -l , u, u -, ..., u -(l-1) ) ( 10 
)
where • -stands for •(k -1) and • -l stands for •(k -l).

Definition 3: The invariant discrete system (8)-( 9) is locally universally causally observable at x 0 := x(0), if ∀u ∈ R nin , there exist V x0 a neighborhood of x 0 , l ∈ R * and a function F x0 such that ∀x ∈ V X0

x -l = F x0 (ξ, ξ -, ..., ξ -l , u, u -, ..., u -(l-1) ) ( 11)

Proposition:

The pair ⌈G, ξ⌉ is locally universally observable at x 0 if and only if there exists l > 0 such that ∀u ∈ R nin the observability matrix

O ξ l (x 0 ) = d(h(x 0 )) d(h • G(x 0 , u)) . . . d(h • G •l (x 0 , u)) , (12) 
is of rank n where G

•2 (x 0 , u) is equal to G(G(x 0 , u), u + ), G •3 (x 0 , u) = G(G(G(x 0 , u), u + ), u ++ )
, and so on.

As a discrete-time counterpart of flatness for continous-time systems (let us recall [4]), the definition of a zero-flat nonlinear discrete-time system was given in [7]: Definition 4:

The nonlinear discrete-time input-output system ( 8)-( 9) is zero-flat if

The discrete-time nonlinear canonical form given in [8] makes a connection between controllabilty, observability and flatness [7, 2]:

x

+ 1 = x 2 + a 1 (x 1 ) x + 2 = x 3 + a 2 (x 1 , x 2 ) . . . = . . . ( 13 
) x + n-1 = x n + a n-1 (x 1 , x 2 , ..., x n-1 ) x + n = a n (x 1 , x 2 , ..., x n , u)
Systems ( 13) with a n (x 1 , x 2 , ..., x n , u) = a(x 1 , x 2 , ..., x n ) + bu and x 1 as output ξ are zero-flat. In fact

x 1 = ξ, x 2 = + i -a 1 (ξ), x 3 = ξ ++ -a 1 (ξ + ) -a 2 (ξ, ξ + -a 1 (ξ)
) and so on recursively. Consequently, from the fact that every x i is function of y, y + , ...y i+ and that x + n = a n (x 1 , ..., x n ) + bu, there exists a function F in (ξ, ξ + , ..., ξ (n+1)+ ) such that u = F in (ξ, ξ + , ..., ξ (n+1)+ ).

Let us consider the nonlinear discrete-time system:

x + 1 = x 1 + x 2 2 x + 2 = u (14) ξ = x 1
The change of coordinates

ζ 1 = ξ and ζ 2 = ξ + x 2 2 gives ζ + 1 = ζ 2 ζ + 2 = ζ 2 + u 2 (15) ξ = ζ 1
This coordinate change is not a global diffeomorphism, the singularity is at x 2 = 0. Thus, even if the system ( 15) is observable the system ( 14) is not observable. Moreover, there is also a commandability in both system representations (i.e. ( 14) and ( 15) where x 2 respectively ζ 2 can only increase.

The aim is to propose a graph-based methodology [6,1] in order to verify that for a given discrete map (1) with u = 0 (autonomous system), the controlled system with input u ∈ R nin and measurement ξ ξ ξ ∈ R nin admits ξ ξ ξ as a flat output. This approach is restricted to discrete-time systems that can be written in the controlled form:

Σ :

x + = Ax + Bu, ξ ξ ξ = Cx (16)
where the entries of matrices A ∈ R n×n and B ∈ R n×nin may be non constant but may depend on the output ξ ξ ξ ∈ {x 1 , x 2 , ..., x n }. Proposition Consider the structured linear discrete-time system Σ described by ( 16). The output denoted by ξ ξ ξ ∈ {x 1 , x 2 , ..., x n }, associated to set of vertices Ξ, is generically a flat output if and only if, in the associated digraph G(Σ), the following three conditions hold:

Let us consider the Henon map described by

x + 1 = 1 -ax 2 1 + x 2 x + 2 = bx 1 (17) ξ ξ ξ = x 1
where a and b are real numbers. When applying a control input u on the second component x 2 , the resulting dynamics can be rewritten like x + = Ax + Bu + f (ξ ξ ξ) with A = -aξ ξ ξ 1 b 0 , B = 0 1 .
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x 1 = ξ = F state,1 (ξ)

x 2 = ξ + -1 + aξ 2 = F state,2 (ξ, ξ + ) u = ξ ξ ξ ++ -1 + aξ ξ ξ ++ -bξ = F in (ξ, ξ + , ξ ++ )
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There exists an integer k and a function F state , such that, the state x can be rewritten as a function of the output, that is x = F state (ξ, ξ + , ..., ξ +k )

There exists an integer k and a function F in , such that, the control input can be rewritten as a function of the output that is u = F in (ξ, ξ + , ..., ξ +(k+1) ).J-P Barbot et a.Toulouse, France, October 2023
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η(U, Ξ) = n in .

All the maximum U-Ξ linkings have the same length.

Every cycle in the digraph G(Σ) covers at least an element of V ess (U, Ξ).J-P Barbot et a.Toulouse, France, October 2023
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