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A Decision-Making Model Based on Spiking Neural Network 

(SNN) for Remote Patient Monitoring 

Sebastien Cohen*, Florence Leve, Harold Trannois, Wafa Badreddine, and Florian Legendre 

 
 

Abstract—Nowadays, the medical sector faces several 

challenges due to different factors including the increase in the 

number of patients to be taken care of, the economic crisis and 

the saturation of hospitals. Hence, hospital administrations aim 

to develop new strategies to handle these issues as remote 

patient monitoring. In this context, we propose a 

decision-making Spiking Neural Network (SNN) model 

regarding patient health conditions to integrate to patient 

monitoring systems. Our model offers, based on the 

measurements of the physiological parameters of the patient, a 

feedback of the patient’s health condition and a raising of the 

alert if necessary. To do so, we construct an SNN model that 

represents the rules provided by a group of doctors and that 

allow this model to be representative of one patient. The results 

obtained by our model as well as those of a rule-based model 

validated by physicians have an error rate of less than 10%. 

Our goal is to reduce this error rate associating the two models 

and not to put the two models in competition. 

 
Index Terms—Decision-making models, remote patient 

monitoring, Spiking Neural Network (SNN)

 

I. INTRODUCTION 

The healthcare system is facing major challenges that 

won’t be solved with our current healthcare model [1]. 

Indeed, several indicators attest it, for example with the 

ageing population that will see the number of over 60s triple 

by 2050.  

One solution found by hospital administrations is to 

increase outpatient surgeries and to monitor the patient at 

home. This is where connected healthcare comes in, that 

makes technology a vital part of delivering healthcare to 

patients. In particular, recent medical reports predict that the 

number of people using home health technologies is 

estimated to be 12 million people [2]. In the other hand, the 

global IoT sensors in healthcare market was valued at 

C2,007.1 million in 2017, and the patient monitoring segment 

is expected to register an annual growth rate of 13.5% during 

the 2018–2026 period [3].  

Thus, researchers, industry and the medical community 

work closely together to provide patients with efficient and 

reliable remote supervision systems. In this context, this 

work is part of Smart Angel project which is a collaboration 

between academics, industry and medical professionals, and 

that proposes a full system for remote patient monitoring. 

Smart Angel system aim goal is to make an accurate 

diagnosis of patients’ health condition and, ultimately, to 
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reduce their unjustified return to the hospital. Patients are 

equipped with conventional sensors and have a Personal 

Digital Assistant (PDA) to their disposal. The PDA will not 

only allow to collect the sensed physiological data but also to 

enable patients to answer personalized questions related to 

their health conditions. All these data (the collected and 

answered information) are transmitted to the concerned 

entities for additional diagnosis.  

In this article, we propose a decision-making model based 

on a Spiking Neural Network (SNN). This choice was 

motivated by the suitability of the SNNs to handle our input 

data which are natively signal data. Indeed, SNN encodes 

information no longer in real values, but in the 

synchronization of signals called the action potential or 

spikes, hence collected data from sensors can be considered 

as spike occurring over time. In addition, SNNs are 

characterized with a quick adaption to specific situations and 

conditions and can respond based on the last. Then, our 

model offers a personalized decision-making regarding each 

patient health condition.  

Our SNN model is based on the formalization of rules 

instructed by medical experts and reproduces the 

relationships between them (OR and AND logical 

operations). We compare our model to a rules-based model 

developed by Evolucare Technologies and used in Smart 

Angel during a first clinical study. Over 1000 patients, results 

show that the two models present 96% of similarity.  

This paper is organized as follows: We first describe some 

relevant related works and generally introduce SNN in 

Section II. In Section III-A, we first present Smart Angel’s 

data collection protocol per patient, and how to format the 

collected data. Then we present the two models for 

decision-making: the rules-based model in Section III-D1, 

and in Section III-D2 the SNN-based solution built according 

to the Integrate and Fire with Adaptation model. We discuss 

the results in Section V and finally, we conclude the paper in 

Section VI. 

 

II. RELATED WORKS 

In recent years, remote patient monitoring received a lot of 

attention from researchers and industries through new 

technologies and models. Hence, in this section, we present 

some relevant remote patient monitoring systems. We 

especially focus on decision-making algorithms for alert 

raising. Then we introduce Spiking Neural Networks (SNN) 

and describe their functioning.  

Patient monitoring requires patient vital signs fastidious 

supervision. Remote patient monitoring must be as reliable as 

in the hospital in order to avoid needless patient returns to 

hospital [4]. Generally, the patient vital signs are collected 

through several sensors placed on, in or around human body 
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[5]. Conventional observed vital signs are the oxygen 

saturation in the blood (SPO2), the heart rate (HR), the blood 

pressure (systolic and diastolic), the respiratory rate, and the 

temperature. However, in certain cases, more parameters are 

needed for a decision-making about the patient’s health 

condition as blood glucose, electroencephalogram (EEG), 

electromyogram (EMG) [6], urine output [7]. Moreover, 

other indicators as pain, nausea and vomiting or even 

subjective nursing appreciation have been considered as 

essential to detect early signs of patient sickness [8]. Besides, 

some additional parameters can be collected, as movement 

detection [9] or contextual information as support after 

discharge [10].  

The measured data are then redirected to a specific node 

commonly called Personal Digital Assistant (PDA) and 

which can be a phone, a watch, a tablet, etc.  

Mobile Health (mHealth) is becoming an important field 

of research [11]. Indeed, mobile applications for patient 

monitoring are used in many surgical specialities [12], in 

particular, to monitor patients at home in postoperative 

contexts [13]. Besides collecting the data, those systems 

ensure the communication between the patient and the 

medical entities. For example in [14], authors present Philips 

electronic transition to ambulatory care system (eTrAC), that 

offer secure vision calls, the production of a summary sheet 

concerning patient vital signs and remote postoperative 

evaluations to detect the first signs of complications. Other 

monitoring systems include a diagnosis component. To do so, 

several techniques can be used to define patient health 

condition, such as decision trees [15, 16], classifiers [17], 

fuzzy logic [18], clustering algorithms, machine learning 

[19].  

We are interested by monitoring systems based on neural 

networks [10] and in particular by Spiking Neural Networks 

(SNN) as a decision-making model.  

Originally, neural networks were inspired by the biological 

operation of the brain [20] and have become the benchmark 

for machine learning in image recognition, video analysis or 

even voice recognition. SNN is a recent type of neural 

network, which is increasingly used to solve neural 

computing problems and is assimilated to be 3rd Generation 

Neural Networks [21]. Compared to classical neural 

networks, SNNs encode information no longer in real values, 

but in the synchronization of signals called the action 

potential or spikes, hence collected data from sensors can be 

considered as spike occurring over time [22]. Mostly, SNNs 

have been tested on classical neural networks applications as 

MNIST problem [23]. However, Other applications show 

that it is possible to use neuron spiking to generate a mental 

exploration [24] (find the best possible path between two 

points) and then use the solution in a real robotic application.  

SNNs have also been shown more secure against external 

attacks [25], which is valuable since we are processing 

medical data. In addition, the number of applications will 

undoubtedly explode as the industry has seized on this model, 

with the creation of dedicated chips. For example, in Loihi 

[26], the test chip designed by Intel Labs, SNNs implement 

parallel computations that can greatly improve computational 

efficiency.  

There exist different SNN models, differing in the way 

they represent mathematically the neurons processing [27]: 

Izhikevich, integrate and fire, Hodgkin-Huxley, etc. The 

choice of the neuron model depends on whether it needs to be 

biologically realistic or computationally efficient.  

In order to evaluate SNN models, we can perform 

experimentations [28] or through simulations [29]. The most 

common simulators are Neuron’s HOC [30], NEST[31] and 

Brian simulator[32]. In [33], authors show that using 

different simulators (Neuron’s HOC and NEST) give 

different results due to a different mathematical 

representation of the neurons processing. Hence, they 

propose PyNN, a python package, that gives a common 

model specification independently from the simulator. In this 

work, we choose Brian simulator because it gives a variety of 

neural model representations that we used to model our SNN. 

 

III. METHODOLOGY 

The outpatient follow-up differs from the hospital 

follow-up by the absence of periodic statements of the state 

of health, the visit of the nursing staff being less frequent with 

little or no evolution. For this reason, it is necessary to 

retrieve a sufficient amount of data regarding the patient’s 

health condition to allow an adequate decision-making for 

raising alerts. In addition, a meticulous work has to be done 

to format the collected data to fit the chosen decision model.  

A. Data Retrieval 

After having a surgery, patients follow a quick training on 

Smart Angel system features at the hospital before going 

back home. Patients are invited to answer a questionnaire as 

well as to take physiological measurements when they are at 

home. The measurements are planned to be done periodically, 

at least every seven hours apart, but they can be done more 

often when it is needed (special cases of additional 

measurements will be described in Section III-D1). The data 

retrieved is taken by various sensors such as an oximeter 

(Heart Rate and Oxygen Saturation) or a blood pressure 

monitor. Smart Angel’s patent [34] explain the system for the 

personalized monitoring of the health status. A clinical study 

[35] has been performed from May 2018 to September 2018 

to validate the recovery of the data, in particular the transfer 

of data across the networks and the validity of the sensors. 

This clinical study was realized on 30 patients of Nîmes’s 

University Hospital Center. 

B. Data Description 

The types and norm range values of the data retrieved and 

used by the system are described in Table I. Patients are 

followed up 20 days before their operation to allow medical 

staff to enter their average constants as well as their personal 

data. Only physiological and factual data is stored on the 

Smart Angel health data host to ensure patient anonymization 

on the server. The personal data of the patients are only 

accessible by the medical staff in the hospital database. The 

connection between the two databases to know the identity of 

the patients is not allowed by Smart Angel system. For this 

article, we could not use patient data from the clinical study, 

as this data is internal to the clinical study and is sensitive and 

un-sharable medical data without patient consent. We will 

therefore use a simulated data set that represents data 

possibly collected during the clinical study. 
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TABLE I: DESCRIPTION OF PARAMETERS IN THE DATABASE 

 Name Type Example Range 

Physiological 

Data 

Heart Rate (HR) (bmp) Int 90 bmp [40 – 200] 

Systolic pressure (SP) (mmHg) Int 110 mmHg [70 – 200] 

Diastolic pressure (DP) (mmHg) Int 70 mmHg [40 – 160] 

Mean Arterial blood Pressure (MAP) (mmHg) Int 90 mmHg [55 – 180] 

Oxygen Saturation (SPO2) (%) Int 98% [70 – 100] 

Factual Data 

Nausea Boolean True {True – False} 

Vomiting Boolean False {True – False} 

Basic treatment Boolean True {True – False} 

Recourse treatment Boolean False {True – False} 

Anti-emitic treatment Boolean False {True – False} 

Pain score Int 2 [0 – 9] 

 

C. Data Formatting 

We now describe how the data are formatted to detect the 

patient’s state of health. The two models we describe in this 

paper have a different approach to classify the data values as 

“healthy” or “unhealthy”, which implies that they are 

formatted differently. 

1) Rules-based model formatting 

The values domain of each data is divided into three areas: 

a black area, a grey area and a white area (see Fig. 1), 

corresponding respectively to a critical condition, an average 

condition and a correct condition of the patient. Those areas 

can be parametrized in the hospital before the surgery to fit 

with a particular patient, i.e. the frontiers of the area can be 

different for distinct patients. In Fig. 1, the values of min, l2, 

l1, r1, r2 and max are either configured by the medical staff 

during an observation of the patient 20 days before the 

surgery to find its average constants or calculated 

automatically by Smart Angel model compared to an average 

data concerning a representative group of the patient 

(depending on age, sex, ...). For example, here, l1 is 15% less 

than the normal and l2 is 30% less than the normal. 

 
Fig. 1. Parameters areas. 

 

2) SNN model formatting 

Due to the data collection methodology (measurement is 

taken every 7 hours), the data used in our model is discrete. 

We need to format the data to handle it with SNN, that 

intrinsically take continuous data. The sequence of all the 

data retrieved by a sensor at the successive moments of 

measurement and then formatted and normalized is called a 

spike train.  

We tested a shaping model which consists of shifting in 

time the peaks of our spike trains according to their 

importance compared to the nature of the input data. An input 

data represents a patient parameter (Heart Rate, Systolic 

pressure, ...) and its value indicates a risk or not for the patient. 

The further this value deviates from the patient’s normal 

value, the more serious it should be considered. Our neural 

model is made up of several neurons linked precisely to 

reproduce an output similar to the one given by medical rules. 

Each of these neurons has one or more spike trains as input. 

These trains of spikes must be processed by neurons to raise 

or not an alert. Our formatting model is then really important 

to facilitate the understanding by the network of important 

information contained in the data. In our formatting model, 

data follows a succession of operations: separation, 

normalization and application of delaying. 

a) Separation 

Each data retrieved (HR, SPO2, ...) will build two sets of 

input spikes. The first will take into account the measured 

values lower than the patient’s average on this parameter, the 

second one will take into account the values greater than this 

average. That way, we can differentiate very precisely the 

data values above and below the patient’s average. Without 

this separation, the data would be mixed and taken into 

account in the same way, but it is possible that on a given 

patient, a value below the average is very critical while a 

higher value would be more acceptable.  

For example, in Fig. 2, the figure on the left represents the 

raw input data. Figures on the right represent the separated 

data. The top one takes only the data above the patient’s 

average (here 50), for which three measurements times are 

concerned: t0 (60), t1 (70) and t3 (90). The bottom one takes 

only the data under the patient’s average, for which two 

measurement times are concerned: t2 (40) and t4 (30). 

 
Fig. 2. Before and after data separation. 

 

b) Normalization 

The second step is the normalization of the separated data. 

Each parameter data is between a minimum value 𝑉𝑚𝑖𝑛 and a 

maximum value 𝑉𝑚𝑎𝑥  assigned for each patient. Let 𝑉𝑎𝑣𝑔  be 

the average value for a given parameter (See Fig. 1). Those 

three values are given accordingly to the global observation 

of the patient that takes place before the surgery, or calculated 

from the data. For example, 𝑉𝑎𝑣𝑔 is given using an average of 

the patient’s rest values during his observation.  

Each value 𝑉  is normalized by the following formula 

according to its value compared to the value of 𝑉𝑎𝑣𝑔: 

𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = {
|

𝑉−𝑉𝑎𝑣𝑔

𝑉𝑚𝑎𝑥−𝑉𝑎𝑣𝑔
| if 𝑉 <  𝑉𝑎𝑣𝑔 

|
𝑉−𝑉𝑚𝑖𝑛

𝑉𝑎𝑣𝑔−𝑉𝑚𝑖𝑛
|  otherwise

               (1) 
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In this way, each data is now between 0 and 1. 

c) Applying a Delay 

To correspond to the standard SNN implementation, each 

input value will result in a value equal to one in intensity. To 

relate the importance of deviation of a measured data 

compared to the normal value, we propose to delay by a time 

∆t [36] the corresponding spikes relative to the data value 

[37].  

We chose to send a measurement peak very close to the 

input time (so ∆𝑡 is small) if the value measured deviates 

very strongly from the average of the patient, indicating a 

high level of severity of the data, in order to raise an alert 

rapidly. On the contrary, a measurement peak is sent with a 

more important delay ∆𝑡  after the input time if the value 

measured is very close to the patient’s average. This delay 

∆𝑡 must be framed within 0 and a maximum offset limit 

∆𝑡𝑚𝑎𝑥. It can be calculated as: 

∆𝑡 =
𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

∆𝑡𝑚𝑎𝑥
                                     (2) 

In Fig. 3, we have, for example, three different 

measurements that have already been separated and 

normalized. Suppose that this spike train corresponds to the 

values above the patient’s normal. The first measure at T1 

after normalization is near 0 (it is a measure really close to 

patient’s normal), we then delay this spike with a big ∆t. At 

T2, the measure corresponds practically to a limit of the 

patient, we delay this measurement spike with a small ∆t. At 

T3, the measurement corresponds to a value between the 

patient’s normal and a patient’s limit. In a. we observe three 

measurements (normalized between 0 and 1) of some 

patient’s parameter. In b. we observe the response of the 

delaying. A large delay can be seen on the T1 measurement 

due to the proximity to the patient’s normal. Conversely, a 

small delay is observed on the T2 measurement due to the 

great distance from the patient’s normal. Finally in T3, the 

delay is average according to the medium aspect of the 

measure’s value. 

 
Fig. 3. Example of three delaying. 

 

D. Models 

1) Rules-based Model 

a) Description 

To decide if the patient’s health requires a return in 

hospital, Evolucare Technologies has included in Smart 

Angel a rules-based expert system which, from the data 

retrieved during home caring, decides if it is needed to raise 

an alert or not. The rules have been validated by medical staff 

and followed many strict protocols, (in particular, Smart 

Angel use the exact same protocols used in anaesthesia 

departments where the study of patient parameters before, 

during and after an operation is critical). All the rules 

implemented in the system have been qualified and validated 

by the team of Pr. Cuvillon and Dr. Boisson of the university 

hospital centers of Nîmes.  

As mentioned above, if an alert is raised, Smart Angel can 

ask the patient to retake measurements of its constants. Each 

alert is sent to the medical staff, but some also lead to demand 

a repeated measure within the following hour.  

For example, let us consider a patient who had surgery on 

Day 0 and consider Day 1 the first day of his home 

observation (Fig. 4). During this Day 1, three digital 

appointments are scheduled on the touchpad (at 7 a.m., 2 p.m. 

and 9 p.m.) to check the evolution of the patient’s health. At 7 

a.m., Smart Angel does not detect any particular anomaly, 

either in the answers to the questions or in the measurements 

made with the sensors. No verification appointment is 

required. At 2 p.m., Smart Angel raises an alert following a 

positive response to the question “Do you have nausea?”. An 

appointment is made an hour later to check on progress. An 

hour later, during this verification appointment, the patient 

declares having vomited. Smart Angel asks the patient if he 

has followed his antiemetic treatment and a new appointment 

is made an hour later. This time, the patient’s health seems to 

improve. Smart Angel does not make an appointment before 

the next originally scheduled appointment, at 9 p.m. At 9 p.m., 

Smart Angel does not detect any particular anomaly. The 

patient can continue home monitoring for at least one more 

day. 

 
Fig. 4. Example of observation day. 

 

b) Topology 

Each rule considers one or more input data. A rule consists 

of checking if those data have values included in areas that 

have been defined as (slightly or severely) critical. Note that a 

given rule can be based only on one specific (critical) value 

area. The following figures show two simple examples: one 

rule taken from Smart Angel checking if the patient’s heart 

rate is too low or too high [35] in Fig. 5, and a generic rule on 

two parameters in Fig. 6. In Fig. 6, if both parameters have a 

value included in a problematic area (grey or black areas), 

then an alert is sent. 

 
Fig. 5. Example of a rule used in Smart Angel checking the patient's heart 

rate. 
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Fig. 6. Example of a generic rule on two parameters. 

 

2) SNN Model 

a) Neuron Model 

Our model needs to be efficient, to raise alerts as quickly as 

possible and could move away from biological reality. Our 

choice turned then to the “Integrate and fire” model [27]. This 

model offers computational efficiency, has been 

implemented on several platforms, especially Brian 

Simulator [32], [38], which we used to perform our 

experiments and has been widely studied [39, 40]. In this 

model, neurons can be schematized as in Fig. 7. The global 

input of the neuron is equal to the sum of all weighted input 

data at each instant: 

 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐼𝑖 × 𝑤𝑖
𝑛
𝑖=0                                   (3) 

 

 
Fig. 7. Integrate and fire neuron modelisation. 

 

This input is then processed by the Integrate and model 

constituted of one differential equation: 

 
𝑑𝑣

𝑑𝑡
=

𝐸𝑒+𝐸𝑙−𝑣

𝜏𝑚
                                     (4) 

 

where the parameters are defined as follows: 

𝑣 represents the membrane potential of the neuron. 𝑣 is 

also controlled by a condition, representing the after-spike 

resetting: 

 

if 𝑣 ≥ −23𝑚𝑉, then 𝑣 ← −60𝑚𝑉                   (5) 

 

𝐸𝑙 represents the time scale of the recovery variable 𝑣 and 

𝐸𝑒 represents the reset value of 𝑣 after the spike 

In order to smooth the alerts raised by the model, we define 

a threshold 𝑡ℎ  corresponding to the optimal membrane 

potential of the neuron (in mV) allowing to capture if the 

importance of a signal is significant relatively to the number 

of problematic data given in entry to a neuron. Let 𝑣𝑚𝑎𝑥 be 

the maximum conductance reached by an input peak, that can 

be calculated from the above equations. Intuitively, assume 

that the measurement of two parameters at a given time (for 

example the heart rate and the level of oxygen in the blood) 

produces two signals reaching critical values, inducing two 

input peaks on a neuron. Suppose also that the weights of 

these two signals are identical and neutral (the weights of the 

two input synapses are 𝑤 =  1). To allow the model to raise 

an alert only if the two measurements correspond to critical 

values, that is produce two input peaks on the neuron, it is 

sufficient to place the alert lifting threshold slightly above 

𝑣𝑚𝑎𝑥 , for example, 𝑡ℎ =  𝑣𝑚𝑎𝑥 + 𝜀 (Fig. 8). Generally, to 

allow alerts when a number of N input signals are critical, we 

must define the threshold as 𝑡ℎ =  𝑁 × 𝑣𝑚𝑎𝑥 + 𝜀.  

 
Fig. 8. Choice of the threshold h =  vmax  + ϵ. 

 

In Fig. 8, a. is the membrane potential induced by the input 

peaks, and b. is the corresponding output of the neuron. At 

take 1, in a. the membrane potential induced by the input peak 

reaches the maximum 𝑣𝑚𝑎𝑥 , which is lower than the 

threshold. No response of the neuron is observed in b. On the 

second take, two input peaks are observed, the induced 

membrane potential exceeds threshold 𝑡ℎ and (at least) one 

response is observed.  

Two other parameters influence the alert raising: The rate 

of re-stabilization of our conductance peaks 𝜏𝑑𝑜𝑤𝑛 and The 

maximum lag time of input peaks obtained during data 

formatting ∆𝑡𝑚𝑎𝑥.  

The first 𝜏𝑑𝑜𝑤𝑛factor (depending on 𝜏𝑚 in (4)) has to be 

minimized to avoid the superposition of conductance signals 

from different measurement taps causing unwarranted alerts 

to be raised (Fig. 9b). But at the same time, this factor must be 

maximized to allow a superposition of conductance signals 

from the same measurement (Fig. 9a). This factor can be 

calculated using the differential equation representing the 

membrane potential of the neuron. 

The second-factor ∆𝑡𝑚𝑎𝑥 is strongly correlated with 𝜏𝑑𝑜𝑤𝑛. 

It also makes it possible to avoid the superposition of 

conductance signals from two different measurement taps. 

Let us admit that with a 𝜏𝑑𝑜𝑤𝑛 factor and two input peaks in 

one of our neurons carried out respectively at times take1 and 

take2, our resulting conductance signal becomes restabilized 

in a time 𝜏𝑑𝑜𝑤𝑛, we must have at most an offset of our input 

peaks of ∆𝑡𝑚𝑎𝑥 = (𝑡𝑎𝑘𝑒2 − 𝑡𝑎𝑘𝑒1) −  𝜏𝑑𝑜𝑤𝑛 . This factor 

makes it possible to obtain an alert more or less quickly. The 

lower the ∆tmax, the faster the alert will be raised. On the 

other hand, if ∆𝑡𝑚𝑎𝑥 is too low, the sum of the input signals 

from the neuron will necessarily cause the threshold for 

raising the alert to be exceeded. As the input times are offset 

by 7 hours (see section III), not counting the resumption of 

measurement, we have chosen to use a low ∆𝑡𝑚𝑎𝑥 of 10ms to 

raise the alerts very quickly.  

 
Fig. 9. Illustration of factors τdown. 

 

In Fig. 10, the solid curve represents the membrane 

potential obtained with an input peak of the neuron 

representing a measurement of a patient parameter equal to a 

limit value (the normalization of the data then considers this 

International Journal of Machine Learning, Vol. 13, No. 2, April 2023 

92



data to be 0). The dotted curve represents the membrane 

potential obtained with an input peak of the neuron 

representing a measurement of a patient parameter equal to 

an average value (the normalization of the data then considers 

this data as 1) the shift is, therefore, the greatest, namely 

∆𝑡𝑚𝑎𝑥. It is observed that with a particular choice of ∆𝑡𝑚𝑎𝑥, it 

is possible that the membrane potential has not returned to 

normal before the next measurement. 

 
Fig. 10. Illustration of factor ∆tmax. 

 

b) Network Model 

In our problem, the entries of the neurons are the data 

retrieved by Smart Angel or the output of another neuron. As 

done in Smart Angel rules-based model, we consider six of 

the physiological and physical input signals (Heart Rate, 

Systolic pressure, Oxygen saturation, Nausea, Vomiting, 

Pain scale). Those entries are represented by spike trains that 

are processed beforehand, as explained in Section III-C. To 

be able to reproduce all rules, we handle separately the values 

above and below the patient’s average, so each of the input 

signals produces two input spike trains in our model.  

To reproduce the decision tree behavior of an expert 

system with our SNN, we use a succession of neurons, each 

of them modelling a precise rule. Each neuron of our model 

uses the same parameters and proceeds as follows: 

Transformation of the input peaks into a conductance curve, 

weighted sum of conductance curves, transformation into 

output peaks using the Integrate and Fire with adaptation 

model.  

To reproduce the behavior of a logical AND and of a 

logical OR between two input spike trains, we propose the 

following architecture, illustrated in Fig. 11: one or more 

input spike trains enter neuron N1, the output of N1 is 

processed along with input times by neuron N2 to suppress 

the noise of the network (namely to suppress the peaks 

corresponding to the correct values deviating from the time of 

the measurement). Input times’ spikes trains are needed as an 

input of N1 in the OR model to allow a unique spike to 

produce an output spike. 

 
Fig. 11a:  AND  architecture.  b:  OR  architecture. 

 

AND architecture: We want to produce an output spike 

when two measurement input spikes represent a value 

deviating too much from the patient’s average. For that, the 

data concerned by the AND are used as input to a neuron. If 

both values are critical, the sum of their conductance curves 

will exceed the firing threshold and will produce an output 

peak. 

In the case of several parameters’ measurements (at least 

two parameters) taken in their correct zones (i.e. their 

resultant spikes appear with a delay ∆𝑡  after the 

measurement), the addition of their conductance curve can 

cause an output peak of the neuron N1. To filter this peak, we 

add second neuron N2 taking as input the output of the first 

neuron (N1) as well as the input times’ spikes. Adding the 

conductances of these two inputs can give two possibilities: if 

the time of the output peak of the first neuron N1 is close to 

the time of the measurement (the input data of the first neuron 

were in a black or a grey area of the parameters) then an 

output peak of the second neuron N2 will be produced;  if the 

time of the output peak of the first neuron N1 is far from the 

time of the measurement (the input data of the first neuron 

was in a white zone of the parameters) then no output peak of 

the second neuron N2 will be produced (the addition of the 

conductance signals will not exceed the firing threshold).  

Note that, for this AND architecture and the chosen 

threshold, if there are more than two spike trains as inputs, it 

is necessary to split the rule into sub-rules to ensure that all 

the inputs occur in the same time interval. 

OR architecture: We want to produce an output spike 

when one of the input spikes represents a value deviating too 

much from the patient’s average. For this, in addition to the 

input spikes corresponding to the measurements, we also 

consider a spike of the input times as an input. As seen in 

Section IV, one input spike alone cannot produce an output 

peak of the neuron due to a firing threshold slightly above the 

maximum conductance of a spike. On the contrary, if at least 

one measurement input peak coincides with a input time’s 

spike, allowing a small time deviation ∆𝑡, then the sum of 

their conductance curves will exceed the firing threshold and 

will produce an output peak. The neuron N2 proceeds as for 

the AND architecture to select relevant information. 

For both architecture OR and AND, other neurons can be 

needed to ensure the selection of relevant information 

without modifying neuron parameters, especially if neuron 

N1 has a lot of input data. A complete example is shown in 

Fig. 12. This rule is made up of two tests. The first one is to 

check if the positive OR negative values of 𝑃2 should raise 

an alert. For this, inputs of the N1 in the OR part are 𝑃2+, 

𝑃2− and the spike train representing the measurements times. 

The second one is to check if the positive values of 𝑃1 AND 

the results of the first test 𝑇1 should raise an alert. For this, 

inputs of the N1 in the AND part are 𝑃1+ and the output of 

the first test 𝑇1. 

 
Fig. 12. Example of a rule and its representation with our model. 

 

c) Learning phase 

To build our learning model, we wanted to reproduce the 

information backpropagation operated on ANNs. For this we 

work on each of the measurements to allow learning 

according to the result obtained by our SNN model and that 

expected. To date, having no real measurement, we will carry 
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out our learning phase using the results obtained by the 

rule-based engine. We have shown that without the learning 

phase, we were able to have a similarity rate with the 

rule-based model close to 96%. We seek with the learning 

phase to improve these results. Our goal is not to get 

rule-based engine results, competition between models is not 

necessary. Our model must allow us to adapt to the real 

values obtained by the patients. A second experiment consists 

in noising our simulated data to represent data that may be 

different from the results expected by the rule-based engine 

and to observe the adaptation of our model. In this case it is 

possible to show that we are able to build an SNN model on a 

solid basis - a rule used by doctors - but able to adapt more 

specifically to a patient 

 

IV. EXPERIMENTS 

Our aim is to compare raised and non-raised alerts for the 9 

rules of the rules-based model and their adaptation to the 

SNN model. As a reminder, to test these rules we use a set of 

simulated data that represents data possibly collected during 

a clinical study. This dataset consists of 20,780 

measurements (containing all the patient’s parameters such 

as Heart Rate, SPO2, ...) distributed among 1000 patients. 

Since this data did not contain the average values for the 

patients, we computed for each patient the average of each 

parameter values, except for nausea and vomiting for which 

the normal value has been set to 0. As explained in Section 

III-D2, the two parameters 𝜏𝑑𝑜𝑤𝑛 and ∆𝑡𝑚𝑎𝑥, corresponding 

to the rate of restabilization of the conductance peaks and the 

maximum lag time of input peaks obtained during data 

formatting, have an influence on the results of the model. We 

tested the possible values for those parameters in order to 

identify the combination giving the best results when 

comparing the rules-based and SNN models. We launched 

our model on all the values of the dataset for all values of 

𝜏𝑑𝑜𝑤𝑛 in the interval [14−26] and ∆𝑡𝑚𝑎𝑥  in the interval [2 

−24] and we evaluated the similarity of the alert raising 

compared with the rules-based model. Those intervals are 

determined experimentally, each couple ( 𝜏𝑑𝑜𝑤𝑛 , ∆𝑡𝑚𝑎𝑥 ) 

under or over those intervals gave us too low results. The 

similarity rate is computed by counting the number of 

identical alerts raised (or not) by our model compared with 

the rules-based model, for each couple (𝜏𝑑𝑜𝑤𝑛, ∆𝑡𝑚𝑎𝑥) The 

tested values are shown in Fig. 13. The darker a point on this 

graph is, the more efficient the 𝜏𝑑𝑜𝑤𝑛/ ∆𝑡𝑚𝑎𝑥 combination is 

to obtain results similar to the rule-based model. We had 

several combinations giving us results greater than 90% 

similarities. We clearly see a crescent-shaped area with good 

results. This indicates that our choice may not be the only 

suggested solution. However, in our problem, we used the 

one that gave us the best results. 

The highest similarity rate between the two models was 

obtained with the values 𝜏𝑑𝑜𝑤𝑛= 19ms and ∆𝑡𝑚𝑎𝑥 = 5ms for 

the SNN model. With our model and by processing all our 

dataset, we obtain the confusion matrix in Table II. We add 

the results of the nine rules and we compare at every 

measurement the state of our results (True Positive, True 

Negative, False Positive and False Negative). With this 

confusion matrix, we can calculate a similarity rate of 

96.22%. 

 
Fig. 13. Results obtained during our experiments. 

 
TABLE II: CONFUSION MATRIX OF OUR DATASET 

 
Our Model 

Alert No Alert 

Rule-based 

Model 

Alert 87953 4762 

No Alert 2143 91973 

V. DISCUSSION 

The similarity rate of 96.22% between the rules-based and 

the SNN models shows that it is possible to construct an SNN 

directly from medical expertise. It is important to note that 

this similarity rate, obtained by comparing the alerts raised by 

the two models, does not inform on the actual condition of the 

patient. We assume that the rule engine produces patient 

alerts correctly by building it according to the instructions of 

the medical staff. Reality may be different. A second clinical 

study is underway to qualify the alerts triggered by the rules 

engine, which will allow comparing the efficiency of the two 

models.  

Though they are based on the same medical expertise, we 

can observe differences between the two models. The 

confusion matrix in Table II shows that the SNN model gives 

1,15% false-positives and 2.55% false-negatives compared to 

the rules-based model. This means that our model tends to not 

raise alerts for data for which the rules-based model does.  

Now we observe the results more closely and give 

examples of differences between the two models.  

 

 
Fig. 14. Areas of three parameters used for our example. 

 

 
Fig. 15. Example of a rule that can be proposed by the medical team and the 

resulting model according to our architectures. 

 

Analysis of the results: To illustrate one typical example of 

false positive, let us consider three parameters P1, P2, and P3 
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with the areas of severity as in Fig. 14, and consider the rule 

(P1 + or P1 − or P2 + or P2 − or P3 + or P3 −). Consider now 

that the values of the parameters for one patient are P1 = 71, 

P2 = 92 and P3 = 153. The values do not satisfy the rule, so in 

the rules-based model, no alert is raised. However, the SNN 

model gives rise to an alert. Indeed, we observe that two of 

the rules are nearly fulfilled (P1 = 71 ≈ 70 and P2 = 92 ≈ 90). 

Fig. 15 shows these rules as well as our model obtained.  

Thus, in the SNN model, two parameters nearly 

trespassing their normal values can give raise to an alert, 

which can make sense from a clinical point of view.  

The false-negative cases concern only rules using one 

patient parameter. Let us consider an example of a typical 

false negative case, with the rule: (IF ParametreValue ≥ 

AreaValue THEN raise an alert), where AreaValue denotes 

the limit value between the white area and the grey area of the 

parameter. When ParameterValue is slightly greater than 

AreaValue, the rule-based model detects an alert while ours 

does not. The sum of the conductance induce by the input 

time’s spike and the value of the parameter observation in our 

model does not exceed the threshold. This means our 

formatting gives a delay ∆𝑡  too important to allows a 

representative superposition of conductance. This analysis of 

false positives and false negatives shows that our model is 

very responsive and requires improvement with additional 

training. By modifying the weights of the synapses, it is 

possible to artificially move the thresholds of the zones after 

formatting the data.  

These differences are most certainly because our model 

does not follow the same scheme for formatting data and 

defining rules. Indeed, the rules-based engine is defined by 

strict rules, there are no nuances (i.e. either we go over a limit 

or not), whereas our model is more nuanced: the alert being 

raised by observing the crossing of a threshold by the 

conductance of our neurons, everything depends on how this 

conductance is constructed. Depending on the arrival time of 

the different inputs, an alert may not be raised due to a delay 

(during data formatting) of 1ms. 

Advantages of the SNN model: One important point is that 

the rule-based model doesn’t take into account the notion of 

criticality concerning the recorded data. For example, a heart 

rate of 110 will be treated as a heart rate of 180 because it is 

above the threshold value indicated in the rule. With our SNN 

model, this notion of criticality is taken into account and is 

represented by the temporal distance between the spike’s 

time and measurement’s time.  

Moreover, with our SNN model, it is possible to explain 

the decision making to raise or not the alert since the SNN 

network topology is built directly from medical expertise. 

This point is particularly critical in France, indeed, decree 

number 2017-330 of March 14, 2017 gives any person, that is 

subject of a decision taken on the basis of algorithmic 

processing, the right to request the operations carried out by 

the processing.  

Areas for improvement: Remark that we have not used any 

specific learning method yet. With learning algorithms, we 

can probably improve our results by personalizing our 

network to a given patient. Then, as mentioned above, in this 

work we studied the similarity rate of the two models, but not 

their actual efficiency for raising alerts. A clinical study is 

ongoing to compare the decisions of the models with the 

actual condition of the patients. This 24-month clinical study 

was planned from November 2020, including 1260 patients 

spread over 24 hospital centers. At the end of this clinical 

study, we will therefore be able to know the real efficiency of 

the rules-based and of the SNN model. 

 

VI. CONCLUSION 

In this article, we have proposed a decision-making model 

based on Spiking Neural Networks (SNN). Our model offers 

feedback on the patient’s health condition and a raising of the 

alert if necessary. Our contribution showed that is possible to 

build an SNN model directly from rules set by medical 

expertise. To do so, the SNN model reproduced the 

relationships between them based on a subnetwork assembly 

method modelling the AND and OR operations. We 

compared our model to a rules-based model used for a first 

clinical study on 1000 patients and results show 96% of 

similar results. The ongoing clinical study will ultimately 

allow us to decide on the effectiveness of the two models. 

The SNN thus developed embodies an innate behavior which 

can then be improved by learning, as STDP or the other 

efficient unsupervised learning [41], [42]. Hence, our next 

works will focus on learning, with the objective to 

personalize the SNN according to the patient. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Sebastien Cohen concuted the research with the help of all 

others authors. Florian Legendre analyzed the data. All 

authors wrote the paper. All authors had approved the final 

version. 

FUNDING 

The Smart Angel project is financially supported by the 

Future Investments Program (PIA) within the framework of 

the “Structuring Research and Development Projects for 

Competitiveness” program PSPC 5. 

REFERENCES 

[1] 20 statistics that prove connected health is the next big thing in 

healthcare. [Online] Available: 

https://bitrebels.com/technology/20-statistics-prove-connected-health-

next-big-thing-healthcare/ 

[2] How is technology impacting home healthcare. [Online] Available: 

https://appinventiv.com/blog/technology-impact-on-home-healthcare/ 

[3] Iot healthcare sensor revenues grow globally through patient 

engagement and accurate data analysis. [Online] Available: 

https://www.iot-now.com/2019/09/17/98709-iot-healthcare-sensors-re

venue-grows-globally-drivenbetter-patient-engagement-increased-acc

uracy-data-analysis/.  

[4] A. Kulshreshtha, J. C. Kvedar, A. Goyal, E. F. Halpern, and A. J. 

Watson, “Use of remote monitoring to improve outcomes in patients 

with heart failure: a pilot trial,” International Journal of Telemedicine 

and Applications, Article ID 870959, 2010, doi: 10.1155/2010/870959. 

[5] D. Dias and J. P. S. Cunha, “Wearable health devices—vital sign 

monitoring, systems and technologies,” Sensors, vol. 18, pp. 2414, 

2018. 

[6] S. Ancoli-Israel, P. Clopton, M. R. Klauber, R. Fell, and W. Mason, 

“Use of wrist activity for monitoring sleep/wake in demented 

nursing-home patients,” Sleep, vol. 20, pp. 24-27, 1997. 

International Journal of Machine Learning, Vol. 13, No. 2, April 2023 

95



[7] J. C. Mentes, B. Wakefield, and K. Culp, “Use of a urine color chart to 

monitor hydration status in nursing home residents,” Biological 

Research for Nursing, vol. 7, pp. 197-203, 2006. 

[8] G. Douw et al., “Nurses’ worry or concern and early recognition of 

deteriorating patients on general wards in acute care hospitals: A 

systematic review,” Critical Care, vol. 19, pp. 1-11, 2015. 

[9] L. P. Malasinghe, N. Ramzan, and K. Dahal, “Remote patient 

monitoring: a comprehensive study,” Journal of Ambient Intelligence 

and Humanized Computing, vol. 10, pp. 57-76, 2019. 

[10] M. Jaensson, K. Dahlberg, and U. Nilsson, “Factors influencing day 

surgery patients’ quality of postoperative recovery and satisfaction 

with recovery: a narrative review,” Perioperative Medicine, vol. 8, pp. 

1-7, 2019. 

[11] S. M. Farhad, M. R. Minar, and S. Majumder, “Measurement of vital 

signs with non-invasive and wireless sensing technologies and health 

monitoring,” Journal of Advances in Information Technology, vol. 8, 

no. 3, pp. 187-193, 2017. 

[12] B. Patel and A. Thind, “Usability of mobile health apps for 

postoperative care: Systematic review,” JMIR Perioperative Medicine, 

vol. 3, no. 2, e19099, Jul. 20, 2020. 

[13] J. L. Semple, S. Sharpe, M. L. Murnaghan, J. Theodoropoulos, and K. 

A. Metcalfe, “Using a mobile app for monitoring post-operative quality 

of recovery of patients at home: a feasibility study,” JMIR mHealth and 

uHealth, vol. 3, no. 1, e18, Feb. 12, 2015.  

[14] M. McGillion et al., “Postoperative remote automated monitoring and 

virtual hospital-to-home care system following cardiac and major 

vascular surgery: User testing study,” Journal of Medical Internet 

Research, vol. 22, no. 3, 2020, doi: 10.2196/15548. 

[15] T. Tanantong, E. Nantajeewarawat, and S. Thiemjarus, “False alarm 

reduction in bsn-based cardiac monitoring using signal quality and 

activity type information,” Sensors, vol. 15, pp. 3952-3974, 2015. 

[16] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “A 

smartphone-centric platform for remote health monitoring of heart 

failure,” International Journal of Communication Systems, vol. 28, pp. 

1753-1771, 2015. 

[17] F. A. Sonnenberg and J. R. Beck, “Markov models in medical decision 

making: a practical guide,” Medical Decision Making, vol. 13, pp. 

322-338, 1993. 

[18] A. Hussain, W. Rao, X. Zheng, H. Wang, and L. D. S. Aristides, 

“Personal home healthcare system for the cardiac patient of smart city 

using fuzzy logic,” Journal of Advances in Information Technology, 

vol. 7, pp. 58-64, 2016. 

[19] S. S. Khan and J. Hoey, “Review of fall detection techniques: A data 

availability perspective,” Medical Engineering & Physics, vol. 39, pp. 

12-22, 2017.  

[20] A. L. Hodgkin and A. F. Huxley, “Currents carried by sodium and 

potassium ions through the membrane of the giant axon of loligo,” The 

Journal of Physiology, vol. 116, pp. 449-472, 1952. 

[21] W. Maass, “Networks of spiking neurons: The third generation of 

neural network models,” Neural Networks, vol. 10, pp. 1659-1671, 

1997. 

[22] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE 

Transactions on Neural Networks, vol. 14, pp. 1569-1572, 2003. 

[23] S. R. Kulkarni and B. Rajendran, “Spiking neural networks for 

handwritten digit recognition—supervised learning and network 

optimization,” Neural Networks, vol. 103, pp. 118-127, 2018. 

[24] J. J. Hopfield, “Neurodynamics of mental exploration,” in Proc. the 

National Academy of Sciences, 2010, pp. 1648-1653. 

[25] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy, 

“A comprehensive analysis on adversarial robustness of spiking neural 

networks,” in Proc. International Joint Conference on Neural 

Networks, 2019, pp. 1-8, arXiv:1905.02704. 

[26] M. Davies et al., “Loihi: A neuromorphic manycore processor with 

on-chip learning,” IEEE Micro, vol. 38, pp. 82-99, 2018. 

[27] E. M. Izhikevich, “Which model to use for cortical spiking neurons?” 

IEEE Transactions on Neural Networks, vol. 15, pp. 1063-1070, 2004. 

[28] A. Biswas, S. Prasad, S. Lashkare, and U. Ganguly, “A simple and 

efficient SNN and its performance & robustness evaluation method to 

enable hardware implementation,” ArXiv, vol. abs/1612.02233, 2016. 

[29] S. N. S. Kbah and N. S. Şengör, “Investigating the synchronization of 

cortical neurons using brian simulator,” IEEE INISTA, vol. 2013, pp. 

1-5, 2013. 

[30] M. Hines, A. P. Davison, and E. Muller, “Neuron and python,” 

Frontiers in Neuroinformatics, vol. 3, pp. 1, 28 January 2009. 

[31] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),” 

Scholarpedia, vol. 2, pp. 1430, 2007. 

[32] D. F. M. Goodman and R. Brette, “The brian simulator,” Frontiers in 

Neuroscience, vol. 3, pp. 26, 2009. 

[33] A. P. Davison et al., “Pynn: A common interface for neuronal network 

simulators,” Frontiers in Neuroinformatics, vol. 2, pp. 11, 2009. 

[34] A. Leguilcher, “System, device and method for the personalised 

monitoring of the health status of at least one at-risk patient,” 2017. 

[35] T. Chevallier et al., “Feasibility of remote digital monitoring using 

wireless bluetooth monitors, the smart angel™ app and an original web 

platform for patients following outpatient surgery: A prospective 

observational pilot study,” BMC Anesthesiology, vol. 20, pp. 1-8, 2020. 

[36] S. R. Kheradpisheh and T. Masquelier, “Temporal backpropagation for 

spiking neural networks with one spike per neuron,” International 

Journal of Neural Systems, vol. 30, pp. 2050027, 2020. 

[37] N. K. Kasabov, Time-space, Spiking Neural Networks and 

Brain-inspired Artificial Intelligence, Springer Publishing Company, 

1st edition, 2019. 

[38] D. F. M. Goodman and R. Brette, “Brian: A simulator for spiking 

neural networks in python,” Frontiers in Neuroinformatics, vol. 2, pp. 

5, 2008. 

[39] C. Rossant, D. F. M. Goodman, B. Fontaine, J. Platkiewicz, A. K. 

Magnusson, and R. Brette, “Fitting neuron models to spike trains,” 

Frontiers in Neuroscience, vol. 5, pp. 9, 2011. 

[40] S. N. S. Kbah, “A computational model of the brain cortex and its 

synchronization,” BioMed Research International, vol. 2020, pp. 13, 

2020.   

[41] M. Meng, X. Yang, S. Xiao, and Z. Yu, “Spiking inception module for 

multi-layer unsupervised spiking neural networks,” International Joint 

Conference on Neural Networks, vol. 2020, pp. 1-8, 2020. 

[42] W.-M. Kang et al., “A spiking neural network with a global 

self-controller for unsupervised learning based on 

spiketiming-dependent plasticity using flash memory synaptic devices,” 

International Joint Conference on Neural Networks, pp. 1-7, 2019. 

 

 

Copyright © 2023 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 

 

 

 

 

International Journal of Machine Learning, Vol. 13, No. 2, April 2023 

96

https://creativecommons.org/licenses/by/4.0/



