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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The physiology and behavior of social organisms correlate with their social environments.

However, because social environments are typically confounded by age and physical envi-

ronments (i.e., spatial location and associated abiotic factors), these correlations are usually

difficult to interpret. For example, associations between an individual’s social environment

and its gene expression patterns may result from both factors being driven by age or behav-

ior. Simultaneous measurement of pertinent variables and quantification of the correlations

between these variables can indicate whether relationships are direct (and possibly causal)

or indirect. Here, we combine demographic and automated behavioral tracking with a mul-

tiomic approach to dissect the correlation structure among the social and physical environ-

ment, age, behavior, brain gene expression, and microbiota composition in the carpenter

ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated

with the social environment. Moreover, seemingly strong correlations between brain gene

expression and microbiota composition, physical environment, age, and behavior became

weak when controlling for the social environment. Consistent with this, a machine learning

analysis revealed that from brain gene expression data, an individual’s social environment

can be more accurately predicted than any other behavioral metric. These results indicate

that social environment is a key regulator of behavior and physiology.

Introduction

In highly social species, physiology and behavior are profoundly and reciprocally intertwined

with social environments. Studies in a variety of species have shown intricate links between the

social environment and gene expression [1–3], microbiota composition [4], and behavior
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[5,6]. However, as is typical in complex biological systems, redundant correlations are ubiqui-

tous: Microbiota composition correlates with behavior [4,7–10] and gene expression [11,12],

and gene expression is linked to behavior [13,14] and a plethora of other traits. Further, the

social environment is often confounded by the physical environment and demographic pro-

cesses [15–17]. Teasing apart the correlation structure among these variables has therefore

been challenging. Moreover, most studies have focused on one or few variables, and the resolu-

tion of the social environmental data has been limited.

Social insect colonies are highly tractable systems for studying the relationships between

organismal biology and the social environment [18]. They typically show marked division of

labor with individuals within the colony specializing in behaviors such as nursing the brood or

foraging [19]. Individuals interact most frequently with other individuals performing the same

behavior, leading to behavior-associated community structure in the colony social network

[16,20]. Young individuals typically nurse, and with age, they transition to foraging [21–27].

Both behavior and age are associated with brain gene expression [28,29] and microbiota com-

position [30,31]. Here, we combine automated behavioral tracking with a multiomic approach

to simultaneously investigate the correlation structure among social environment, physical

environment, behavior, age, brain gene expression, and gut microbiota composition. We used

the carpenter ant Camponotus fellah as a model system because the social environment of this

species is well characterized and the associations between social environment, age, and forag-

ing behavior have already been quantified [16,20].

Results and discussion

We tracked 4 queenright colonies each containing approximately 100 known-age workers

(Fig 1). From the automated tracking data, we inferred all pairwise social interactions, deter-

mined the spatial distributions of all individuals, and quantified 6 of the most frequent and

identifiable task behaviors (tending the queen, foraging, nursing, guarding, trophallaxing, and

cleaning). Immediately after behavioral tracking, RNA-sequencing was performed on whole

individual brains, and 16S rRNA gene sequencing was performed on surface-sterilized individ-

ual abdomens.

C. fellah social networks comprise 2 overlapping communities (groups within which indi-

viduals interact frequently and between which individuals interact rarely); one comprising

individuals that tend to interact with the queen and brood and the other comprising individu-

als that tend to leave the nest to forage [20]. Individual position in the social network can be

described with “social maturity,” a community detection–based metric that ranges from 0 to 1

and that quantifies the extent to which individuals are associated with the nurse versus the for-

ager social community (see Materials and methods and [20]). Consistent with previous results,

social maturity was positively correlated with age and the proportion of time spent foraging

(Fig 2; social maturity versus age linear mixed effects regression (LMER) with colony identity

as a random factor: R2 = 0.483, t = 20.23, p< 0.001. Social maturity versus proportion of time

spent foraging LMER with colony identity as a random factor: R2 = 0.528, t = 22.45, p<
0.001).

To examine the relationships between brain gene expression profile, microbiota composi-

tion, physical environment, social network position, and behavioral profile, we first con-

structed 5-layer multiplex networks (Fig 3A). In this approach, nodes represent workers and

intralayer edges represent pairwise interaction frequency in the social layer, or pairwise simi-

larity (measured by Euclidean distance between profiles) in other layers. Multiple layers show

different types of relationships between the same nodes. Inspection of these multiplex net-

works revealed striking similarities between layers. Individuals with similar behavior also
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exhibited similar brain gene expression profiles, microbiota compositions, occupied similar

physical environments, and social maturities. To compare the strength of the relationships

between these 5 layers and age, we reduced each layer to a single dimension (using social matu-

rity for the social layer, and principal component analysis (PCA) for the other layers). We cal-

culated R2 values between these 6 variables and represent the correlations in network form

(Fig 3B; values are averages across the 4 colonies; See Fig B in S1 Text for equivalent plots per

colony). In this “network-of-networks,” social maturity stands out as a central “hub.” All of the

other variables were more correlated with social maturity than with any other variable, except

Fig 1. System overview. (A) Ants were tagged with unique 1.4 mm2 matrix barcodes and paint-marked to indicate their age. (B) Head and body

regions were defined around each tag. (C) Worker age distribution across the 4 colonies. See Fig A in S1 Text for equivalent distributions per colony.

The code and data used in this figure are available on Zenodo (doi.org/10.5281/zenodo.8043085 - data: “Fig 1C&S1.csv”; code: “02-Main.R”).

https://doi.org/10.1371/journal.pbio.3002203.g001
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Fig 2. Social network position, time spent foraging, and age. (A) The social networks for each of the 4 colonies

(rows) with workers colored according to time spent foraging (column 1), social maturity (column 2), and age

(column 3). Lowest values are yellow; highest values are dark blue. Queens are colored magenta. Edge color intensity

and width correspond to edge strength. Layouts are calculated with the Fruchterman–Reingold algorithm [32] using R

package “iGraph” [33]. (B) Scatter plots relating proportion of time spent foraging, social maturity, and age. The code

and data used in this figure are available on Zenodo (doi.org/10.5281/zenodo.8043085 - data: all 4 “Fig 2A. . .” csv files

and “Fig 2B.csv”; code: “02-Main.R”).

https://doi.org/10.1371/journal.pbio.3002203.g002
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physical environment, which was best correlated with behavior and second best with social

maturity. Importantly, both physiological measures (gut microbiota and brain gene expres-

sion) were considerably more correlated with social maturity than with behavior, age, or physi-

cal environment. The average R2 value between brain gene expression and social maturity was

0.36, 33% greater than the average R2 values between brain gene expression and the physical

environment or behavior, and 50% greater than the average R2 value between brain gene

expression and age. Similarly, the average R2 value between microbiota composition and social

maturity was 0.32, 3% greater than the average R2 value between microbiota composition and

behavior, 52% greater than the average R2 value between microbiota composition and physical

environment, and 88% greater than the average R2 value between microbiota composition and

age.

The strength of the relationship between brain gene expression and social maturity is of

particular interest because it implies that social interactions may have a direct and considerable

effect on brain function (i.e., that their association is not an indirect consequence of brain gene

expression being associated with behavior or age). Because the PCA of gene expression data

could be strongly influenced by few highly expressed genes, we next used differential gene

expression analyses to investigate the number of genes differentially expressed by behavior,

physical environment, age, microbiota composition, and social maturity. Consistent with the

previous analysis, social maturity was associated with the differential expression of the highest

number of genes (33% of genes, on average across colonies). Individual behavioral profile was

associated with the differential expression of 30% of genes, physical environment with 29% of

genes, age with 27% of genes, and microbiota composition with 13% of genes (Table 1). This

global pattern was independently true within each colony, meaning that the number of genes

Fig 3. Similarity in social network position, physical environment, microbiota, brain gene expression, behavior, and age. (A) A 5-layer multiplex network

constructed from behavior, brain gene expression, microbiota, the physical environment, and social interactions. In each layer, each node represents a worker.

Nodes are colored according to behavior (cyan = nursing; yellow = cleaning; magenta = foraging; black = guarding). Intralayer edges are unweighted and

connect pairs whose interaction strength exceeds the upper quartile of the edge–weight distribution. Interlayer edges connect each worker with itself in the

adjacent layers. (B) Graphical representation of the correlation (R2 values) between the 5 layers and age (in blue). Edge width is proportional to edge strength.

Layout is calculated with the Fruchterman–Reingold algorithm [32], and vertices are colored according to the layer labels in panel (A) and sized according to

their strength (i.e., the sum of their weighted connections). The code and data used in this figure are available on Zenodo (doi.org/10.5281/zenodo.8043085 -

data: all 11 “Fig 3A. . .” txt files and “Fig 3B.csv”; code: “Multiplex.py” and “04-InterlayerCorr.R”).

https://doi.org/10.1371/journal.pbio.3002203.g003
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differentially expressed as a function of social maturity was significantly higher than the num-

ber of genes differentially expressed by behavior in a paired t test (p = 0.024; see Fig C in S1

Text for the percentage of genes differentially expressed by each variable in each colony). This

difference became even greater when considering the number of genes differentially expressed

by each variable when controlling for each other variable. When controlling for behavior,

social maturity still explained the differential expression of 7.3% of genes, whereas when con-

trolling for social maturity, behavior explained the differential expression of only 0.034% of

genes. This pattern was also independently true for all 4 colonies (with >10-fold differences in

all colonies; see Fig C in S1 Text for full colony-level analyses), strongly supporting the notion

that brain transcriptomic variation is more linked to social network position than to behavior.

To further investigate how brain gene expression patterns relate to social maturity, age, and

behavior (both overall behavioral profile and the performance of specific tasks), we used a

machine learning approach that is more sensitive to nonlinear associations than the above cor-

relational approaches. We iteratively subsampled half of the worker population at random and

trained support vector machine models on their gene expression values and the variable of

interest. We then used the model to predict the variable of interest from the brain gene expres-

sion data for the other half of the worker population and regressed the predicted values against

the observed values to quantify predictive accuracy and, hence, the extent to which the variable

of interest is reflected in the brain transcriptome. The highest mean R2 between the predicted

and observed values (0.76) was obtained for social maturity. The mean R2 values between pre-

dicted and observed scores were significantly lower for the 7 other aspects of individual biology

analyzed (Fig 4; mean R2 between the predicted and observed position along PC1 of behavioral

space = 0.63; age = 0.59; proportion of time spent foraging = 0.53; nursing = 0.33; tending to

the queen = 0.23; guarding = 0.05; cleaning = 0.02; t test p-values between social maturity R2

values and all other R2 values all <0.01). These results reinforce the suggestion that there is a

fundamental link between social network position and brain gene expression and confirm that

this link is stronger than that between task behaviors and brain gene expression.

Overall, brain gene expression and microbiota composition correlated more strongly with

social network position than with behavior, physical environment, or age. Moreover, while

our experiment cannot establish causality or directionality in these relationships, the correla-

tion structure presented here constrains the range of possible causal interactions. If, for exam-

ple, social interactions were merely a corollary of the spatial distribution of workers (i.e., their

physical environments), and if it was physical environment that shaped brain gene expression,

then one would expect to see a stronger correlation between the physical environment and

brain gene expression than between social environment and brain gene expression. The fact

that multiple aspects of behaviorally relevant physiology are more strongly correlated with

social interactions than with physical environment, behavior, or age therefore suggests that

social interactions may mediate the observed correlations between many aspects of organismal

biology and likely play a central role in individual variation in social organisms.

Table 1. The number of genes differentially expressed (out of a total of 14,664 genes) in the brain by each of social maturity, behavior, age, the physical environment

and gut microbiota composition (column 1), and the percentage of that number that remain differentially expressed when controlling for each other variable (col-

umns 2–6). Few genes remain differentially expressed by behavior, age, the physical environment, or microbiota composition when controlling for the social maturity.

Variable Without control Social (%) Behavior (%) Age (%) Physical (%) Microbiota (%)

Social 3,581 - 18 46 37 79

Behavior 3,125 1 - 39 28 67

Age 2,810 8 19 - 30 70

Physical 3,007 0.5 6 35 - 75

Microbiota 1,128 2 2 11 13 -

https://doi.org/10.1371/journal.pbio.3002203.t001
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Various factors may limit the generality of these conclusions across species and contexts.

First, our experiment was conducted using a eusocial species, and while we would expect the

results to hold true for all highly social animals, this remains to be tested. Second, the physical

environment was far less complex than those that the ants would naturally experience, which

may have reduced the amount of biological variation explained by this variable. Third, compo-

sition of the abdominal microbiota of Camponotus is atypical in that it is heavily dominated by

Blochmannia, and in some of our workers constituted exclusively Blochmannia. We sequenced

to sufficient depth to allow the comparison of the relative abundance of other amplicon

sequence variants (ASVs), representing species that were facultatively associated with C. fellah,

and observed correlations between microbiota composition and other biological variables that

appeared to be mostly driven by the presence of Acetobacteraceae and other species in foragers

but not in nurses (Fig G in S1 Text). However, the dominance of Blochmannia and the absence

of other bacteria in many individuals may nonetheless reduce the associations between the

microbiota composition and the other measured aspects of biology relative to other species.

In conclusion, our study not only highlights the close link between social environments and

behavior but also illustrates how social environments relate to behaviorally relevant aspects of

physiology, pointing to mechanisms via which individuals can influence each other’s behavior.

Materials and methods

Ant colonies

C. fellah queens were collected following a mating flight in Tel Aviv, Israel, in 2007. The colo-

nies were reared at 27˚C under a 12-h/12-h light/dark cycle, provided water and sugar solution

ad libitum, and fed weekly with flies and an artificial ant food [34]. For 1 year prior to the

experiment (C. fellah workers generally do not live longer than a year [20]), all newly eclosed

workers were paint-marked weekly with a color code indicating their week of birth (Fig 1). C.

fellah queens mate only once, so within colonies, all workers are full sisters [35].

Fig 4. Validation of predictive accuracy. (A) Box plots of the R2 values between observed and predicted values for the proportion of time spent performing

each behavior individually, for position along PC1 of behavioral space, for age, and for social maturity. Black lines indicate median values; boxes and whiskers

indicate upper and lower quartiles and 1.5× IQ range, respectively. (B) Scatter plot of the predicted versus observed social maturity scores for 10 randomly

selected iterations. Color indicates iteration. The code and data used in this figure are available on Zenodo (doi.org/10.5281/zenodo.8043085 - data: “Fig 4A.

csv”; code: “05-ML.R”).

https://doi.org/10.1371/journal.pbio.3002203.g004
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One colony was analyzed in 2018, and 3 colonies were analyzed in 2020. Due to technologi-

cal advances within the 2 years separating the analyses, the methods used were slightly differ-

ent. The 2020 methods are reported below, and the differences are detailed in theAU : PleasenotethatSIhasbeenfullyspelledoutasSupportinginformationinthesentenceThe2020methodsarereportedbelow; andthedifferencesare:::Pleasecorrectifnecessary:Supporting

information.

Behavioral tracking

Each colony was created by randomly subsampling approximately 100 workers (approximately

20% of the worker population) from lab stock colonies, along with the queen and approxi-

mately 20% of the brood. The colonies were housed in double-chamber setups, with a nest

box (170 × 123 mm) kept in constant darkness connected via a plastic tube (internal diameter

19 mm) to a foraging arena (170 × 123 mm) under a 12-h/12-h light/dark cycle. Unique 1.4

mm2 matrix barcodes from the ARTag library [36] were fixed to the thorax of each ant using

SAUER skin adhesive (Fig 1). These tags weigh a fraction of what ants can carry, and their

presence does not alter behavior [37].

Colonies were continuously video recorded for 7 days at 6 frames per second. The tracking

system saves video files and the position and orientation of each tag in each frame. Full techni-

cal specifications and source code are available at: https://github.com/formicidae-tracker.

Tracking data processing

Workers that were detected in fewer frames than 2 standard deviations below the colony mean

(5 or 6 workers per colony) were excluded from the analysis (“01-MergeData.R”). Each work-

er’s physical environment was quantified by discretizing the arena into an equilateral grid of

hexagonal cells using the mean ant body length as the internal cell diameter and by counting

the number of frames in which each worker was detected in each hexagon (“spatial fidelity.

ipynb”) [38]. To quantify each worker’s social environment, we inferred pairwise social inter-

actions from the tracking data as in [10]. Head and body regions were annotated for each ant,

and interactions were defined as occurring when the head regions of 2 ants overlapped. The

total number of pairwise interactions was used to create weighted social networks (Fig 2;

“interaction network.ipynb”). This proximity-based definition of social interactions captures

trophallaxis (approximately 16% of interactions), grooming (approximately 8% of interac-

tions), and antennation events (approximately 35% of interactions), as well as occasions when

2 individuals move past one another or pause next to one another (approximately 42% of inter-

actions). This high rate of “false positive” interactions has no effect on the data analysis because

the frequency of pairwise false positives was well correlated with the frequency of real pairwise

interactions, and the absolute numbers are not important because interaction counts are effec-

tively normalized within colonies during analysis. To illustrate this point, we artificially

increased the proportion of false positive interactions by comparing the pairwise interaction

counts considering only the overlap of head regions (blue in Fig 1B) and the interaction counts

when considering also the overlap of body regions (green in Fig 1B), which increases the aver-

age number of pairwise interactions from 96 to 260, and which massively increases the false

positive rate (e.g., many instances of body-to-body overlap). The R-squared value between the

pairwise interaction scores measured in these 2 ways was 0.812.

To quantitatively characterize individual position in the social network (“social maturity”),

we used the soft community detection FacetNet (https://c4science.ch/source/facet_unil)

[20,39,40]. This approach allows for overlapping social communities by outputting a continu-

ous number in the range 0 to 1 denoting the extent to which a given node belongs to a given

community (i.e., where a given worker is positioned between the nurse and forager communi-

ties). For this analysis, the number of communities was fixed at two based on previous analyses
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of C. fellah social networks [20]. In line with this classification, and consistent with previous

results, there was a U-shaped distribution of social maturity scores, with most workers being

deeply embedded in one or the other community (Fig D in S1 Text; “02-Main.R”).

Behavioral annotation

We quantified individual performance of 6 of the most important and commonly performed

behaviors. Foraging frequency was automatically quantified as the number of frames in which

the individual was detected in the foraging arena divided by the total number of frames in

which the individual was detected (“02-Main.R”). The other 5 behaviors were quantified man-

ually, selecting 1 frame every 2 hours (a total of approximately 80 frames) and manually anno-

tating the identities of all workers that were:

1. Tending the queen: Positioned near, and orientated toward the queen.

2. Guarding the nest: Positioned near, and orientated toward the nest entrance, and

stationary.

3. Nursing the brood: Stood on the brood pile, or with antennae or mouthparts in contact

with brood.

4. Cleaning: Stood on the trash pile, or with antennae or mouthparts in contact with the trash

pile, or carrying dead ants/ debris.

5. Engaging in trophallaxis: Engaged in visible fluid sharing with another individual.

These manually annotated behaviors were not normalized by detection frequency because

when an individual’s identity was not detected in the selected frame, we followed the individ-

ual through the videos until the identity was resolved. Hence, foraging was bound by 0 and 1,

while all other behaviors were bound by 0 and 80, though with different distributions. To give

equal weight to all behaviors during dimensionality reduction, each behavior was normalized

between 0 and 1 within colonies (“02-Main.R”). PCA of the normalized behavioral data

yielded similarly V-shaped plots across the 4 colonies independently, and when data were

pooled across colonies (Fig E in S1 Text; “02-Main.R”). For the correlational analyses, includ-

ing differential expression analysis, PC1 of behavioral space was calculated separately for work-

ers from each colony. For the machine learning–based analysis PC1 of behavioral space was

calculated using individuals from all colonies together. The performance of the 6 annotated

behaviors mapped onto the social networks in a consistent manner (Fig F in S1 Text;

“02-Main.R”).

RNA extraction, library preparation, and sequencing

Immediately following the tracking experiment, all workers were flash frozen and stored indi-

vidually in 1.5 ml Eppendorf tubes at −80˚C. Brains were later dissected out in 1× PBS and

homogenized in 1 ml of TRIzol reagent with ceramic beads in a PRECELLYS Evolution

SUPER Homogenizer. Homogenized samples were incubated for 5 min at room temperature

(RT) before adding Chloroform (200 μl), vortexing, and incubating for a further 5 min at RT.

Samples were centrifuged (25 min at 12,000 rpm and 4˚C) and the upper aqueous layer

(approximately 500 μl) transferred to a new tube with Isopropanol (650 μl) and Glycogen blue

(1 μl, RNAse-free, Invitrogen, 15 mg/ml, #AM9516). Samples were vortexed and incubated

overnight at −20˚C. Samples were then centrifuged (30 min at full speed at 4˚C), the superna-

tant was discarded, and EtOH (1 ml at 80%) added. Samples were vortexed and centrifuged

again (5 min at full speed at 4˚C). The supernatant was discarded, and EtOH (1 ml at 70%)
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added. Samples were vortexed and centrifuged final time (5 min at 12,000 rpm at 4˚C). All

supernatant was removed, and the pellet was allowed to dry (10 to 15 min) at RT. The pellets

were resuspended in nuclease-free water. The KAPA Stranded mRNASeq Library Preparation

Kit (#KK8421) was used for library preparation, and samples were sequenced (150 bp, paired-

end) using a full S4 FlowCell (4 lanes) on the Novaseq 6000 at the Genomic Technology Facil-

ity of the University of Lausanne, yielding 42 ±7 million (mean ± SD) reads per sample.

Gene expression analysis

The transcriptomic reads were mapped to the C. fellah reference genome (BioProject:

PRJNA901066) with STAR v2.7.8a and counted with FeatureCounts using default parameters

at all steps (mapping at the gene, not the transcript level) [41,42] (“Mapping.sh”; “Counting.

sh”). After mapping and counting, we obtained 38.7 ± 8.3 million (mean ± SD) reads per

individual.

Before running the differential expression analysis, we filtered out genes with <100 reads

across all samples (i.e., 1,667 out of 14,664 genes). We used DESeq2 [43] to identify genes that

were differentially expressed by each of age, social maturity, and PC1 of the behavioral, micro-

biota, and physical environment data, as well as for each aforementioned variable when con-

trolling for each other variable, for each of the 4 colonies separately (“03-GeneExpression.R”).

In DESeq2, significant differential expression was assessed with a Wald test, and the Benjamini

and Hochberg method was used to obtain multiple testing adjusted p-values. Genes were con-

sidered as differentially expressed when the adjusted p-value was <0.05.

Microbiota

Workers were surface sterilized by dipping in 95% ethanol, soaking for 1 minute in 5% bleach,

then rinsing with sterilized water. The abdomens were then removed and crushed in Power-

Bead tubes, and DNA was extracted using the DNeasy PowerSoil kit following the manufactur-

er’s protocol (https://www.qiagen.com/de/resources/download.aspx?id=91cf8513-a8ec-4f45-

921e-8938c3a5490c&lang=en). For each batch of DNA extractions, we also performed blank

DNA extractions in which no tissue was added, to control for possible contaminants in the

reagents. A mock community composed of 16S rRNA gene plasmids [10] was processed and

sequenced along the experimental samples to check for biases introduced during PCR and

sequencing. To characterize the microbiota, we amplified the V4 hypervariable region of the

16S rRNA gene following the Illumina 16S metagenomic sequencing preparation guide with

minor modifications (https://support.illumina.com/documents/documentation/chemistry_

documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf) using primers

515F-Nex (TCGTCGGCAGCGTCAGATGTGTATAAGAGACACCGCGGTAA) and 806R-Nex

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT), which

contain the adapter sequences for Nextera XT indexes and the primers for the V4 region of the

16S rRNA gene [44]. Briefly, we performed PCR amplifications in a total volume of 25 μl,

using 2.5 μl template DNA, 12.5 μl of Invitrogen Platinum SuperFi DNA Polymerase Master

Mix, 5 μl MilliQ water, and 2.5 μl of each primer (5 μM). PCR conditions were as follows:

98˚C for 30 s followed by 25 cycles of 98˚C for 10 s, 55˚C for 20 s, and 72˚C for 20 s, and by a

final extension step at 72˚C for 5 min. Amplifications were verified by 2% agarose gel electro-

phoresis. The PCR products were then purified with Clean NGS purification beads (CleanNA)

in a 1:0.8 ratio of PCR product to beads and eluted in 27.5 μl Tris (10 mM, pH 8.5). A second

PCR step was performed to append dual-indexes to each sample using the Nextera XT index

kit (Illumina). Second-step PCR amplifications were performed in a total volume of 25 μl

using 2.5 μl of the products from the first PCR, 12.5 μl of Invitrogen Platinum SuperFi DNA
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Polymerase Master Mix, 5 μl MilliQ water, and 2.5 μl of each Nextera XT index primer. Ther-

mal cycle conditions were as follows: a first denaturation step at 95˚C for 3 min followed by 8

cycles at 95˚C for 30 s, 55˚C for 30 s, 72˚C for 30 s, and a final extension step at 72˚C for 5

min. We again purified the PCR products using Clean NGS purification beads in a 1:1.12 ratio

of PCR product to beads and eluted them in 27.5 μl Tris (10 mM, pH 8.5). The amplicon con-

centrations were quantified by PicoGreen, and amplicons were then pooled in equimolar con-

centration with the exception of the negative control and blank DNA extractions, which were

diluted 10×. These controls are intended to show any background noise and contamination, so

the same sequencing depth is unnecessary. We verified that the final pool was of the right size

using a Fragment Analyzer (Advanced Analytical) and performed sequencing on an Illumina

MiSeq sequencer at the Genomic Technology Facility of the University of Lausanne, produc-

ing 2 × 250 bp reads.

We obtained a total of 11,552,825 raw sequences, from the 289 abdominal samples, 4 nega-

tive PCR controls, 4 mock community samples and 16 blank DNA extractions. Raw sequenc-

ing data quality filtered with Trimmomatic [45] using LEADING:3, TRAILING:3,

SLIDINGWINDOW:4:15, and MINLEN:180. The quality-filtered data were analyzed with the

Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline (“dada2” package version 1.20.0

in R) [46]. All functions were run using the recommended parameters (https://benjjneb.

github.io/dada2/tutorial.html) except that we set randomize = TRUE and nbases = 3e8 at the

learnErrors step, and pool = TRUE during the sample inference step. The SILVA database

v.138 was used for taxonomy assignments of the identified ASVs. We removed any ASV classi-

fied as mitochondria, chloroplast, or Eukaryota (“phyloseq” package v1.36.0 [47], “subset taxa”

function). We then used both the “prevalence” and “frequency” methods (method = “either”)

in the R package “decontam” v. 1.12.0 [48] to identify and remove contaminants introduced

during wet lab procedures, using the negative PCR controls and the blank samples as refer-

ence, which allowed us to identify 14 such ASVs (Renibacterium sp., Ralstonia sp., Microbac-
terium sp., Leifsonia sp., Cutibacterium sp., Enhydrobacter sp., Gordonia sp., 2 Sphingomonas
ASVs, 3 Methylobacterium-Methylorubrum ASVs, a Comamonadaceae, and a Finegoldia). The

final data set consisted of 10,459,506 reads belonging to 79 ASVs (“Microbiota ABC.csv”; Fig

G in S1 Text).

In the analyses, we excluded Blochmannia, which is an obligate intracellular endosymbiont

of Camponotus ants providing essential amino acids and with a likely role in nitrogen recycling

[49,50]. This bacterium was present in all individuals (“02-Main.R”).

Multiplex network visualization and analysis

Euclidean distance was used to calculate pairwise in behavior, brain gene expression, gut

microbiota profile (using relative abundances of different ASVs), and physical environment.

To generate the layout for each layer in the multiplex network, we used the R package “multi-

net” [51]. Intralayer edges connect nodes whose similarity/interaction frequency was above

the upper quartile, while interlayer edges connect like nodes (i.e., node i in layer a with node i
in layer b). We used default values for all parameters except for gravity (set to 1) and iterations

(set to 1,000). The networks were plotted using python package “mnet.” To compare the corre-

lation between layers, each layer was reduced in complexity to be univariate. Social maturity

was used for the social layer and age is de facto univariate. For the other 4 layers, we used

PCAs (“02-Main.R”; “04-InterlayerCorr.R”). We extracted PC1 of the microbiota, behavior,

and physical environmental data. We extracted PC2 of the gene expression data because all

biological variables were best correlated with this principal component, while PC1 was best

correlated with extraction batches from the molecular lab (Fig H in S1 Text).
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Prediction with machine learning

To investigate how accurately gene expression data could be used to predict social maturity,

behavior, and age, we first used DESeq2 to run a differential expression analysis on the variable

of interest, using all samples and controlling for colony identity (model: colony + social matu-

rity; model: colony + PC1 of behavioral data; model: colony + age; model: colony + foraging

score, etc.; “05-ML.R”). Genes with fewer than 100 counts across all individuals were removed

prior to the differential expression analysis, and genes were considered as differentially

expressed when Benjamini–Hochberg adjusted p-values were<0.05. The support vector

machine model (R package “e1071” with type = “eps-regression” and esp = “linear”) was

trained using only genes that were differentially expressed by the variable of interest. We used

half of all workers for training and the other half for testing and repeated this procedure for

100 iterations. At each iteration, the R2 between the predicted and the observed values was cal-

culated and the distribution of these scores over the iterations was used to evaluate prediction

accuracy. We used 2-sample t tests to compare the distributions of R2 values across the hun-

dred iterations between variables.

Supporting information

S1 Text. Fig A. Age distributions. For each of the 4 colonies separately. Fig B. Interlayer corre-

lation networks for each of the 4 colonies separately. Edge width is proportional to edge

strength, and layouts are calculated with the Fruchterman–Reingold algorithm. Fig C. Num-

bers of differentially expressed genes. The numbers of genes differentially expressed by each of

the social environment, behavior, age, physical environment, and microbiota alone, and when

controlling for each of the other 4 variables for each of the 4 colonies. Genes are considered as

significantly differentially expressed when adjusted p-values are <0.05. Fig D. U-shaped distri-

bution of social maturity scores. In keeping with previous results, there were more workers

with extremal than intermediate social maturity scores in all 4 colonies. Fig E. PCA of behav-

ioral data. Left: PCAs for the behavioral data from each of the 4 colonies. Right: PCA of behav-

ioral data from all 4 colonies combined, with workers colored according to their social

maturity. Fig F. Behavior mapped consistently onto the social networks. Performance of each

behavior was normalized within colony between 0 and 1, and workers are colored according

to the task for which they had the highest normalized score. Those categorized as tending the

queen (purple) are nearest to the queen (magenta) and surrounded by those categorized as

performing brood care (orange). Those categorized as performing cleaning (yellow), trophal-

laxis (gray)m and guarding (red) are generally located between the 2 social communities, and

those foraging (blue) are furthest from the queen. Edge color intensity and width correspond

to edge strength. Layouts are calculated with the Fruchterman–Reingold algorithm using R

package “iGraph.” Fig G. Overview of the composition of the gut microbiota. (A) colony 1. (B)

From left to right: colonies 2, 3, and 4. Samples are ordered by social maturity. Fig H. PCA of

gene expression data. The first principal component of gene expression space was well corre-

lated with technical batch effects (extraction groups) and not with any of the biological vari-

ables, which all correlated best with the second principal component. R2 values are reported.
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